A fully flexible stimulator using 65 nm CMOS process for 1024-electrode epi-retinal prosthesis

N. Tran, J. Yang, S. Bai, D. Ng, M. Halpern, D. B. Grayden, E. Skafidas, I. Mareels

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

10 Citations (Scopus)

Abstract

This paper presents a fully flexible stimulator using 65 nm CMOS process for a 1024-electrode epi-retinal prosthesis. The stimulator can select any number of electrodes at any time and also supports both mono-polar and multi-polar stimulation. Furthermore, the stimulator supports a wide range of stimulus parameters. A novel feature is that the electrode driver operates in an alternately pull-push manner, which helps reduce headroom voltage while guaranteeing charge balance at the active electrode. The use of positive supplies instead of both positive and negative supplies simplifies CMOS circuit design. The current distribution between two nearby simultaneously active electrode groups was investigated and measurement result showed a maximum current crosstalk of 8%.

Original languageEnglish
Title of host publicationProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society
Subtitle of host publicationEngineering the Future of Biomedicine, EMBC 2009
PublisherIEEE Computer Society
Pages1643-1646
Number of pages4
ISBN (Print)9781424432967
DOIs
Publication statusPublished - 2009
Externally publishedYes
Event31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009 - Minneapolis, MN, United States
Duration: 2 Sept 20096 Sept 2009

Publication series

NameProceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009

Conference

Conference31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Engineering the Future of Biomedicine, EMBC 2009
Country/TerritoryUnited States
CityMinneapolis, MN
Period2/09/096/09/09

ASJC Scopus subject areas

  • Cell Biology
  • Developmental Biology
  • Biomedical Engineering
  • General Medicine

Fingerprint

Dive into the research topics of 'A fully flexible stimulator using 65 nm CMOS process for 1024-electrode epi-retinal prosthesis'. Together they form a unique fingerprint.

Cite this