Abstract
S-AdaBoost is a new variant of AdaBoost and is more effective than the conventional AdaBoost in handling outliers in pattern detection and classification in real world complex environment. Utilizing the Divide and Conquer Principle, S-AdaBoost divides the input space into a few sub-spaces and uses dedicated classifiers to classify patterns in the sub-spaces. The final classification result is the combination of the outputs of the dedicated classifiers. S-AdaBoost system is made up of an AdaBoost divider, an AdaBoost classifier, a dedicated classifier for outliers, and a non-linear combiner. In addition to presenting face detection test results in a complex airport environment, we have also conducted experiments on a number of benchmark databases to test the algorithm. The experiment results clearly show S-AdaBoost's effectiveness in pattern detection and classification.
Original language | English |
---|---|
Pages (from-to) | I/413-I/418 |
Journal | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
Volume | 1 |
Publication status | Published - 2003 |
Externally published | Yes |
Event | 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Madison, WI, United States Duration: 18 Jun 2003 → 20 Jun 2003 |
ASJC Scopus subject areas
- Software
- Computer Vision and Pattern Recognition