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Abstract: In this paper, we present a new method to calculate the height of the second lapse-rate
tropopause (LRT2) using GNSS high-precision data. The use of GNSS data for monitoring the
atmosphere is possible because as the radio signals propagate through the troposphere, they are
delayed according to the refractive index of the path of the signal. We show that by integrating the
vertical profile of the refractive index in the troposphere, we are able to determine the altitude of
LTR2. Furthermore, as GNSS data is available from many stations around all latitudes of the globe
and make up a network with high spatial and temporal resolution, we can monitor the diurnal cycle
of the variables related to the refractive index of the path of the signal. A comparison between the
heights of the LRT2 obtained with radiosonde data and with this novel method is presented in the
paper, and it shows good agreement. The average difference found is ≤1 km for stations between the
latitudes of 30◦S and 30◦N.

Keywords: Lapse Rate Troposphere (LRT); Zenith Tropospheric Delay (ZTD); GNSS atmospheric
monitoring

1. Introduction

Accurate weather data is required to correctly assess weather issues and to produce accurate
models that help mitigate climate issues such as global warming. One atmospheric parameter that is
important to monitor is the height of the tropopause. The tropopause is defined by the second and first
lapse-rate tropopauses (LRT2 and LRT1, respectively). Changes in the height of the global tropopause
can be an indicator of anthropogenic climate change [1–3]. Also, it is relevant to study the tropopause
layer because it separates the troposphere and stratosphere, which have different characteristics with
respect to chemical composition and static stability, which affect the tropopause layer [4]. Furthermore,
the tropopause region plays an important role in the stratosphere–troposphere exchange [5].

The troposphere is the layer of the atmosphere closest to the earth’s surface which extends to
about 18 km above sea level. Between the troposphere and the stratosphere, there is a middle layer
called the tropopause [6]. This layer starts with the LRT1 and ends at the LRT2 [7]. The next layer
is called the stratosphere. Figure 1 illustrates the approximate height of each layer, as well as the
temperature profile through the layers.
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Figure 1. Location of the tropopause and the troposphere and the profile of temperature in the 
troposphere. 

The LRT1 can be defined in terms of the gradient of temperature against altitude. For example, 
Seidel and Randel [8], based on the World Meteorological Organization (WMO), defined the LRT1 as 
being at the altitude where the lapse rate of the temperature decreases to −2 °C/km, provided that 
within 2 km above this point, the average lapse rate does not exceed 2 °C/km. The LRT2 is defined as 
the point above the first tropopause, 1 km beyond which the average lapse exceeds 3 °C/km; any 
point higher than this 1-km layer, the lapse exceeds 3 °C/km. 

In the profile of temperature showed in Rieckh et al. [9], as the altitude increases to 10 km, the 
temperature decreases up to 200 K (−73 °C). Then, there is an inflection point where the temperature 
remains almost constant as the altitude further increases; this point is defined as LRT1. It has been 
found that in the northern hemisphere between latitudes 20° and 40°, the height of the LRT1 is 
approximately 15 km above sea level [9]. According to the results obtained by Feng et al. [6], the LRT2 
can be found at altitudes of around 14 and 25 km, depending on the latitude where the measurement 
is done. The tropopause layer is, therefore, defined as the distance between LRT2 and LRT1. The 
tropical tropopause is defined as being between the latitudes of 30°N and 30°S. 

There are three main methods to obtain the height of the tropopause: the use of radiosonde data 
[4,6,8,10], the use of GPS Radio occultation (GPS-RO) [9], and the use of Very High Frequency (VHF) 
radars [11]. Radiosonde is the data source most commonly used. Other sources that have been used 
to study the tropopause are Atmospheric Infrared Sounder (AIRS) [12], Infrared Atmospheric 
Sounding Interferometer (IASI) [13], and the High-Resolution Infrared Radiation Sounder (HIRS). 

Radiosonde data is readily available from stations around the globe; they provide environmental 
measurements such as temperature, humidity, pressure, etc. at different heights in one sounding. 
Radiosondes take measurements for the whole troposphere up to the geopotential height where the 
pressure is 100 hPa; however, radiosondes have a poor temporal resolution, because the 
measurements are only taken every 12 h. Its vertical resolution of 2 km requires the use of complex 
mathematical models to interpolate the temperature transition to determine the height of the 
tropopauses. In addition, the unique temperature profile along the altitude also increases the 
complexity of the mathematical models required to process the radiosonde data [8]. Because of a few 
potential inflection points in the temperature changes along the altitude, the mathematical model 
needs to describe a curve, rather than a linear relationship. The spatial resolution of the stations 
remains poor, even though developed algorithms are used to increase it. 

The GPS-RO method provides near-vertical profiles of atmospheric thermodynamic variables 
with high vertical resolution (better than 1 km) and global coverage [9]. Using AIRS data, an error of 
approximately 4 K is found for temperatures around the tropopause [12]. In a study by Lerner et al. 
[13], the authors used IASI data and found that in the troposphere (i.e., below 200 hPa), the retrieved 
profiles exhibited temperature errors of less than 1 K and specific humidity errors of minus 10% at 
most heights, associated with a vertical resolution of 1.5–2 km. HIRS data provides a vertical 
resolution of 3–5 km in the troposphere. 

Figure 1. Location of the tropopause and the troposphere and the profile of temperature in
the troposphere.

The LRT1 can be defined in terms of the gradient of temperature against altitude. For example,
Seidel and Randel [8], based on the World Meteorological Organization (WMO), defined the LRT1 as
being at the altitude where the lapse rate of the temperature decreases to −2 ◦C/km, provided that
within 2 km above this point, the average lapse rate does not exceed 2 ◦C/km. The LRT2 is defined as
the point above the first tropopause, 1 km beyond which the average lapse exceeds 3 ◦C/km; any point
higher than this 1-km layer, the lapse exceeds 3 ◦C/km.

In the profile of temperature showed in Rieckh et al. [9], as the altitude increases to 10 km, the
temperature decreases up to 200 K (−73 ◦C). Then, there is an inflection point where the temperature
remains almost constant as the altitude further increases; this point is defined as LRT1. It has been
found that in the northern hemisphere between latitudes 20◦ and 40◦, the height of the LRT1 is
approximately 15 km above sea level [9]. According to the results obtained by Feng et al. [6], the LRT2
can be found at altitudes of around 14 and 25 km, depending on the latitude where the measurement is
done. The tropopause layer is, therefore, defined as the distance between LRT2 and LRT1. The tropical
tropopause is defined as being between the latitudes of 30◦N and 30◦S.

There are three main methods to obtain the height of the tropopause: the use of radiosonde
data [4,6,8,10], the use of GPS Radio occultation (GPS-RO) [9], and the use of Very High Frequency
(VHF) radars [11]. Radiosonde is the data source most commonly used. Other sources that have been
used to study the tropopause are Atmospheric Infrared Sounder (AIRS) [12], Infrared Atmospheric
Sounding Interferometer (IASI) [13], and the High-Resolution Infrared Radiation Sounder (HIRS).

Radiosonde data is readily available from stations around the globe; they provide environmental
measurements such as temperature, humidity, pressure, etc. at different heights in one sounding.
Radiosondes take measurements for the whole troposphere up to the geopotential height where the
pressure is 100 hPa; however, radiosondes have a poor temporal resolution, because the measurements
are only taken every 12 h. Its vertical resolution of 2 km requires the use of complex mathematical
models to interpolate the temperature transition to determine the height of the tropopauses. In addition,
the unique temperature profile along the altitude also increases the complexity of the mathematical
models required to process the radiosonde data [8]. Because of a few potential inflection points in
the temperature changes along the altitude, the mathematical model needs to describe a curve, rather
than a linear relationship. The spatial resolution of the stations remains poor, even though developed
algorithms are used to increase it.

The GPS-RO method provides near-vertical profiles of atmospheric thermodynamic variables
with high vertical resolution (better than 1 km) and global coverage [9]. Using AIRS data, an error
of approximately 4 K is found for temperatures around the tropopause [12]. In a study by Lerner et
al. [13], the authors used IASI data and found that in the troposphere (i.e., below 200 hPa), the retrieved
profiles exhibited temperature errors of less than 1 K and specific humidity errors of minus 10% at most
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heights, associated with a vertical resolution of 1.5–2 km. HIRS data provides a vertical resolution of
3–5 km in the troposphere.

The numerical weather prediction (NWP) and climate monitoring communities require a retrieval
accuracy of less than 1 K in 1-km layers for temperature and better than 15% in 2-km layers for
water vapor in the troposphere [13]. Thus, in order to improve the spatial resolution of the estimated
thickness of the troposphere without increasing the complexity of mathematical models, an alternative
method of measuring the height of the first and second lapse rate tropopauses is proposed based in
Global Navigation Satellite System data (GNSS).In this paper, a new method is proposed to obtain a
fine spatial resolution of both LRT1 and LRT2 at different latitudes from GNSS data.

Global Navigation Satellite System (GNSS) has been widely used in positioning [14,15] and
attitude determination [16,17]. Also, GNSS data has been used to monitor the atmosphere [18]. The
usage of GNSS signals for climate studies is gaining more interest as global warming becomes a
serious challenge.

The method is novel because it uses of the Zenith Tropospheric Delay (ZTD), a by-product of
the Precise Point Positioning (PPP) technique using Global Navigation Satellite System (GNSS) data.
The ZTD can be used to determine the height of the troposphere because radio signals are delayed
depending on the radio refractive index of the travelling path. Thus, by mathematically modeling the
refractivity profile of the troposphere, it is possible to solve for the path of the signal which corresponds
to the troposphere thickness. The main advantage of using the ZTD is that the temporal resolution is
increased, as there is GNSS data every 30 s. Also, any GNSS receiver can be turned into a measuring
station which makes it possible to increase the spatial resolution. There are GNSS receivers embedded
in devices such as smartphones, car-navigation systems, etc. If the device supports carrier-phase
tracking, the ZTD can be estimated from the PPP technique. The PPP positioning technique is widely
implemented in many software and online services. A previous study [19] found that most online
software available for PPP obtained very close values for the estimation of the ZTD. Thus, we can
expect consistent results using any software.

The method presented in this paper makes it possible to estimate the height of the LRT1 with a
precision of 500 m from GNSS data once an adjustment parameter (derived with radiosonde data) is
known. In this study, only one year of data is used to test the method because in previous studies,
such as the one by Mathew and Kumar [20], it was argued that once the height of the LRT had been
calculated, it could be applied globally to data from different years.

The paper is structured as follows. Section 2 describes the data used to measure the height of
the LRT1 and LRT2, i.e., radiosonde data and GNSS data, and the new method proposed to measure
the height of the LRT1 from GNSS data is presented. Section 3 shows the results of the presented
technique. Section 4 comprises discussion of the results. Section 5 presents the conclusion drawn from
this analysis.

2. Materials and Methods

2.1. Description of GNSS Data Sources

The International GNSS Service (IGS) operates 505 GNSS stations across the world. Different
products and observation data are provided by each station. Collectively, they provide data every day
in a year (some stations do not provide data daily). They are made publicly available through their
ftp site (ftp://cddis.gsfc.nasa.gov/gnss). Observation data with a frequency of 30 s is available for all
stations managed by the IGS. The IGS also provides navigation data and ephemeris used in the PPP
technique. The latitudes, longitudes, and heights of 15 selected GNSS stations covering the latitudes of
35◦N to 35◦S are given in Table 1 (values provided by the IGS). This data is used to determine LRT1
and LRT2.

ftp://cddis.gsfc.nasa.gov/gnss
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Table 1. Details about IGS ZTD data used in this study. The code, latitude, longitude, and height are
provided by the IGS.

GNSS Stations

Code Lat (◦) Long (◦) Height (m) Location Country

JPLM 34.2 −118.17 423.99 Pasadena United States
GMSD 30.56 131.02 142.65 Nakatane town Japan
TWTF 24.95 121.16 203.12 Taoyuan Taiwan
MKEA 19.8 −155.46 3754.7 Mauna Kea United States
CNMR 15.23 145.74 64.4 Saipan United States
DJIG 11.53 42.85 711.41 Djibouti Djibouti

KOUG 5.09 −52.64 107.25 Kourou French Guiana
NAUR −0.55 166.93 46.3 Nauru, Yaren District Nauru
SEYG −4.68 55.53 −37.09 Pointe Larue Seychelles
XMIS −10.45 105.69 261.58 Christmas Island Australia

ZAMB −15.46 28.31 1324.91 Lusaka Zambia
VACS −20.3 57.5 420.4 Vacoas Mauritius
UFPR −25.45 −49.23 925.8 Curitiba Brazil

NNOR −31.05 116.19 234.98 New Norcia Australia
STR1 −35.31 149.01 800.03 Canberra Australia

2.2. Description of Radiosonde Data

The Integrated Global Radiosonde Archive (IGRA) run by the National Ocean and Atmosphere
Administration (NOAA) (https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-
radiosonde-archive) contains radiosonde data from more than 2500 stations around the world. Most
stations contain data from two soundings every day: one at 00:00 Coordinated Universal Time (UTC)
and one at 12:00 UTC. For the validation of the values of LRT1 and LRT2 obtained with GNSS data, 15
stations were chosen with the same latitude (because the height of the tropopause is highly associated
with latitude) as the GNSS stations previously described. The latitude, longitude, and height of the
radiosonde stations used in this study as reported by the IGRA are given in Table 2.

Table 2. Radiosondes selected for this study and their location.

Radiosonde Stations

Code Lat (◦) Lon (◦) Height (m) City

USM00072376 35.23 −111.82 2179 AZ FLAGSTAFF, USA
IRM00040841 30.25 56.97 1748 KERMAN, IRAN

CHM00056778 25.01 102.68 1892 KUNMING, CHINA
CHM00059758 20 110.25 64 HAIKOU, CHINA
INM00043192 15.48 73.82 58.4 GOA/PANJIM, INDIA
RPM00098646 10.32 123.98 23 MACTAN, THE PHILIPINES
MYM00048601 5.3 100.27 3 PENANG, MALASYA
BRM00082099 0.05 −51.07 16 MACAPA (AERO), BRAZIL
IDM00097180 −5.07 119.55 14 UJUNG PANDANG, INDONESIA
BRM00082917 −10 −67.8 142 RIO BRANCO (AERO), BRAZIL
BRM00083378 −15.87 −47.93 1061 BRASILIA (AERO), BRAZIL
BRM00083650 −20.5 −29.317 5 TRINDADE (ILHA), BRAZIL
MAM00067197 −25.03 46.95 8 TAOLAGNARO, MADAGASCAR
BRM00083971 −30 −51.18 3 PORTO ALEGRE (AERO), BRAZIL
ASM00094910 −35.16 147.46 220.7 WAGGA AMO, AUSTRALIA

2.3. Methodology

Figure 2 shows in a block diagram of the methodology used to calculate the LRT1 from GNSS data.

https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
https://www.ncdc.noaa.gov/data-access/weather-balloon/integrated-global-radiosonde-archive
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Radiosonde data collected from stations described in Table 2 were used to construct the vertical
profile of the refractivity of the troposphere and to calculate the height of LRT1 and LRT2 applying
the Word Meteorological Organization (WMO)’s definition. The Zenith Tropospheric Delay ZTD is
obtained by processing GNSS data in the Precise Point Positioning Technique. The ZTD is the input to
the algorithm here presented together with the altitude of the receiver found using the PPP technique.
Validation of the technique here presented was done by comparing the height of LRT2 obtained with
GNSS data and with radiosonde data. Each of the blocks shown in Figure 2 are described in detail in
the following subsection.

2.3.1. LRT1 and LRT2 from Radiosonde Data

According to the WMO, the tropopause layer can be defined by two points, the LRT1 and the LRT2,
which can be obtained from the vertical profile of temperature and height obtained from radiosonde
data [21]. The first tropopause is defined as the lowest level at which the lapse rate decreases to 2
◦C/km [7]. If above the first tropopause, the average lapse rate between any level of all higher levels
within 1 km exceeds 3 ◦C/km, then a second tropopause is defined by the same criterion as before [7].
This troposphere may be either within or above the 10 km layer. The height of the LRT1 is relevant for
climate studies and studies where the depth of the troposphere closest to the earth ground is needed.

2.3.2. Profile of the Refractivity of the Troposphere

According to the literature [22–25], the refractivity of the troposphere (N) at height z depends
on environmental variables at the point of measurement. The empirical relation used to describe the
refractive index in terms of environmental variables is shown in Equation (1).

N(z) = k1
p(z) − e(z)

T(z)
+ k2

e(z)
T(z)

+ k3
e(z)

T(z)2 (1)

The constants k1, k2, and k3 have been empirically determined: k1 = 7.76 × 10−1 K/Pa, k2 = 7.04 ×
10−1 K/Pa, and k3 = 3.739 × 103 K2/Pa [24]. p(z) is the air pressure in hPa at height, z, T(z) is the absolute
temperature in Kelvin at height z, and e(z) is the water vapor partial pressure in hPa at height z [24].
e(z) is calculated using the following model where A, B, and C are Antoine’s constants (A = 8.071 B =

1730.63 C = 233.43), and T(z) is the temperature in Kelvin [26].

e(z) =
10A− B

C+T(z)

0.75
(2)
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Equation (2) is valid for temperatures greater than 0 ◦C. Lower temperatures produce ice fog
instead of water vapor. In this research, two values of e are found, i.e., one at 00:00 UTC and another at
12:00 UTC, because radiosonde data is available at those times. Only temperatures above 0 ◦C are
processed. Therefore, if a temperature is lower than 0 ◦C, the measurement is discarded, and the value
of e is not updated. The profile of the water vapor partial pressure obtained using Antoine’s model for
temperatures between 1 ◦C and 50 ◦C (typical surface temperatures on Earth) is shown in Figure 3.
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Figure 3 shows that at 1 ◦C, the e = 5 hPa and at 50 ◦C e = 120 hPa. The variation of the air
temperature at locations near the equator is very small. Therefore, the change of e is very small. In
this research, it is assumed that the water vapor partial pressure can be fitted into the curve shown in
Figure 3.

2.3.3. Profile of the Refractivity

An example of the profile of the refractivity vs height estimated based on radiosonde data and
Equation (1) (radiosonde USM00072376 located in the coordinates lat = 35.05◦, long = −111◦, height
= 2179 m) is shown in Figure 4. The curve is fitted to an exponential function in order to find a
mathematical relationship between the two variables.Remote Sens. 2020, 12, x FOR PEER REVIEW 7 of 18 
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The decrease of the refractivity as the geodetic height increases can be fitted to an exponential
function. Thus, Equation (1) can be written as the empirically determined equation:

N(z) = N0 exp−NhZ (3)

where N0 is the refractivity at height = 0 and Nh is a factor that indicates the exponential decay of the
refractivity with respect to the height.

2.3.4. Estimation of ZTD

The troposphere causes a delay to the signal travelling in the zenith direction ZTD (in meters)
which can be expressed as an integral of the total refractivity N along a propagation path from the
satellite to the receiver. Therefore, the ZTD can be defined as [26]:

ZTD = 10−6
∫ ztrop

zsite

Ndz (4)

where zsite is the height of the receiver with respect to sea level and ztrop is the height of the tropopause.
The integral is calculated from the geopotential height where the receiver is located (zsite) to the top of
the troposphere (ztrop). ztrop defines the layer of the atmosphere that causes the tropospheric delay to
the travelling GNSS signal. It corresponds to the height of the LRT2. In terms of Equation (3):

ZTD = 10−6
∫ ztrop

zsite

N0 exp−Nhz dz (5)

where N0 and Nh are the parameters of the refractivity of the tropopause defined in Equation (3). z is
the height of the LRT2. The path of the signal causing the tropospheric delay is defined between zsite
and the height of LRT2, as shown in Figure 1.

The Precise Point Positioning (PPP) technique is a method that performs positioning determination
using a single GNSS receiver [27]. Double frequency GNSS pseudorange and carrier-phase data is used
as an input to mostly eliminate the effect of the ionosphere on the GNSS signal [28]. The technique
requires precise orbit and clock products which are available from the International GNSS Service
(IGS) or other sources at different resolutions [28]. The PPP algorithm requires an estimator which is
typically the Least Squares [29] or the Extended Kalman Filter [31]. In both cases, raw GNSS data is the
input, and the output is the estimated location coordinates and other parameters such as tropospheric
delay and ambiguities.

In this research, the ZTD has been obtained as a by-product of the Precise Point Positioning (PPP)
technique [27,29] implemented with the open-source software RTKLIB [31]. The PPP implementation
in RTKLIB uses the Extended Kalman Filter EKF [30] to estimate the position of the receiver (x, y,
and z in the Cartesian coordinates system, which can be converted to latitude, longitude, and height
in the Geodetic coordinates system) and other parameters such as ZTD and ambiguities [30]. The
inputs are GNSS observation data and precise ephemeris obtained from thIGS. RTKLIB developed by
T. Takatsu [31], has been chosen as the processing software because in a previous study [14], it was
found that the estimations from it were very near those obtained using other software. Furthermore,
open-source RTKLIB allowed us modify the code for our development, and it has the flexibility of
using different orbit and clock products. In this research, GNSS observation data from the whole year
2018 from the stations described in Table 1 were used to test the proposed algorithm.

2.3.5. Computing LRT2 from GNSS Data

The height of LRT2 is the whole path through which the GNSS signals propagate the troposphere;
it is equivalent to the height of the tropopause. Therefore, from Equation (5), the height of tropopause
ztrop can be calculated from the ZTD by using the derivative of Equation (5).
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Reorganizing Equation (5), ztrop is obtained in terms of ZTD and the profile of the refractivity of
the troposphere:

ztrop =
ln

(
−Nh
N0

(ZTD)
(
10−3

)
+ exp−Nhzsite

)
−Nh

(6)

Nh and N0 are determined from the profile of refractivity at the site of measurement from
radiosonde data. The ZTD and zsite are the Zenith Tropospheric Delay estimated from GNSS data and
the height of the station, respectively.

3. Results

In this section, the outcomes of each of the steps of the algorithm described in Figure 2 are shown.
The first outcome shown here is the annual cycle of the refractivity profile, in order to show the diurnal
cycle of that profile (N against height). Also, the diurnal cycle of the N0 and Nh is shown. Then,
in Section 3.2, the definition of a parameter called D1 is defined. D1 is used to calculate LRT1 from
LRT2. In Section 3.3, the LRT2 calculated from GNSS data is shown in two different time frames: one
week and the whole year, 2018. In Section 3.4, the results are validated by comparing them to the
LRT2 values obtained with radiosonde data and the WMO definition of LRT1 and LRT2. A statistical
analysis is presented in order to validate the algorithm.

3.1. Annual Cycle of the Refractivity Profile

The annual cycle of the refractivity profile was calculated using 10 years of radiosonde data,
as described in Table 2. In Figure 5, the values of N0 and Nh for station USM00072376 are shown.
A clear periodicity is seen. We compared all years and found that the variations between years is
small (a variation of the height of the tropical tropopause of 0.5–1.2 Km has been found by Seidel and
Randel [8]). This confirms that we can use radiosonde data for the slow-varying cycle, and GNSS data
for the fast-varying cycle, (diurnal cycle). The numerical values are unique for each station, but an
annual cycle is found for all stations. So, in order to compute Equation (6), we use the closest N0 and
Nh to the DOY when the ZTD was determined.
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Diurnal Cycle of N0 and Nh

Figure 5 indicates a yearly periodicity of the profile of N0 and Nh with data from radiosonde
station USM0006727376 (Northern Hemisphere). During the summer months, the values of N0 are
the highest, and those of Nh are the lowest. In order to analyze the diurnal cycle of N0 and Nh, the
same radiosonde data was used. The data was fitted to an exponential in order to visually display the
behavior of N0 and Nh during a single day. Figure 6 shows the profile of the fitted N0 and Nh from
radiosonde data over four days in the summer of 2018.
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The diurnal cycle of the profile of the refractivity shows two inflection points: the maximum is
found every day at 00:00 Coordinated Universal Time (UTC) and the minimum at 12:00 UTC. From
00:00 UTC to 12:00 UTC, the values of N0 decrease an average of 40 units for N0. The behavior of Nh is
the inverse to the behavior of N0, i.e., the minimum value is found at 00:00 UTC and the maximum
value is found at 12:00 UTC. Most radiosonde stations described in Table 2 provide data at both times.

3.2. D1 Parameter

The use of Equation (5) yields the height of LRT2 directly because the whole troposphere causes a
tropospheric delay. Therefore, in order to calculate the LRT1 with GNSS data, an adjustment parameter
D1 is needed which corresponds to the thickness of the tropopause obtained with radiosonde data [6]
(i.e., D1 = LRT2RS − LRT1RS). Therefore, LRT1GNSS = LRT2GNSS − D1.

3.3. Results of Proposed Algorithm

GNSS data is available every 30 seconds every day of the year for most of the stations presented in
Table 1. However, in some cases, some data is missing. All available GNSS data of the selected stations
and periods was processed to test the algorithm. Daily, there are 2880 epochs of data, which were
processed with RTKLIB. Each processed epoch produced a value for ZTD and for zsite, which were
used to test the proposed algorithm. The results are presented at three different time frames; first, one
week in the month of July for two stations are presented as an example of how the results can be used
to study the diurnal cycle of the height of the tropopause. Second, the yearly profile of the height of the
tropopause obtained with the algorithm is shown for two stations as an example. Finally, the height of
LRT1 and LRT2 obtained from radiosonde data and from the algorithm are shown for all latitudes.
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As an example, the weekly results of stations JPLM, GMSD, DJIG, NAUR, ZAMB, and NNOR
during the week of the 9 to 15 September (autumn), 2018 are presented in Figure 7. In the same figure,
the LRT2 obtained from radiosonde data for the same time period is presented. Regarding the GPS
data, the week is GPS week 2018, days of the year (DOY): 252–258. The diurnal cycle can only be
obtained with GNSS data because radiosonde data is available only twice a day.
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Figure 7 shows the diurnal cycle of the height of the tropical tropopause obtained with GNSS data
and the algorithm presented in the previous section. In all stations, during the week, rapid variations of
the height of the tropopause can be seen. For some days, there is a clear diurnal cycle: at the beginning
of the day, the height is higher than at the end of the day. However, some days exhibit more chaotic
variation, and the diurnal cycle is less obvious.

Figure 8 shows the annual profile of the height of LRT2 for stations JPLM, GMSD, DJIG, NAUR,
ZAMB, and NNOR obtained with GNSS data and the presented algorithm.
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According to Figure 8a–f, Stations JPLM and GMSD follow the same pattern because they are
further away from the equator. During the summer months, the height of LRT2 is minimum. Station
NAUR shows a very small variation, i.e., the height of LRT2 seems to be constant except for three peaks.
Station NAUR is located in Nauru, which is on the equator; therefore, the height of LRT2 is expected to
be higher than other locations and the weather to be almost constant. Station NNOR is south of the
equator; therefore, the maximum values for the height of LRT2 are found during the summer. The
behavior is the opposite to that of stations north of the equator.

Equation (6) is applied to estimate the height of the tropical tropopause using GNSS data; however,
radiosonde data is also used for validation purposes. The height of the tropical tropopause measured
using annual GNSS and radiosonde data is shown in Figure 9.
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Figure 9 shows the height of LRT2 obtained with radiosonde and with GNSS data. The LRT2
was calculated using the algorithm previously described with GNSS data and applying the WMO’s
definition of the LRT2 to the radiosonde soundings in the stations described in Table 2. Every day,
there are 2880 epochs of GNSS data. Therefore, a daily average is calculated; these daily averages are
themselves averaged to find a single value at a given station in a year, which is plotted in Figure 9.
There are two radiosonde soundings every day. Therefore, a daily average of the obtained height of
LRT2 is calculated and plotted per station in Figure 9.

3.4. Validation of Results

Validation of the algorithm was done by comparing the results of LRT2 obtained with GNSS and
radiosonde data. The results are shown in Figure 9. The differences of 1.4 km between 30◦S and 30◦N
with a 95% confidence interval were obtained by doing a P-value test. Data from radiosondes were
averaged and a single value per day was used. Figure 10 shows the residuals of the comparison of
LRT2 obtained with GNSS and radiosonde data.
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Table 3 shows the height of LRT2 measured with radiosonde and GNSS data from the year
2018 (LRT2_RS and LRT2_GNSS). Also, the mean of the differences, the standard deviation, the
maximum and minimum values, the median, and the RMSE of the differences are shown in Table 3 for
validation purposes.
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Table 3. Values of LRT1 and LRT2 obtained with radiosonde data and LRT2 obtained with GNSS data A1, LRT1_GNSS, and dLRT1.

Station Latitude
[◦]

LRT2_RS
[km]

LRT2_GNSS
[km]

Mean_dlrt2
[km]

STD_DLRT2
[km]

dlrt2_Max
[km]

dlrt2_Min
[km]

Median_dlrt2
[km]

RMSE
[km]

JPLM 35 17.6 17.25 0.35 3.16 10.18 −6.76 −0.50 3.16
GMSD 30 17.9 18.79 −0.89 3.36 12.42 −6.66 −0.31 3.37
TWTF 25 18 19.53 −1.53 2.56 10.52 −6.00 −0.10 2.57
MKEA 20 18 19.72 −1.72 2.36 6.30 −1.74 0.21 2.09
CNMR 15 18.1 19.81 −1.71 1.98 10.12 −2.56 0.44 1.24
DJIG 10 18.5 19.91 −1.41 1.69 5.96 −3.20 0.57 1.84

KOUG 5 19 19.95 −0.95 1.00 7.54 −0.12 1.68 2.50
NAUR 0 19 20.36 −1.36 2.12 10.52 −0.99 2.30 3.36
SEYG −5 18.9 19.70 −0.80 2.30 12.42 −0.12 2.08 2.99
XMIS −10 18.5 17.95 0.55 2.40 6.30 −1.21 1.89 3.13

ZAMB −15 18.1 19.22 −1.12 2.31 9.62 −2.15 1.57 3.28
VACS −20 18 19.30 −1.30 2.01 10.12 −1.99 0.54 2.51
UFPR −25 17.8 18.59 −0.79 2.00 12.42 −0.88 0.34 2.00

NNOR −30 17.7 17.55 0.15 2.30 7.31 −4.05 0.13 2.34
STR1 −35 17.7 19.33 −1.63 3.10 5.96 −1.10 −0.14 3.10
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4. Discussion of Results

GNSS data can be used to calculate the height of LRT2 and LRT1. Furthermore, it is possible to
detect the diurnal cycle of the height of LRT2. The results in Figure 7 show the diurnal cycle of the
height of the tropopause found with GNSS data and the algorithm presented in this paper. Stations
JPLM and GSMD are located at latitudes 35◦ and 30◦ north of the equator. For both stations, during the
morning, the values were higher than during the afternoon. That’s the reason why a peak was found
at the beginning of the day. The average height found for JPLM was 13.4 km, while for GSMD, it was
16.5 km, as expected, because latitudes closer to the equator have higher values for the height of LRT2.

Stations DJIG and NAUR are closer to the equator: DJIG is located at latitude 10◦ and NAUR is
on the equator. Figure 7c,d show that the values for the height of LRT2 are bigger for NAUR than
for DJIG because, according to previous research, the highest values of height of LRT2 are found at
the equator. The profile of diurnal cycle shows a little change between heights in one day. Stations
ZAMB and NNOR are represented in Figure 7e,f respectively. Both stations are south of the equator, at
latitudes of −15◦ and −30◦ respectively. The maximum values were found during the afternoon rather
than in the morning. As expected, the heights were lower than those for the stations near the equator.

The heights of the LRT2 obtained with radiosonde and GNSS data for six stations are shown in
Figure 8. Figure 8a−f show the annual profile of the height of the tropopause found with GNSS data.
Figure 8a,b show the profile for stations JPLM and GSMD at latitude 35◦ and 30◦ north of the equator.
In both cases, the minimum values were found during the summer months. The maximum values
were found during the spring. GSMD lacks data from July and August 2018, but the tendency is clear
for lower values. The values for the height were lower at station JPLM than GSMD. Figure 8c,d show
the annual profile of the height of LRT2 at stations DJIG and NAUR, located at latitudes 10◦ and on the
equator. As expected, the values for NAUR were the greater than those for all other stations because
it is on the equator. Furthermore, the profile is almost flat. DJIG has bigger changes than NAUR;
the maximum values for this latitude are found during the months of August and September, which
correspond to the summertime in the northern hemisphere.

Figure 8e,f show the annual profile of the height of LRT2 obtained with GNSS data at stations
in the southern hemisphere ZAMB (lat: −15◦) and NNOR (lat: −30◦). The profile at ZAMB has the
opposite behavior to the profile of stations north of the equator. The maximum values were found
during the months of February and March, which are the summer months in that hemisphere, and the
minimum values were found in the months of August and September, which are the winter months in
the southern hemisphere. The values of the height of LRT2 at NNOR were smaller than for ZAMB, and
the profile showed small changes between the maximum and minimum values. The maximum values
were found during June and July. In contrast, the minimum values were found during the months of
April and May. The averaged values of LRT2 at different latitudes yielded the results presented in
Figure 9, which show that the maximum values were found for stations closer to the equator with both
GNSS and radiosonde data.

Validation of the results was done by comparing the results obtained with radiosonde data and
with GNSS data. Both outcomes are shown in Figure 9. The quality of the results was evaluated with
statistical indicators. In Table 3, the following statistical indicators are shown: the average of the
differences, the maximum and minimum values, the standard deviation of the differences, and the
median and the Root Mean Square Error of the differences. Furthermore, a P-value test found that the
difference in the 95% confidence interval for stations between −35◦ and 35◦ latitude is 2.7 km, which
is close to the resolution obtained using other techniques and data sources. Seven stations had an
average difference of less than 1 km, five stations had an average difference between 1 and 2 km, and
the remaining three stations had an average difference between 2 km and 3 km. However, none of
the stations had an average greater than 3 km. The discrepancies between the results are due to the
model of the e, and to errors in the estimation of ZTD, which are also linked to environmental variables
not being accurately measured or estimated. Furthermore, missing radiosonde or GNSS data also
contributed to the discrepancies.



Remote Sens. 2020, 12, 293 16 of 18

In order to reduce discrepancies, one year of data was processed so that different weather
conditions would be present, especially in the stations further away from the equator which have
different weather conditions through the year. Ten years of radiosonde data were processed to obtain
the equation here presented. The profile of the refractivity through the years changes very little;
therefore, we used only one year of data to test the algorithm and assumed that in the other years, the
results would be similar. A limitation of the algorithm is that special weather conditions can increase
the discrepancies between the obtained height of the LRT2 with GNSS data and the measured LRT2
from radiosonde data.

The advantage of the proposed technique is that the temporal resolution is increased. The ZTD can
be estimated with the PPP technique as frequently as the ephemeris and the GNSS data are available.
In this case, there is a solution available every 30 seconds. Final precise ephemeris was used in our test;
therefore, the solutions of the proposed algorithm is postprocessing with the latency of the availability
of the final precise ephemeris product from IGS. Rapid precise ephemeris and improvements of the
PPP technique towards real time would make the computation of ZTD possible in real time. Therefore,
the height of LRT2 could be measured in real time. In contrast, the use of radiosonde data is limited by
the number of soundings, i.e., two per day in most radiosonde stations. Another advantage of the
proposed algorithm is that it is possible to observe the diurnal cycle of the height of LRT2 at a higher
resolution, because there are GNSS measurements throughout whole the day.

5. Conclusions

The Zenith Tropospheric Delay (ZTD) can be used to monitor the environment because of two
relationships, i.e., the relationship between the ZTD and the refractivity index of the troposphere (N),
as defined using Equation (4), as well as the relationship between N and environmental variables
such as temperature, water vapor partial pressure, and atmospheric pressure. Previously, algorithms
have been developed to monitor the water vapor and the precipitable water using ZTD. However, this
research showed that monitoring the height of the tropopause layer using the ZTD as input is also
possible because of the relationship of the ZTD and the path of the signal which passes the tropopause.

The profile of refractivity was obtained with the measurements of pressure (p) and temperature
(T) at different levels. It was assumed that the water vapor is distributed in the troposphere, so it was
calculated with the first temperature reported by the radiosonde; the same value was used at different
heights. The profile was fitted into an exponential function, and two values were found: N0 and Nh.
Ten years of data were processed, and it was found that the profiles of N0 and Nh were periodical at
each latitude. Therefore, a single average value of N0 and Nh per latitude was obtained.

In this paper, we have presented an algorithm to calculate the height of the tropical tropopause
using high-resolution GNSS data. The algorithm was tested using high-resolution GNSS data from
15 stations between latitudes of 30◦S and 30◦N. The algorithm was validated using radiosonde data
from stations in the same latitudes. It was found that the profile of refractivity against height is
periodical through the years. Also, it was found that the annual change of the values N0 and Nh are
negligible; therefore, those parameters can be calculated with data from a single year and applied to
different years.

The profile of the height of the tropopause (LRT1 and LRT2) can be obtained with GNSS data, as
shown in Figure 9. Validation was done by comparing the results obtained with GNSS and radiosonde
data, and the definition of the WMO. It was found that the average difference between both results is
less than 3 km for all stations; five stations yielded averaged differences of less than 1 km. Furthermore,
it is shown in Figure 8 that it is possible to monitor the diurnal cycle of the height of the tropopause
using GNSS data because it has a higher temporal resolution. The ZTD can be estimated from PPP at a
frequency of 30 s. Therefore, the height of LRT2 can be estimated at the same frequency as the ZTD.
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