Abstract
In this current study, whey protein isolate (WPI)/pectin biowaste composite film properties was investigated with addition of Streptomyces coelicolor-derived small laccase (SLAC). It was found that different SLAC concentrations has insignificant effect on the film color while best film transparency obtained with 4 U/100 mL SLAC. Optimum mechanical properties were obtained with 6 U/100 mL SLAC indicating best crosslinking effect on the WPI-pectin film. Lowest moisture content (MC), water vapor transmittance (WVP) and oxygen transmittance (O2P) of the film obtained with 6 U/100 mL SLAC, while 4 U/100 mL SLAC resulted in lowest carbon dioxide transmittance (CO2P). Maximum increase in phase transition temperature and absorption peak shift according to DSC and FTIR results, respectively, indicated largest improvement in heat resistance and chemical bond strength of the film with 6 U/100 mL SLAC addition. The XRD results showed that the addition of SLAC was insignificant towards the film crystallinity. The work presents the development of new degradable composite film that can be derived from biowaste compounds for utilization in food processing application.
Original language | English |
---|---|
Article number | 100999 |
Journal | Environmental Technology and Innovation |
Volume | 19 |
DOIs | |
Publication status | Published - Aug 2020 |
Externally published | Yes |
Keywords
- Composite film
- Pectin
- Small laccase
- Streptomyces coelicolor
- Whey protein isolate
ASJC Scopus subject areas
- General Environmental Science
- Soil Science
- Plant Science