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Cold chain configuration design: Location-allocation decision-making using coordination, 

value deterioration, and big data approximation 

 

Abstract 

The study proposes a cold chain location-allocation configuration decision model for shippers and 

customers by considering value deterioration and coordination by using big data approximation. 

Value deterioration is assessed in terms of limited shelf life, opportunity cost, and units of product 

transportation. In this study, a customer can be defined as a member of any cold chain, such as 

cold warehouse stores, retailers, and last mile service providers. Each customer only manages 

products that are in a certain stage of the product life cycle, which is referred to as the expected 

shelf life. Because of the geographical dispersion of customers and their unpredictable demands 

as well as the varying shelf life of products, complexity is another challenge in a cold chain. 

Improved coordination between shippers and customers is expected to reduce this complexity, and 

this is introduced in the model as a longitudinal factor for service distance requirement. We use 

big data information that reflects geospatial attributes of location to derive the real feasible distance 

between shippers and customers. We formulate the cold chain location-allocation decision 

problem as a mixed integer linear programming problem, which is solved using the CPLEX solver. 

The proposed decision model increases efficiency, adequately equates supply and demand, and 

reduces wastage. Our study encourages managers to ship full truck load consignments, to be aware 

of uneven allocation based on proximity, and to supervise heterogeneous product allocation 

according to storage requirements.  

 

Keywords: Location-allocation problem; cold chain configuration; coordination; big data      

 

1. Introduction 

Changes in lifestyle and income increases in developed and developing countries have escalated 

the demand for healthy and nutritious food products. The demand for frozen food, currently valued 

at US$224.74 billion, is projected to reach US$293.75 billion by 2019 (Meneghetti and Monti, 

2015). Fruits, vegetables, and pharmaceutical goods are typical examples of perishable products 

that tend to deteriorate exponentially over time (Bai and Kendall, 2008); therefore, monitoring and 

controlling storage temperature is essential to enhance the safety and quality of such products. The 



objective of cold chain configuration design is to protect perishable products while minimizing 

cost, waste, and energy. Currently, cold chain configuration is neither adequately developed nor 

applicable to bottom line users, who are highly fragmented and characterized by the many 

geographically dispersed primary producers and intermediaries followed by manufacturers, 

retailers, and so forth. The major reason for this fragmentation is the supply and demand mismatch 

which arises from a seasonal production but a year-long demand requirement. The few attempts 

that have been made to equate cold chain demand with supply have resulted in searches for 

suppliers beyond regional boundaries. Regulations on products imported by sea are typically 

different from those imposed when the same product is produced and consumed locally. This 

differentiation is a crucial characteristic to be considered when designing a cold chain distribution 

network configuration strategy because the product value and deterioration depends on the 

product’s age and not its durability. The specific requirements for storage and transportation 

configuration under controlled conditions further amplify the complexity that requires customized 

strategies to enable efficient functioning of cold chain operations. 

 

High safety and quality requirements for perishable products, particularly food products, have 

resulted in considerable wastage, leading to economic and social losses. This is a major concern 

in emerging economies, specifically in China, where 370 million tons of fruits and vegetables 

(worth 75 billion Yuan), which can feed 200 million people, are wasted annually. Similarly, in 

India, poor infrastructure and inadequate monitoring results in substantial (35%–40%) wastage of 

fruits and vegetables (Shih and Wang, 2016). The effects of temperature and time on the internal 

characteristics of food products are irreversible, which places stringent requirements on preserving 

food safety and quality. Food loss is primarily attributed to inadequate storage infrastructure and 

inappropriate handling and transportation. Decision makers at all stages of food manufacturing 

must differentiate between appropriate use of frozen storage and cool storage. The aforementioned 

factors also lead to misinterpretation of information by multiple actors at various stages (Thakur 

and Forås, 2015).  

  

Food supply chains are similar to value chains except in that the deployment of appropriate 

refrigeration technology is critical to maintaining the quality, nutritional, and financial value of the 

product (Dodd and Bouwer, 2014). Although effective cold chain management primarily 



decelerates the deterioration of harvested products, it may not necessarily enhance the nutritional 

value. Some attributes that increase the complexity of cold chain are distance, change of transport, 

and storage units, as well as other trade and border regulations.  

 

Involvement of heterogeneous customers further complicates the operation and functioning of cold 

chains. The standard location–allocation problem in a conventional supply chain includes 

aggregating demand and service requirements by customers rather than by products. However, to 

develop a suitable cold chain configuration for perishable products, shelf life and stringent storage 

requirements are critical factors that must be considered in the location–allocation decision.  

 

We propose a decision model for analyzing how certain customers identify cold storage locations 

and allocate according to the demand for perishable products. In addition to shelf life, we consider 

four other factors that are most essential in location allocation for cold chains: coordination among 

fragmented and heterogeneous customers, opportunity cost in terms of deterioration of value with 

time, units of product transportation, and distance calculation by using big data approximation. A 

critical aspect considered in the model is the difference between product value and market price. 

Shelf life represents the marketable life of a product and not necessarily its physical condition or 

deterioration rate (Wang et al., 2009). 

  

The present study contributes to the literature on location–allocation by integrating the aspect of 

perishability in decision-making. Location–allocation studies that have addressed durable products 

have been modeled using customer service requirements. In this study, a customer is any member 

of a cold chain, such as cold warehouse stores, retailers, and last-mile service providers. Each 

customer can manage only products that are in a certain stage of the product life cycle, which is 

referred to as the expected shelf life (ESL). Moreover, the same product might be required by 

various customers with different ESL and different product value on account of order frequency, 

proximity from point of use (PoU), and selling market. Geographically fragmented customers with 

different ESL increase the complexity of coordination necessary for satisfying demands. 

Coordination is achieved by selecting and allocating storage locations that satisfy the ESL of 

customers. This is incorporated into the model by translating ESL into a service distance 

requirement. The proposed model allows both discrete and continuous transportation units for 



products. For example, a piecewise product flows in discrete units, whereas weight (in kilograms) 

flows in continuous units. Value for perishable products deteriorates with time (Coelho and 

Laporte, 2014) and unmet demand for perishable products can then be considered opportunity cost. 

We define opportunity cost as a value of product ESL perceived by customers that determines the 

bundling of products when storage capacity is limited. The study utilizes big data information that 

reflects geospatial attributes of location to derive the real feasible distance between shippers and 

customers. The conceptual description of the problem is detailed in Section 3. The results of this 

study provide several valuable insights into aspects such as full truck load (FTL) shipments, 

uneven allocation based on proximity, and heterogeneous product allocation according to storage 

requirements. Finally, the role of opportunity cost is illustrated under capacity allocation decision. 

The optimization model facilitates coordination by encapsulating the service distance requirement 

of perishable products to a heterogeneous group of customers.  

 

The remainder of the paper is organized as follows: Section 2 presents a discussion of the literature 

on cold chain storage requirement and coordination concerns, location–allocation problem, and 

summary of the gaps in literature. Section 3 provides a conceptual description of the problem and 

is followed by mathematical formulation in Section 4 and an illustrative example in Section 5. 

Finally, the results are discussed in Section 6, and the conclusions, prospects for future research, 

and limitations of the study are presented in Sections 7, 8, and 9, respectively. 

 

2. Literature review 

2.1 Cold chain storage requirement and coordination concerns   

Cold chain creates customer value by merging logistics activities related to perishable products 

with prevalent business processes (Shih and Wang, 2016). Cold supply chains require storage and 

transportation of associated products in temperatures approximately equal to or less than their 

freezing points; this places emphasis on appropriate temperature settings in refrigerated 

warehouses and trucks to fulfill the needs of the customers. Refrigerant energy leakage is 

proportional to the cooling capacity of the system. In conventional supply chains, the warehouse 

capacity is dependent on throughput (demand rate) and actual stock-keeping capacity. However, 

the operating cost for cold storage increases drastically with the addition of a refrigeration system; 

this means that warehouse capacity is influenced by demand pattern, inventory policy, and 



customer service requirements as well as actual physical capacity (Saif et al., 2016). Consideration 

of customer service requirement is driven by the shelf life of products: acceptable safety and 

quality levels should be maintained when the products reach the customer.  

 

The quality of food products is dependent on the temperature, time, and atmosphere of storage, all 

of which affect-depending on the sensitivity of the product to time and temperature-the degree of 

deterioration of products. The average storage time at distribution centers depends upon the batch 

size of transfer between producers and distributors, which influences variable cost, whereas fixed 

cost depends on the set-up costs for cooling and treatment units (Zanoni and Zavanella, 2012). 

 

Consolidation in storage for durable products is mostly influenced by external features such as 

shape, size, weight, and volume of the products. The ability to share the same storage space 

depends on compatibility in terms of the modular design of products, which differs between 

perishable and durable products. Different holding temperature requirements restrict the 

combining of cold items for shipment and storage. Clustering of cold items, such as dairy products 

(milk and chocolate milk) can be facilitated by enabling sharing of storage and transportation 

capacity to fulfill the demand requirements (Bozorgi, 2016). 

 

Speed, reliability, and specialized transportation and storage units impose additional requirements 

on a food supply chain. Modern food chains entail multiple products with multiple temperature 

requirements, defying the notion of “one size fits all.” Food contamination depends on external 

factors (humidity, temperature) and internal factors (microbial contamination and composition) as 

well as the duration of exposure to these conditions (Thakur and Forås, 2015). 

 

Chen et al., 2016 identified that uncertain factors, such as weather, temperature, and customer 

preferences, influence the demand for agriculture products. China, with its decentralized and 

complex agriculture configuration, requires an organized farming structure, such as the facility 

agricultural supply chain prevalent in Eastern China. The operation of organized farming is 

structured to allow supermarkets to order from the facility agricultural enterprises according to the 

demand. This further enables the development of a plan for upstream farm producers through 

adequate coordination. In China, shortages of third-party logistics (3PL) warehousing for cold 



chains are because of the following reasons: i) low capacity and low space utilization rate, ii) low 

utilization rate per year due to seasonality of the products, iii) difficulties in guaranteeing product 

quality, and iv) low operational efficiency due to manual entry and untimely updates (Zhang et al., 

2012). 

 

Dissimilar products should have different types of service levels. Warehouse locations for frozen 

products may be located closer to either the harvest (or production) center or the market. 

Temperature control ensures food product quality and safety. On the basis of temperature control, 

food products can be classified as frozen (lower than −18°C), ambient (room temperature), and 

chilled (0–15°C) products, with further diversification or clustering (Fredriksson and Liljestrand, 

2015). Frozen food stores in Germany are classified as follows: (1) plant cold stores (number [n] 

= approximately 20, temperature [T] < −20°C); (2) central cold stores (n = approximately 80, T < 

−24°C); distribution cold stores (n = approximately 200, T < −20°C); freezing cabinets in retail (n 

= approximately 2 × 105, T = approximately −18°C). The British Frozen Food Federation has 

differentiated primary cold stores for frozen foods as those with temperatures ranging between −20 

and −28°C, with the ability to reduce the temperature to −18°C and with a tolerance of 3°C in 

primary distribution. The American Society of Heating, Refrigerating and Air-Conditioning 

Engineers require temperatures for frozen food storage to be between −23 and −29°C, whereas the 

Italian Frozen Food Institute guidelines suggest a maximum storage temperature of −22°C 

(Arduino et al., 2015). The difference in temperature requirements for different countries, stages, 

and measuring units of temperature increases complexity in coordination because of the presence 

of multiple actors and potential for misinterpretation of information.  

 

Producers and farmers face greater risks and lower margins primarily because of a low level of 

consolidation. This has resulted in higher bargaining power possessed by a small number of 

retailers in fresh fruits and vegetables supply chains. Farmers are seeking measures to grow either 

individually or in associated groups or cooperatives to benefit from high levels of consolidation. 

The integration needs to be complemented by simultaneous collaboration with downstream 

partners. Planning of production associated with farmers is influenced by external factors related 

to demand forecasting as well as by internal factors that pertain to the distribution of demand 

among associated members. The cooperative structure is not effective because of asymmetric 



information and decentralized control, which are primarily attributed to farmers’ reluctance to 

share cost structures and expected outputs (Mason and Villalobos, 2015). 

 

2.2 Location-allocation problem 

Location problems can be depicted on a graph network with nodes (location) and arcs (distance 

between locations). Locations on networks are differentiated as either tree-like structures or with 

cycles (Tansel et al., 1983). The tree-like structures are utilized when cycles are expensive, for 

example, to depict interstate highways. The functions of distance for tree-like structures functions 

are often convex, whereas those for cyclic networks are non-convex. In Daskin et al. (1992), 

determination of planning horizon for the first period decision served as an efficient tool for the 

dynamic uncapacitated fixed-charge location problem.  

 

Facility location problems are of two types: number of facility locations, which is a p-median 

problem, and service levels (based on distance), which is set covering problem. Other types of 

problems are formulated by combining these aspects with additional criteria. Owen and Daskin 

(1998) reviewed decision making methods for facility location problems, including p-median, set 

covering, and p-center problems, and established that the robustness of a facility location model 

depends on uncertain future events and changes in the state of the system. Long-term planning 

characterizes the complexity and importance of facility location as it involves high initial 

investment and uncertainty. Substantial reduction in computational time was achieved in solving 

such complex problems by sequential arrangement of inherent quality. Inventory costs at 

distribution centers and economies of scale associated with transportation cost are expected to help 

in solving the facility location problem (Daskin et al., 2002). Ghaderi and Jabalameli (2013) 

provided a solution for the longitudinal uncapacitated facility location-network design problem 

with budget constraints for opening the facility and creating links during each period of planning 

horizon and demonstrated the practical feasibility of the proposed approach by applying it to health 

care facilities in Iran.  

 

Warehouse site selection is a strategic decision with high initial investment and requires a process 

that integrates both tangible and intangible criteria into the decision-making process. The 

analytical hierarchical process (AHP), which is  used to link corporate objectives with site selection 



criteria in the form of hierarchical relationships, facilitates the prioritization of warehouse sites 

(decision alternatives) (Korpela and Tuominen, 1996). Fischer (2002) modeled duopolistic 

location planning with variable locations and prices to reach an equilibrium price and a sequential 

problem with the leader assessing the actions of the follower to make pricing decisions. The effect 

of knowledge spillovers on location choice for new entrants in the United States from 1985 to 1994 

revealed that firms tend to align physically with locations of high academic innovation while also 

considering the impact of outward knowledge spillovers. Technological factors are also attributed 

to the selection of location sites: less technologically advanced regions emphasize industrial 

innovative regions and more technologically advanced regions avoid such regions to reduce 

outward spillover to competitors (Alcácer and Chung, 2007). The function for weightage of 

demand point with time enabled the identification of optimal locations, relocation times, and total 

cost (Farahani et al., 2008). Avella et al. (2012) performed a clustering analysis wherein p facilities 

(medians) were located by minimizing the sum of distances from each facility to the nearest 

facility. Clustering involves grouping a set of similar patterns into clusters to reduce the size of the 

problem and further solving each cluster as a p-median problem. The material location–allocation 

problem in dual warehouses for allocating material quantity between owned warehouses and those 

rented from 3PL would be beneficial when the storage capacity constraint of manufacturer’s 

warehouse requires renting a 3PL warehouse, which incurs storage rental and transportation costs 

and excludes the initial investment for the site (Wutthisirisart et al., 2015). Drexl and Schneider 

(2015) highlighted using planar locations, instead of any location on plane, to eliminate the 

problem of forbidden regions. The authors also emphasized the need for integrating other logistical 

factors with the problem to apply a more holistic approach. 

 

 

2.3 Analyzing real-time data in the cold chain perspective 

Tracking technologies vary from paper-based entry to computer-based information technologies 

and highly sophisticated biological technologies. Qualitative traceability involves the ability to 

trace the physical flow along with additional information on ingredients, quantity, supplier, 

producer, and the linkage among them. Moreover, identifying the source of contamination and 

assessment of variance in quality is helpful. Most food products are treated as commodities that 

can be easily substituted, thereby complicating the tracing process (Turi et al., 2014). 



  

Wang et al. (2015) emphasized the development of real-time environment monitoring to maintain 

the safety and quality of perishable food products. Transportation and storage conditions, such as 

the state of motion of the transporting vehicle, vibrations, unexpected fall, loading, unloading, and 

power management in non-joined status, are critical factors affecting value added attributes of food 

products. Although installed thermometers and humidity sensors capture the macroscopic 

environment in warehouses and vehicles, they fail to provide continuous and microscopic 

information. The categories and their respective information attribute characteristics in a food 

supply chain are as follows: i) environmental conditions: temperature, humidity, and carbon 

dioxide concentration; ii) state of motion: abnormal vibration, unexpected fall, excessive tilt, and 

illegal opening; iii) location: geographical positioning system (GPS) and iv) network status: 

voltage network topology. 

 

Various studies have employed databases and online application of temperature monitoring 

through the application of temperature monitoring technologies. Thakur and Forås (2015) 

developed an approach for online temperature monitoring and traceability in a cold chain. 

Electronic Product Code Information Services (EPCIS), a web-based temperature monitoring 

system, was deployed during various phases of product flow for monitoring temperature and 

tracking. Gogou et al. (2015) developed a cold chain database (CCD) tool to manage and evaluate 

food products. The tool estimated the product shelf life on the basis of existing or user-defined 

kinetic data. Grunow and Piramuthu (2013) estimated the remaining product shelf life using radio 

frequency identification (RFID) for waste reduction. Applicability of RFID use among retailers, 

distributors, and customers was compared with barcode using return on investment as a (ROI) 

measure. Derens-Bertheau et al. (2015) used the real-time-temperature profile of a Frisbee field 

test to measure the time–temperature performance of chilled food. 

 

2.4 Summary of research gaps 

An analysis of the literature provided the following insights into the unexplored area of the 

location–allocation problem in cold chain configuration, which requires development to preserve 

value by ensuring acceptable shelf life quality (Wang and Shih, 2016) and emphasizing specific 

storage requirements (Saif et al., 2016; Zanoni and Zavanella, 2012): First, the necessity to 



characterize cold chain service requirement on the basis of the product level (Fredriksson and 

Liljestrand, 2015) with emphasis on addition of touch points to avoid wastage and uninterrupted 

supply; second, the misinterpretation of information, because of different temperature 

requirements at various stages (Arduino et al., 2015), and asymmetric information and 

decentralized control (Mason and Villalobos, 2015) require coordination with an initiative  

originating from mature downstream members; finally, the necessity to monitor the temperature-

time relationship requires the sophisticated use of technology to ensure safety and quality of 

products. However, most studies (Wang et al., 2015; Thakur and Forås, 2015; Gogou et al., 2015; 

Grunow and Piramuthu, 2013; Derens-Bertheau et al., 2015) have been conducted at an 

operational level and not at a planning level. The incorporation of perishability and deterioration 

at the planning stage would facilitate the design of a robust system and form a suitable framework 

for incorporating such technologies.  

 

The accumulation of extensive quantum diverse datasets in an analytics environment requires 

decision makers to devise a mechanism for integrating the two aspects in the evaluation of 

alternatives. Hazen et al. (2016) suggested the need to bridge the gap between operations 

research/supply chain management and big data analytics by synergizing decision-making with 

quantitative results, transitioning to business analytics, enhancing data quality, diversifying team 

structure, and defining a structured plan for alternative selection. Recent research on big data sets 

in the operations management domain includes the studies by Wang et al (2016) which focused 

on developing a capacitated network design to locate distribution centers for scattered demand 

points and Tail and Singh (2016) which focused on the facility layout problem. Aloysius et al. 

(2016) investigated the role of technology enablers and privacy inhibitors in big data customer 

transactions in the realization of competitive advantage by retailers. The role of decision-making 

is altered with the advent of big data, and reading relevant information is an asset that is expected 

to assist in achieving the appropriate results for gaining a competitive advantage.  

 

The location–allocation problem is a long-range decision problem with high initial investment 

(Owen and Daskin, 1998); the addition of product-related aspects (Wutthisirisart et al., 2015) in 

site selection and allocation requires more attention. Few studies (e.g., Ghaderi and Jabalameli, 

2013) have used period data to investigate location–allocation problems under different 



environments, thereby complicating the use of such data in cold chain configuration with a 

longitudinal product characteristic (shelf life). The use of a seed or potential locations as input 

parameters in the model is expected to not only lead to more practical results by avoiding the 

possible selection of forbidden locations (Drexl and Schneider, 2015) but also to simplify the 

modeling of such problems. The attributes of cold chain storage requirements and coordination 

aspects are illustrated in Tables 1 and 2, respectively. 

 

Given the gaps in the literature, the current study addresses the following concerns for the location–

allocation problem in cold chain configuration: 

a) Incorporation of perishable product attributes (shelf life, age-based value, or opportunity 

cost) 

b) Heterogeneous product-service requirements by different customers 

c) Use of big data in incorporating practical parameters  

d) Coordination to reduce complexity due to fragmentation  



  

Table 1: Attributes of cold chain for storage requirements 

  # Cold stores (ref. Germany) 
Temperature  (ref. 

Germany) 
Storage Time Capacity of Distributor 

Consolidation 

Requirement 

Location 

selection 

Suppliers Suppliers produce products requiring cold storage at further stages  

Locating close to 

harvest/producti
on or to market. 

Generally 

located close to 
market. 

  

Manufacturers Plant Cold Stores (~20) T < −20°C 

   

Transfer batch 
size between 

producer and 

distributor 

Not Applicable 

Different 

holding 

temperature  
  

Product 
compatibility 

  

Distributors 
Central Cold 

Stores (~80) 

Distribution Cold 

Stores (~200) 

T < −24°C 

for Central 
Cold Stores 

T < −20°C 
for 

Distribution 

Cold Stores 

Inventory 

policy 

Customer 

service 
requirements 

Actual 

physical 
capacity 

Retailers Freezing Cabinets (~210) 

 

T < −18°C 

 

 Order size Shelf life Promotional activity 

          Customers 

 

Customers utilize household refrigerators for storage 
 

Cold Chain Issues 

 

Misinterpretation of information; Multiple actors 

 

  

 

 

 

 

 

 

 

 

 



Table 2: Attributes of coordination in cold chain 

 
Horizontal Coordination Technology Vertical Coordination 

Suppliers Information sharing (Traceability) Transition to market oriented systems 
Loose 

Contract 

 

 

 
 

 

Varies from paper based entry 
to computer based information 

technologies (RFID) and highly 

sophisticated biological 
technologies. 

Associated groups or cooperatives 

to benefit from consolidation 

Manufacturers 

 
Interdependent security (Free 

riders-mixed testing for milk; 

Batch dispersion problem-food 
recalls) 

 

 

 
Delivery performance (Service level and shelf life) 

  

  

Asymmetric information and 
Decentralized control 

Distributors 

Retailers 

Customers 
Consumer awareness (Qualitative 
traceability) 

Environmental factors: 

Food miles and Carbon 

footprint 

Safety 
requirement 

 

Food source 

 

Cold Chain Issues 

Cold chain integrity: 
Transportation, transshipment and 

warehouse storage temperature 

monitoring issues 

Continuous imbalance 

between supply and 
demand 

Different temperature requirement at different 

stages 
  



 

3. Problem description 

The location–allocation problem in cold chain configuration requires the consideration of inherent 

product attributes, such as transient shelf life, storage time at warehouse, and time-dependent 

product value. Traditional location–allocation problems have focused specifically on locations 

with aggregate weight to minimize the total weighted average distance, which is subject to demand 

satisfaction. Product characteristic is a crucial characteristic for location allocation in cold chains. 

In this study, we consider a heterogeneous group of customers. Each customer only manages 

products that are in a certain stage of the product life cycle, which is referred to as ESL.  

 

The objective of the problem is to identify location(s) on the basis of customer requirements to 

meet product demands. Traditional location–allocation problems use location points on a two 

dimensional plane and evaluate them numerically to identify these locations. Drexl and Schneider 

(2015) suggested that potential locations, instead of locations on the plane, be used to avoid the 

problem of forbidden locations. For example, the potential search outcome from location 

allocation may result in an isolated location with inadequate infrastructure and other capabilities. 

Therefore, understanding the importance of these locations is imperative because they involve high 

initial investment and long-term benefits. The existing warehouse(s) along with a set of seed 

locations are the potential locations in the model. Furthermore, prospective potential locations 

along with existing warehouse(s) are chosen in sufficient numbers and are densely scattered along 

the demand grid. We use big data, which actually transforms textual data into sensible information, 

for distance calculation to include shelf life in the problem; detailed descriptions are provided in 

Sections 3.1 and 3.2. 

  

3.1 Haversine formula for distance calculation 

Sinnott (1984) devised the Haversine formula to calculate the distance between two locations on 

the basis of latitude and longitude. The use of Euclidean distance, which is based on point-to-point 

straight-line distance, provides the shortest distance between two locations. However, the 

Haversine formula considers the spherical shape of the earth for a more realistic distance 

calculation. The distance DistAB between two points A and B using the Haversine formula is 

defined as follows in Equation (1): 



DistAB = 2 × R × arcsin √(sin2 (Xb-Xa)

2
+ cos(Xa) cos(Xb) sin2 (Yb-Ya)

2
)                                               (1) 

where Xa and Xb are latitudes and Ya and Yb are longitudes for A and B, respectively. R is the 

radius of earth in kilometers (km), approximated as 6,371 km. We converted latitude and longitude 

units from degrees to radians by multiplying the radians terms by (π/180). The use of latitude and 

longitude for locations enabled in calculating distance without employing the use of distance 

engines with reasonable accuracy compared to actual road distance. It offered considerable benefit 

over straight-line distance and adequate approximation of actual road distance. 

 

Customer service requirement for a product in terms of ESL is translated into a service distance 

requirement. The identification of many potential location sites requires determination of distance 

matrix from each warehouse to each customer. For instance, with “m” customers and “n” potential 

locations, the input requirement would be an m*n distance matrix from each potential location to 

each customer. Determining actual road distance from an open search engine, such as Google, 

would require considerable time and effort to retrieve sensible information from smaller areas. For 

example, a smaller area with 10 locations and 20 customers would have 200 possible 

combinations. In addition, Google has a per day data retrieval limitation: 2500 times per customer 

(Google Maps API, 2016). Hence, the use of big data approximation, such as the Haversine 

formula, will substantially reduce the effort to transform the distance information from a small 

combination of (m + n) customers and warehouse locations.   

 

3.2 Incorporating shelf life in the problem 

Perishability of products can be classified in terms of using the product at the right time without 

considering deterioration, such as previous year’s calendar, and the deterioration of the product 

(such as fruits, vegetables, and medicines) with respect to time (Coelho and Laporte, 2014). Our 

model addresses the second category, namely deterioration of product value with respect to time 

or before the expiry date. The inability to use the product within the shelf life results in wastage of 

the product. Therefore, to reduce the wastage of perishable products, researchers and practitioners 

worldwide should address the issue at a strategic or design level. The location–allocation process 

typically begins with the identification of location(s); the selection of location depends on the 

product of total weighted distance and aggregate demand. The concern of similar and different 



products perishability along with heterogeneous shelf life is considered in the location–allocation 

problem. Our model is applicable at a strategic level and is expected to aid in future location 

selection.  

 

Our model derives the time dimension from four sources, such as distance, average speed of the 

vehicle, shelf life, and ESL. We assume that the shelf life of a product includes three phases: 

storage time at the warehouse (or location), transit time, and ESL requirement for customer, as 

demonstrated in Figure 1. The service distance is calculated using Equation (2). The allocation of 

customer and product to a particular location is competed on the basis of the comparison between 

actual and service distance and is expected to be less than or equal to service distance. The 

difference between shelf life and ESL provides the maximum available time for transportation, 

which is used as service distance requirement in the problem. 

 

Service Distance Requirement = (Shelf life – ESL) X Avg. speed of vehicle                           (2) 

 

 

 

Figure 1: Shelf life distribution of a product required at customer point 

 

For example, consider a product “A” with a shelf life of “T” time units reaching storage location 

at time “t”. The location–allocation problem is based on the remaining time (T – t) for product A. 

Product A is required by a heterogeneous group of customers with different remaining shelf life 

requirement (ESL) according to order frequency and proximity from the PoU and different product 

values according to market price. The market price versus remaining shelf life requirement (ESL) 

for product A for different customers is shown in Figure 2.  

Shipper

Storage time at 
Warehouse

Transit time

(If Actual 
distance <= 

Service 
distance)

Customer

ESL for product

Shelf life of product 



 

 

 

Figure 2: Market price vs expected shelf life of Product A for various customers  

     

 

 

Figure 3: Illustration of deterioration of product value with time 

Shelf life is the marketable life of a product and may not necessarily represent the deterioration 

rate of the product (Wang et al., 2009). Product value is different from market price because it 

captures the deterioration effect with respect to increase in time. The rate of product value 

deterioration depends on the controlled environment that the product is stored in. The linear 

relationship assumption between deterioration and time for products with a shelf life of 5 period 

units deteriorate at a rate of US$10 per period is shown in Figure 3. The aforementioned factor is 



considered in the model as opportunity cost that includes the combined effect of ESL and 

opportunity cost factor per period. Figure 2 shows that product value depends on market price. The 

model can be used to determine the optimal bundling of products on the basis of the cost function. 

In other words, considering opportunity cost prioritizes cumulative product value for customers to 

identify relative worth of fulfilling versus not fulfilling the demand. The preceding scenario is 

applicable when the capacities of potential warehouses that provide the product to the customer 

are less than the demand for the product.  

 

3.3 Assumptions 

Cold chain location–allocation problem is formulated on the basis of the following set of 

assumptions: 

i) Transportation cost is directly proportional to the distance. Similarly, aggregate demand 

and FTL deliveries tariff charge is directly proportional to the distance.  

ii) All locations, inclusive of potential warehouses and customer points, are located within a 

bounded habitual region. This is to satisfy the land transportation mode.  

iii) The shelf life for a product denotes the duration of time left for the product after it reaches 

the storage location (fixed in this case) by incorporating time spent in upstream operations. 

Thus, the product always reaches with the same shelf life at the storage location. 

iv) The product value decreases linearly with time because of deterioration.  

v) Products are constantly available in cold storage for instant allocation.  

 

 

 

 

4. Mathematical formulations 

The cold chain location–allocation configuration is formulated as a mixed integer linear 

programming (MILP) problem for location selection and allocation of products based on customer 

service requirements with warehouse storage capacity constraints. The inclusion of ESL and 

service requirements allows coordination between warehouse and customer points. Tables 3, 4, 5, 

and 6 depict indices, set of entities, input parameters, and decision variables used in the model, 

respectively. 



 

Table 3: Model indices 

Index Description 

i Customer points 

j Potential locations (g) and existing warehouse (h)  

k Locations 

p Products  

 

Table 4: Set of entities used in model 

Sets Description 

D Set of m customer points  

W 
Set of n warehouse locations with n1 potential (G) and 

n2 existing warehouse locations (H),  n = n1 + n2 

L Set of all locations, L D W   

P Set of |P| products  

 

Table 5: Model input parameters 

Notations Description 

Xk Latitude of location k, k L   

Yk Longitude of location k, k L  

LocTypk Type of location k (demand or storage), k L  

ProdTypp Type of product p (continuous or discrete), p P   

UoMtoKgp 
Conversion factor for Unit of Measure (UoM) of product p to Kg, 

p P  

SLp Shelf life of product p, p P  



Notations Description 

ECperHRp Energy consumed per Hour for cold storage of product p, p P  

AvgSpeed Average speed of vehicle 

UBCapj Annual upper bound for capacity of warehouse j, j W   

FixCostg Fixed Cost for opening of new warehouse g, g G  

ClosCosth Cost for closing of existing warehouse h, h H  

EnerCostperUnitj Energy cost per unit of warehouse j, j W  

Demip Annual demand for product p by customer point i, , i D p P   

ESLip 
Remaining Shelf life (ESL) for product p by customer point i, 

, i D p P  

OpporCostip 
Opportunity cost for product p by customer point i per period per 

unit, , i D p P  

AggOpporCostip 
Aggregate Opportunity cost for product p by customer point i, 

, i D p P  

Distji Distance between warehouse j and customer point i, , j W i D   

EnergyConsumjip 
Energy consumed for product p stored at warehouse j moved to 

customer point i, , ,  j W i D p P    

BigMi 
A large value for customer point i based on total demand for all 

products and maximum service distance, i D   

θjip 
Service level parameter for serving customer i  from warehouse j  

for product p within desired distance, , ,  j W i D p P  

 

( ) ,    jip p ipSDR  = SL  - ESL  AvgSpeed j W,i D, p P                                                                 (3) 

 

( ) ( ) , ,
   

     
   

i j i j
ji i j

X - X Y -Y2 2
Dist = 2× R×arcsin +cos X ×cos X × j W i Dsin sin

2 2
               (4)                                  

θjip= {
    1,  if Distji ≤ SDRjip

0,  otherwise
   ,   ∀ j ∈ W, i ∈ D, p ∈ P                                                                          (5)                                                                                                               
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SDR - Dist
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AvgSpeed
∀ ∈ ∈ ∈           (6) 

|P|

1

{( { }) { } { }},


 i ip ji g h

p

BigM = Max Dem ×Max Dist ,Max FixCost ,Max ClosCost i D                      (7) 

 

, ,     ip ip ip iAggOpporCost OpporCost ESL BigM i D p P                                                     (8)      

                                                                                                          

Equations (3) and (4) calculate service distance requirement and actual distance, as illustrated in 

Sections 3.1 and 3.2. Equation (5) indicates service level parameter θjip for serving a customer 

when actual distance is less than or equal to service distance requirement. Equation (6) evaluates 

energy consumption on the basis of the duration of a product at the warehouse. From Section 4.2, 

we can calculate storage time at the warehouse by deducting ESL and transit time from shelf life. 

Equation (7) is the big value for each customer and is estimated as the maximum value among all 

other cost components apart from opportunity cost to derive an appreciably higher value in the 

objective function. Equation (8) is aggregate opportunity cost for a product unsold with remaining 

ESL. It uses the BigM factor to calculate the opportunity cost for not meeting the demand. 

However, when the warehouse capacity under the service requirement is limited, this coefficient 

determines the least costly product bundling given the capacity constraints. Perishable products 

are valued on the basis of age and opportunity cost, which denotes the loss incurred for not selling 

a particular valued product (Assumption iv in Section 3.3). The derived parameters in Equations 

(3)–(8) represent approximation of big data used in the model. 

 

Table 6: Decision variables 

Notations Description 

WHOpeng Boolean variable for opening of warehouse g, g G  

WHClosh Boolean variable for closing of existing warehouse h, h H   

ShipBVjip 
Boolean variable to indicate a positive flow from warehouse j to 

customer point i for product p, , ,  j W i D p P  



Notations Description 

ShipQtyjip 
Quantity flown from warehouse j to customer point i for product 

p (Discrete or continuous based on product p), , ,  j W i D p P  

UnmetDemip 
Unmet demand for customer point i for product p (Discrete or 

continuous based on product p), , i D p P   

 

The location–allocation MILP problem is formulated with the objective of minimizing 

transportation cost (weighted distance), opportunity cost (unmet demand), cost incurred in 

consumption of energy, fixed cost for opening a new warehouse, and cost incurred for closing an 

existing warehouse. The objective function for the problem is presented the Equation (9). 

 

Minimize:  

TotalCost = TransCost +OpportunityCost + NewWHOpenCost +ExistWHClosCost +EnergyCost      (9)      

subject to 

1 1

, ,
 

    
n n

jip j

j j

ShipBV WHOpen i D p P                                                                                  (10) 

 

, , ,     jip j jipShipBV WHOpen j W i D p P                                                                                           (11)                                                                 

 

( ), , ,     jip jip ip jipShipQty ShipBV Dem j W i D p P                                                            (12)  
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ShipQtyjip and UnmetDemip decision variables may be either continuous or discrete (float or 

integer), depending on the type of the product illustrated by parameter ProdTypp. The model 

ensures allocated quantity flow between warehouse and customer point depending on the product 

type. Hence, although all types of products are incorporated, allocation is based on product type. 

Constraint (10) imposes restriction on the allocation of a product to a customer point from among 

maximum number of open warehouses. Constraint (11) imposes a restriction on customer points 

served by open warehouses when the actual distance is less than or equal to the service distance 

constraint. Constraint (12) imposes the same restriction on quantity dispatched from open 

warehouses to a customer point to be less than or equal to the demand for the product. The 

aforementioned two constraints are related to perishability, ensuring that the customer point 

receives the product at acceptable quality (i.e., within the ESL), thus enabling coordination 

between the warehouse and customer point. 

 

Constraint (13) ensures that the warehouse storage capacity is within the upper bound capacity. 

Different products might have different units of measurement (UoM) and are therefore multiplied 

by the UoM factor for converting all units into kilogram (kg). Constraint (14) is the demand-

balance equality. Constraint (15) identifies the existing warehouses that are closed. The objective 

function includes the demand fulfillment cost (transportation cost), unmet demand cost 

(opportunity cost), energy cost, and fixed cost for opening and closing the warehouse. Because the 

value of opportunity cost is relatively lesser in magnitude when compared with the other costs, the 



model optimizes by not meeting the demand because the cost of meeting demand exceeds that of 

the unmet demand. Constraints (16)–(20) represent various cost components that are used for 

minimizing total cost in the objective function. The bounds for decision variables are stratified by 

type in Table 6. 

 

5. An illustrative example 

A hypothetical location–allocation problem is illustrated using real-time geographical coordinates 

of locations in the Zhejiang and Jiangsi provinces in China. The current configuration comprises 

an existing cold storage warehouse serving as a major customer point. The increase in both 

magnitude and number of customer points along with storage facility capacity constraint results in 

more wastage and loss of sales. In addition to the existing warehouse, a set of nine warehouse sites, 

evenly distributed across the region, is considered as potential locations for establishing storage 

facilities. Location information with latitude and longitude are depicted in Table 7. The 

geographical distribution of locations is presented in Figure 4. The product information in Table 8 

describes whether a product is continuous or discrete; the UoM, a factor for converting demand 

into kg and shelf life into hours; and energy consumed per hour. The shelf life denotes the time 

left for the product after it reaches the storage location. Tables 9 and 10 denote the demand and 

warehouse data. The average speed of the transport vehicle is assumed to be 50 km/h. 

 

 

Table 7: Location information 

Location ID Location Description Location Type 
Latitude 

(in °)  

Longitude 

(in °) 

C1 Customer Demand 29.87 121.54 

C2 Customer Demand 30.89 120.09 

C3 Customer Demand 29.71 116.00 

C4 Customer Demand 29.99 120.59 

WH1 Potential Location Warehouse 30.27 120.16 

WH2 Potential Location Warehouse 30.75 120.76 

WH3 Potential Location Warehouse 28.68 115.86 

WH4 Existing Cold Storage Warehouse 29.99 122.21 

WH5 Potential Location Warehouse 28.86 121.15 

WH6 Potential Location Warehouse 27.99 120.70 

WH7 Potential Location Warehouse 28.66 121.42 



Location ID Location Description Location Type 
Latitude 

(in °)  

Longitude 

(in °) 

WH8 Potential Location Warehouse 29.27 117.18 

WH9 Potential Location Warehouse 29.08 119.65 

WH10 Potential Location Warehouse 28.47 119.92 

 

 

 

Figure 4: Geographical presence of locations  

 

Table 8: Product attributes 

Product 

ID 

Product 

Type 
Product UoM 

Demand Conversion 

factor (in Kg) 

Shelf Life 

(Hours) 

Energy Consumed 

per Hour  

P1 Continuous Liter 0.9 12 0.026 

P2 Discrete EA 1.1 8 0.010 

P3 Discrete EA 1.5 4 0.059 

 

 

Table 9: Demand data 

Customer 

ID 

Product 

ID 
Quantity 

Expected Shelf 

Life (ESL) in Hrs 

Opportunity Cost ($ 

per unit per period) 



C1 P1 449 4 1.7 

C1 P2 400 2 0.8 

C2 P3 80 1 2.2 

C3 P2 200 2 0.5 

C4 P2 350 4 1.2 

  

Table 10: Warehouse data 

Warehouse 

ID 

Upper Cap. 

Bound (Kg) 

Fixed Cost 

($) 

Closing Cost 

($) 

Energy Cost 

Per Unit 

($/(KW-h)) 

WH1 600 1,000,000 0 0.555 

WH2 400 1,000,000 0 0.555 

WH3 400 1,000,000 0 0.537 

WH4 500 0 100,000,000 0.555 

WH5 500 800,000 0 0.555 

WH6 390 743,000 0 0.555 

WH7 350 890,000 0 0.555 

WH8 400 1,000,000 0 0.537 

WH9 95 650,000 0 0.555 

WH10 178 950,000 0 0.555 
                          **1$ = 6.70 RMB (Approx.) 

 

6. Results and discussions 

6.1 Computational result  

The location–allocation MILP problem is solved using the IBM concert technology on C#.Net 

platform using a library from CPLEX 12.5 solver. The computations are executed on a system 

equipped with 4GB RAM, and input data is read from the MS Access database. Results of the 

allocation of demand quantity to a warehouse are depicted and summarized in Table 11. The results 

suggest that when warehouses WH1, WH3, and WH6 were opened in addition to the existing 

warehouse (WH4), the total cost incurred was US$2,887,489, with fixed cost component 

contributing 95% to the value of $2,743,000. The transportation cost measured as weighted 

average amounted to $144,465, but it might substantially vary from the actual transportation cost 

depending on factors such as shipping schedule, tariffs, and load. 

 

6.2 Managerial Implications 

6.2.1 Operational Constraint for small shipments 



The solution reveals that a small proportion of demand for product P1 allocated to customer point 

C1 was divided between WH1 and WH6, primarily because of the total cost reduction. The crucial 

point to be considered in this situation is assessing the operational complexity of coordination for 

such small shipments with multiple storage locations. The consideration of product compatibility 

during storage and transportation should be considered further to evaluate the possibility of 

combining P1 and P2 for C1 from these locations, which might offset the disadvantage of small 

loads. If such combining is not possible, then the evaluation of opportunity cost allows for 

eliminating the product with a lesser value. The absolute cost magnitude might not reveal the actual 

situation, but a relative comparison of cost structures is an adequate indicator for such analysis 

involving site selection. 

 

Table 11: Summary of allocation quantity for customer points with warehouses 

Customer 

ID 

Product 

ID 

Warehouse 

ID 

Distance 

(in Km) 

Quantity 

Allocated (in 

UoM) 

Quantity 

UoM 

Quantity 

Allocated 

(in Kg) 

C1 P1 WH1 141 0.44 Liter 0.40 

C1 P1 WH4 65 448 Liter 403.20 

C1 P1 WH6 224 0.56 Liter 0.50 

C1 P2 WH1 141 86 Kg 94.60 

C1 P2 WH4 65 88 Kg 96.80 

C1 P2 WH6 224 226 Kg 248.60 

C2 P3 WH1 69 80 Kg 120.00 

C3 P2 WH3 115 200 Kg 220.00 

C4 P2 WH1 52 350 Kg 385.00 

 

6.2.2 Multiple sourcing and warehouse capacity planning 

Figure 5 provides insights into warehouse site selection, mapping of customer with warehouse, 

and distance coverage for each warehouse (maximum service distance). Customer point C1 was 

served by warehouses WH1, WH4, and WH6, with different distances for two products P1 and P2. 

Although product P1 was served from the nearest warehouse (WH4), product P2 was served by 

the three warehouses, with the majority of demand allocated to the highly distant warehouse 

(WH6). Therefore, several aspects should be considered during allocation and warehouse capacity 

planning. 

 



The model utilizes constraints on capacity for warehouse and service distance of product in 

allocating demand to multiple warehouses. Both products P1 and P2, having different storage 

requirements, were sourced from three warehouses, and the decision makers had to consider the 

allocation of storage capacity for these products to ensure operational feasibility.   

 

 

 

Figure 5: Location allocation flow and maximum service distance for warehouses 
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Figure 6: Average distance and capacity utilization (%) for warehouses 

 

The initial fixed cost related to land and equipment was an approximation and decision makers 

had to further evaluate deployment of storage equipment type with its capacity. 

 

Warehouses close to customers fully used their capacity compared with the distant warehouses 

having ineffective capacity utilization (Figure 6). This aspect provides valuable insights regarding 

the amount of investment for land area on the basis of capacity. Because closer warehouses (WH1 

and WH4) are fully utilized, evaluating the possibility of leasing or buying more land space at 

those locations must be considered. Similarly, the prospect of reducing capacity for distant 

warehouses (WH3 and WH6) must be evaluated. Because demand volumes are predicted by 

considering the growth in future requirements, utilizing unwanted buffer may not be necessary. 

Storage capacity should be maintained at a higher utilization rate (approximately 75%–80%) for 

distant warehouses. Intuitively, maintaining greater capacity at near locations, particularly for 

perishable products, is reasonable. 

 

Figure 7: Percentage of product type allocated to each warehouse 

 

A major aspect of allocation and capacity decision-making is identifying storage allocation for 
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products P3 and P1 was higher in the north and east region, respectively, based on warehouse 

locations (Figure 7). The market distribution of products across geography will further aid in 

determining the capacity for storage equipment. 

The aforementioned aspects, particularly relating to the capacity utilization for selected 

warehouses and product category distribution across regions, are expected to refine the decisions 

in the allocation of storage capacity for different equipment. The decisions must consider the 

technology aspect of storage and the possibility of product consolidation. 

 

6.2.3 Product allocation under limited capacity 

Various opportunity costs are associated with different products. To understand the effect of 

opportunity cost, we must consider the capacity limitations; namely, if the same capacity is to be 

allocated among two product categories, then the demand has to be met by fulfilling the product 

that has a higher opportunity cost. Therefore, we modified the inputs in our problem by introducing 

the demand for products P1 and P2 for customer C2 with 200 units each, with the ESL of 8 and 4 

time units and opportunity cost per period per unit as US$1.7 and US$1.2, respectively. 

Furthermore, warehouse WH2 was removed and the capacity of WH1 was reduced to 400 kg. 

Thus, we had customer C2 with a demand for all three products P1, P2, and P3 and only one 

prospective warehouse to serve the demand. The model was run with modified input parameters 

to understand the effect of opportunity cost under capacity limitations. The results revealed that 

the demand of product P3 for customer C2 was not satisfied because it had least opportunity cost 

per unit among the three products.  

 

The practical implication of the preceding illustration is relevant when the potential sites offer 

limited capacity and the appropriate bundling of products to be allocated is determined with 

minimal loss of opportunity cost. Although the role of transportation cost is questioned at this 

instance, because we primarily focus on perishability and have allocated an extremely high penalty 

for not meeting the demand, compared with that for not meeting the other costs, the effect of 

opportunity cost is evident only among the product. 

 

7. Conclusions  



The location–allocation problem for perishable products in a cold chain configuration warrants 

focus on specific attributes, such as shelf life, physical demand locations, and units of product 

transportation, while emphasizing the need for safety and quality of products. The study 

contributes to the location–allocation literature by including an additional dimension of 

perishability. Location–allocation studies have modeled durable products using customer service 

requirements. This study is formulated a MILP problem with the aim of minimizing transaction 

costs in occupying new resources (warehouses) or discarding of existing resources (existing 

warehouse) with coordination between the entities (in the form of shelf life). The study 

incorporated big data as a substitute to real data, the retrieval of which might require more effort 

and time. Various big data approximations, such as the Haversine formula to calculate distance 

between two locations, service level computation, storage time, and consideration for deterioration 

of value (opportunity cost), are used in the model. Previous studies on perishable products have 

primarily focused on inventory and planning problems with longitudinal data. The existing 

location–allocation solutions for the identification of the most suitable location site have been 

based on Greenfield analysis and aggregate demand. The current study attempts to combine the 

location–allocation of perishable products for heterogeneous demand customers with varied 

requirements. The common goal of demand satisfaction, in addition to quality and safety 

requirements, requires institutional innovation between members to ensure fulfillment. The study 

applies a logical location–allocation system for cold chain configuration. The cold chain 

configuration model can help managers to identify prospective alternatives (location sites) from 

among a set of potential locations in appreciable time with big data approximations and cold chain 

characteristics for rapid and reliable results. 

 

8. Future research directions 

The location–allocation problem provides an alternative solution for the selection of location site 

from among a set of prospective locations and allocation between customer points. The result 

provides an efficient solution by considering capacity, deterioration, and shelf life (customer 

service requirement), which are typical characteristics of a cold chain. The study addresses the 

unexplored gap in cold chain and location–allocation literature by incorporating practical aspects 

with aid of real location data. However, the study is built on certain assumptions, which must be 

considered during its application. The problem provides a directional result that requires additional 



evaluations with alternate analysis at tactical and operational levels. The transportation cost 

evaluated at a flat level can become more evident if there is an estimation of cost function with 

distance based on road infrastructure, logistic service providers (LSPs) accessibility, tariffs, and 

other factors. Another area that can increase the robustness of the model is the identification of the 

deterioration rate function for different products under a controlled environment. This will enable 

in evaluating value on the basis of age, opportunity cost of lost sales, and waste. Multiple touch 

points, rather than a single touch point, can be introduced to allocate demand for widely scattered 

customers at remote locations. Testing the model and its variants using large datasets and various 

instances, with a focus on reduction of the computational effort and identification of ill 

conditioning, is also a major prospect for future studies. 

 

9. Limitations of study     

The preceding discussions have highlighted the boundaries of cold chain location–allocation 

problem. The location–allocation model is widely considered a strategic decision problem and can 

be extended to understand tactical- and operational-level decisions. The result is a directional 

indication of the prospective locations and must be verified with other operational costs related to 

transportation and inventory. The transportation cost is calculated on the basis of high level 

assumptions of positive linear dependency with distance, without applying differential tariff rates. 

However, in practical situations, the tariffs are charged on the basis of weight bracket for shipment 

of less than truck load (LTL) and as a flat tariff for FTLs. The cold chain location–allocation 

problem does not consider the frequency of shipments, differential rate structures based on route, 

and storage aspects. Therefore, location–allocation must be used in conjugation with other tactical 

approaches in choosing relevant alternatives from among a set of decision alternatives. Moreover, 

the perishability of products in a controlled environment may not be linear, and the determination 

of deterioration rate would provide a more accurate insight into the fulfillment of service level.   
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