

Prioritising abstract test cases: An empirical
study

Rubing Huang, Weiwen Zong, Tsongyueh Chen, Dave Towey, Yunan Zhou
and Jinfu Chen

University of Nottingham Ningbo China, Taikang East Road, Ningbo,
Zhenjiang, 315100, China

First published 2019

This work is made available under the terms of the Creative Commons
Attribution 4.0 International License:
http://creativecommons.org/licenses/by/4.0

The work is licenced to the University of Nottingham Ningbo
China under the Global University Publication Licence:

https://www.nottingham.edu.cn/en/library/documents/research-
support/global-university-publications-licence.pdf

http://creativecommons.org/licenses/by/4.0
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf
https://www.nottingham.edu.cn/en/library/documents/research-support/global-university-publications-licence.pdf

Prioritizing Abstract Test Cases:
An Empirical Study

R. Huang1
⇤
 W. Zong1T. Y. Chen2D. Towey3 Y. Zhou1 J. Chen1

1 School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P.R. China
2 Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn, 3122, Australia
3 School of Computer Science, University of Nottingham Ningbo China, Ningbo, Zhejiang 315100, P.R. China
* E-mail: rbhuang@ujs.edu.cn

Abstract: Test case prioritization (TCP) attempts to schedule the order of test case execution such that faults can be detected as

quickly as possible. TCP has been widely applied in many testing scenarios, such as regression testing, and fault localization.

Abstract test cases (ATCs) are derived from models of the system under test, and have been applied to many testing environments,

such as model based testing, and combinatorial interaction testing. Although various empirical and analytical comparisons for some

ATC prioritization (ATCP) techniques have been conducted, to the best of our knowledge, no comparative study focusing on the

most current techniques has yet been reported. In this study, we investigated 18 ATCP techniques, categorized into four classes.

We conducted a comprehensive empirical study to compare 16 of the 18 ATCP techniques in terms of their testing effectiveness

and efficiency. We found that different ATCP techniques could be cost-effective in different testing scenarios, allowing us to present

recommendations and guidelines for which techniques to use under what conditions.

1 1 Introduction

2 The order of test case execution in a given test set can be very

3 important, especially when testing resources are limited. The main

4 reason is that a well-prioritized execution order of test cases may be

5 able to trigger failures more quickly, and thus allow the follow-up

6 processes to be conducted earlier (including fault localization, diag-

7 nosis and correction). The process of scheduling the execution order

8 of test cases is called test case prioritization (TCP) [1], and it has

9 been applied in various testing environments, including regression

10testing [2].

11 To date, many TCP algorithms have been designed to prioritize 12 different

test case types according to different criteria, including

13code coverage based prioritization [1, 3], search based prioritiza-

14 tion [4, 5], adaptive random prioritization [6–9], and similarity based 15

prioritization [10, 11] (the interested reader is referred to two survey 16 papers

for more details [12, 13]). An abstract test case (ATC) [14] 17 (model input [15])

is an important test case type that can be extracted

18 from a designed model of the system under test (SUT) [16]. In 19

combinatorial interaction testing [17], for example, an SUT may

20 be impacted by different parameters (or factors), each of which 21

may contain a finite number of values (or levels). In this case,
22ATCs can be created by assigning a value for each parameter. ATCs

23 have been widely used in many testing approaches including model 24

based testing [18], and category-partition testing [16]. Abstract test 25 case

prioritization (ATCP) has also been widely studied in different 26 fields,

especially in combinatorial interaction testing [19–21], and 27 software

product line testing [22, 23].

28 Although there have been empirical and analytical comparisons 29 of

individual or several ATCP techniques [15, 21, 24], to the best 30 of our best

knowledge there has not yet been a comprehensive

31 comparative study focusing on the most current techniques. In our 32 study,

we investigated 18 ATCP techniques, grouped into four cat-33 egories: non-

information-guided prioritization (NIGP); interaction

34 coverage based prioritization (ICBP); input-model mutation based 35

prioritization (IMBP); and similarity based prioritization (SBP). We

36 conducted a comprehensive empirical study using five subject pro-37 grams

(written in the C language), each of which had six versions. In

38 the study, based on mutation analysis, the testing effectiveness and 39

efficiency of each ATCP technique were investigated.

We believe that this is the most extensive and inclusive empirical

study comparing ATCP techniques so far reported in the litera-ture.

Based on the experimental results, some empirical findings are

provided, and some recommendations and guidelines are given for

testers when choosing ATCP techniques in different testing sce-

narios. In summary, the main contributions of this work are as
follows:

(1) We selected 18 ATCP techniques from the literature, and
divided them into four categories, in terms of the different
information used to guide the prioritization process.
(2) We conducted empirical studies to compare 16 of the 18 ATCP

techniques, according to three quality evaluation measures: interac-

tion coverage rate, fault detection rate, and prioritization cost.
(3) We present empirical findings comparing ATCP techniques

among each category and between different categories.

(4) We provide recommendations and guidelines for testers to

help select ATCP techniques in different testing scenarios.

The structure of the rest of this paper is organized as following:

Section 2 introduces some preliminary information and background

details. Section 3 provides the details about the experimental set-

tings, and Section 4 presents the experimental results to answer the

research questions. Finally, Section 5 concludes the paper, and
discusses potential future work.

2 Preliminaries and Background

Some preliminary information is presented in this section, includ-ing

details about abstract test cases, and test case prioritization (TCP).

ATCP techniques are described, the strength and weakness of each

technique are summarized, and previous empirical work is
also discussed.

2.1 Preliminaries

2.1.1 Abstract Test Case: A system under test (SUT) is gen-erally

influenced by different parameters or factors (for example,

configurations, features, components, etc), with each parameter hav-
ing a certain number of possible values or levels. In general, most

40
41
42
43
44
45

46

47
48
49
50
51
52
53
54
55
56

57
58
59
60
61

62

63

64
65
66
67

68

69

70
71
72
73

1

Table 1 An example for input model

Factor p1: OS p2: Browser p3: Access p4: Proxy
 Windows (0) IE (2) ISDL (4) No Proxy (7)

Level Mac OS X (1) Safari (3) Modem (5) HTTP (8)
 VPN (6) SOCKS5 (9)

Browser = “IE" ! OS = “Windows", i.e., p2 = “2” ! p1 = “0”.
Browser = “Safari" ! OS = “Mac OS X", i.e., p2 = “3” ! p1 = “1”.

1 SUTs may have constraints among parameter values: that is, some

2 value combinations are not feasible. Based on this, we present the

3 following definition of an input model [25] (or input parameter

4 model [14]) used for modeling the SUT.
5 Definition 1. An input model, Model({p1, p2, · · · , pk}, {L1,

6 L2, · · · , Lk }, C), is the information about the parameters and the

7 values of each parameter of the SUT (with k parameters), a set of

8 values Li for the i-th parameter pi, and a set of value combination

9 constraints C.

10 As shown in Table 1, for example, an input model with value com-

11 bination constraints is used for a web application such as a browser

12 game, where four parameters are included, of which the first has two

13 values, and the last three all have three. Since the browser “IE" is

14 developed for the OS “Windows", and the browser “Safari" is

15 developed for the OS “Mac OS X", two value combination con-

16 straints are obtained. To simplify the problem, each parameter is

17 denoted by pi (i = 1, 2, 3, 4), and each value is labelled by an inte-
18 ger, beginning with 0 and incrementing by 1, from p1 to p4 (see

19 Table 1).

20 Therefore, the model for above example can be represented by

21 Model({p1, p2, p3, p4}, {{“0”, “1”}, {“2”, “3”}, {“4”, “5”, “6”},
22 {“7”, “8”, “9”}}, C = {p2 = “2” ! p1 = “0”, p2 = “3” ! p1 =

23 “1”}, containing two value combination constraints, and four

24 parameters, of which the first two parameters have two values, and

25 another two parameters have three values. Since the detailed val-

26 ues of each parameter provide no influence on the model, without

27 loss of generality, we adopt an abbreviated version in this paper:

Model
(|L

1
||L

2
| · · · |

 2k
|
2

C . Accordingly, the above example can be
29 described as Model(2 3 , C = {“2” ! “0”, “3” ! “1”}).

30 When an input model is available, construction of abstract test

31 cases (ATCs) [14] (or model inputs [15]) for testing the SUT is

32 possible. The definition of the abstract test case is given as follows.

33 Definition 2. An abstract test case, (v1, v2, · · · , vk), is a k-tuple,

34 where vi 2 Li (i = 1, 2, · · · , k).
35 An ATC is valid if C is satisfied, otherwise it is invalid. For

36 instance, in the previous example, a valid ATC is (0, 2, 5, 8); and

37 an invalid one is (0, 3, 4, 8) — due to violation of the constraint
38 ((p2 = 3) ! (p1 = 1)). Intuitively speaking, each ATC with size ⌧

39 can cover λ-tuples 1 λ ⌧ , where such a tuple is called a λ-wise
40 value combination [26] or a λ-wise schema [17]. For example, an

41 ATC (1, 3, 5, 9) covers six 2-wise value combinations: (1, 3), (1, 5),

42 (1, 9), (3, 5), (3, 9), and (5, 9).
43 The ATCs have been used in many applications such as
44 configuration-aware systems [27, 28], and software product
45 lines [29]. Many testing methods have focused on the generation

46 and construction of ATCs, such as category-partition testing [16],

47 combinatorial testing [17], and random testing [30].

48 2.1.2 Test Case Prioritization: Test case prioritization seeks to

49 schedule test cases such that those with the highest significance, in

50 terms of some criteria, are run earlier than those with lower sig-

51 nificance. When testing resources are limited or insufficient for the

52 execution of a complete test suite, then a good order of test case exe-

53 cution can be very important. The problem of test case prioritization

54 can be defined as follows [1].

55 Definition 3. Given a test suite T to be prioritized, ⌧ being the

56 set of all possible orders of test cases by permuting T , and f being

57 a fitness function to evaluate each permutation, the problem of test

case prioritization is to identify a permutation S 2 ⌧ such that: 58

(8S
0

) (S
0

 2 ⌧) (S
0

 6= S) [f(S) f(S
0

)] (1)
2.2 ATCP Techniques 59

Depending on the type of information used, as with other testing 60
approaches, ATCP can be considered either black-box or white- 61
box testing [15]. ATCP approaches using models of the SUT, for 62
example, would be considered black-box, because no access to 63
source code is necessary. In this paper we focus on black-box ATCP 64
techniques (interested readers may refer to work by Rothermel et 65
al. [1] or Zhang et al. [31] for discussion of white-box approaches). 66
According to the information used to guide the prioritization pro- 67
cess, the ATC prioritization techniques (ATCP) are mainly classified 68
into the following four categories. 69

2.2.1 Non-Information-Guided Prioritization (NIGP): The 70
NIGP strategies discussed in this section can be used for not only 71
abstract test cases but for all types of test cases, because this cate- 72
gory does not use additional information to support the prioritization 73
process. 74

• Test-case-generation prioritization (TCGP): TCGP prioritizes 75
ACTs using the order in which the test cases were generated. 76
• Reverse test-case-generation prioritization (RTCGP): RTCGP 77
prioritizes ACTs by reversing the generation order. 78
• Random test case prioritization (RTCP): RTCP randomly orders 79
ACTs, according to uniform distribution. 80

2.2.2 Interaction Coverage Based Prioritization (ICBP): 81
The ICBP strategy makes use of the information of coverage infor- 82
mation to support the process of ATCP. By using different levels of 83
interaction coverage, the following three ATCP techniques are con- 84
sidered: fixed-strength ICBP (FICBP), incremental-strength ICBP 85
(IICBP), and aggregate-strength ICBP (AICBP). 86

• Fixed-strength ICBP (FICBP): FICBP [32] iteratively selects the 87
element as the next test case from candidate ATCs such that it covers 88
the largest number of λ-wise value combinations that have not yet 89
been covered by the ATCs already selected. Before prioritization, 90
FICBP needs to assign a value to an integer λ, the prioritiza- 91
tion strength. Based on previous investigations [21, 24, 33–35], the 92
assignment of the prioritization strength usually ranges from 1 to 6. 93
To reduce the prioritization cost, a new FICBP technique has been 94
proposed that uses repeated base-choice coverage, FICBPR [36]. 95
Although FICBPR leverages a similar mechanism to FICBP, it only 96
assigns a value of 1 to the prioritization strength λ, and forgets 97
previous prioritization details when the coverage of 1-wise value 98
combinations is fully achieved. 99
• Incremental-strength ICBP (IICBP): IICBP [37, 38] first uses a 100
small prioritization strength λ (λ 1), and presents it to the FICBP 101
algorithm for prioritizing the candidates. Once all λ-wise value com- 102
binations have been covered by selected test cases, IICBP increases 103
the prioritization strength with an increment i — λ = λ + i (i 1) 104
— and then uses this new prioritization strength for the FICBP 105
algorithm to prioritize remaining ATCs. This process is repeated 106
until all candidates have been chosen. In this study, we used the 107
IICBP algorithm from Huang et al. [38], initially setting λ to 1, and 108
i to 1. 109
• Aggregate-strength ICBP (AICBP): AICBP [20] makes use of 110
hybrid interaction coverage by considering different prioritization 111
strength λ values ranging from 1 to the generation strength ⌧ in 112
combinatorial testing [17]. As we know, ⌧ is chosen in the stage of 113
test suite construction, however, it may be not applicable to adopt 114
previous AICBP algorithms for prioritizing ATC sets (because it 115
is infeasible to choose the value of ⌧). In this paper, therefore, 116
we use a simplified version of AICBP that only takes prioritiza- 117
tion strength λ = 1, 2, and 3 into consideration (i.e., ⌧ = 3), and 118
can thus be used for prioritizing any sets of ATCs. The mecha- 119
nism of the AICBP algorithm is similar to that of FICBP, except 120
that AICBP uses hybrid interaction coverage by aggregating three 121

2

 !d#W

E/'W /#(W /D(W ^(W

7&*3 57&*3 57&3),&%3 ,,&%3 $,&%3 7,0%3 $,0%3 *6%3 /6%3

- /0),&%35 (TXDO +DOI

!"# !"' :HLJKWLQJ :HLJKWLQJ

!"$!"% !"& 5DQGRP

:HLJKWLQJ

Fig. 1: Overview of ATCP techniques

1 prioritization strengths 1, 2, and 3) rather than interaction coverage

2 by using a single prioritization strength. As discussed by Huang et

3 al. [20], there are three weighting distributions for different priori-

4 tization strengths, i.e., three ways of assigning the weightings !1,

5 !2, · · · , and !⌧ to the prioritization strength λ1, λ2, · · · , and λ⌧ ,

6 respectively, where !1 + !2 + · · · + !⌧ = 1.0. More specifically,

7 Equal Weighting assigns the same weighting to each prioritization

8 strength, i.e., !1=!2=···=!⌧ = 1
⌧ ; Random Weighting ran-

9 domly assigns the weighting to each prioritization strength; and Half

10 Weighting sets the weighting as following: !1 = !, !j+1 = 1 !j ,

2

11 and !⌧ = 1.0 (!1 +!2 +···+!⌧ 1).

12 2.2.3 Input-model Mutation Based Prioritization (IMBP):

13 The IMBP strategy [15] creates the mutants of the flattened model

14 that is derived from the SUT’s input model, and then uses the mutant

15 detection capability of each test case to guide the process of ATCP.

16 More specifically, IMBP first mutates the flattened model from [25]

17 to obtain a mutant by changing a constraint, for example, the con-

18 straint from the input model is (“2” ! “0”), and a mutant may be

19 (“2” ! “1”). The mutants that are distinguished by the test cases

20 are killed; otherwise they are live. After that, IMBP prioritizes test

21 cases based on their capabilities of killing mutants. Based on differ-

22 ent selection strategies, two IMBP techniques are included: ‘total’

23 IMBP (TIMBP) and ‘additional’ IMBP (AIMBP) [15].

24 • Total IMBP (TIMBP): TIMBP refers to previous ‘total’ TCP

25 strategies [1, 31], by repeatedly choosing each element as the

26 next test case from the remaining candidates such that it kills the

27 maximum (total) number of model mutants.
28 • Additional IMBP (AIMBP): Similar to TIMBP, AIMBP refers to

29 previous ‘additional’ TCP strategies [1, 31], by repeatedly selecting

30 the next test case which can kill the largest number of model mutants

31 that have not yet been detected by previously selected ATCs.

32 2.2.4 Similarity Based Prioritization (SBP): SBP [23] makes

33 use of the Jaccard similarity between candidates to prioritize test

34 cases, with each ATC being a set of parameter values. In particular,

35 SBP selects each next test case such that it achieves the small-

36 est similarity to previously selected test cases. Based on different

37 implementations, Henard et al. [23] introduced two versions of SBP:

38 global SBP (GSBP) and local SBP (LSBP).

39 • Global SBP (GSBP): GSBP first determines the first two test

40 cases by choosing two elements from candidates with the minimum

41 similarity, then iteratively selects a candidate as the next test case.

42 In detail, for each candidate c, GSBP first calculates the similarity

43 between c and each already selected ATC, and sums the similarity

44 values as the fitness value of c. Then the candidate with the minimum

45 fitness value is chosen as the next test case.
46 • Local SBP (LSBP): LSBP iteratively identifies a pair of candidates

47 sharing the minimum similarity as the next two test cases, until all

candidate test cases are selected. The order of the two test

cases is determined in a random manner.

Figure 1 shows an overview of ATCP techniques, involving

four categories with 18 techniques.

2.2.5 Strengths and Weaknesses: In this section, we briefly summarize

the strengths and weaknesses of ATCP techniques, listed
as follows:

(1) For the NIGP category, its main advantage may be high
testing efficiency (for example, low prioritization time); however,
its disad-vantage may be low testing effectiveness. The main
reason for this is that the NIGP category does not use
additional information to guide the prioritization process.
(2) As for the ICBP category, its main benefit is that each ATCP

technique makes use of the information of interaction coverage to

prioritize ATCs, resulting in high testing effectiveness. Regard-ing

the drawbacks, FICBP may face the challenges of choosing an

appropriate prioritization strength, as different prioritization strengths

may lead to different testing performances; and AICBP may require

more prioritization time, because it uses more infor-mation for the

prioritization. IICBP can be considered as a balanced technique

compared with FICBP: it may have better testing effec-tiveness than

FICBP with low prioritization strengths but less testing efficiency than

that with high prioritization strengths.
(3) For the IMBP category, its main strength is that it brings the
concept of mutation analysis [39] to the input model of the sys-
tem under test, which may provide some new insights for ATCP.
However, it may face some potential challenges, for example,
the quality of mutants may influence the performance of IMBP.
Gen-erally speaking, AIMBP may have better testing
effectiveness but worse testing efficiency than TIMBP, because
it requires collecting more information.
(4) Regarding the SBP category, its main strength is that it may

achieve high testing efficiency with comparable testing effectiveness

to FICBP. However, it may suffer from the drawback of needing to

choose the appropriate similarity measure between ATCs. Intuitively

speaking, GSBP may have better performance than LSBP, because

the former adopts more information for choosing each element from

candidates as the next test case.

Based on this analysis, when testing resources are limited, it may

be better to use FICBP with a low prioritization strength, SBP, or

NIGP. On the contrary, when testing resources are sufficient, it may

be better to adopt FICBP with a high prioritization strength, IICBP, or

AIMBP. Additionally, the selection of IMBP may depend on the
input model of the system under test.

48
49

50
51

52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85

86
87
88
89
90
91

3

1 2.3 Previous Empirical Work

2 In this section, we report on some previous empirical work into the

3 prioritization of abstract test cases.
4 Petke et al. [24] initially investigated FICBP with the prioriti-

5 zation strength λ values 2, 3, 4, and 5; and later added λ = 6 in

6 an extended study [21]. They mainly focused on the analysis of

7 different prioritization strength values used in FICBP for different

8 covering arrays constructed for combinatorial testing [17]. Com-

9 pared with their work, however, our study examines most current

10 ATCP techniques, including, but beyond, FICBP.
11 Henard et al. [23] proposed two similarity based ATCP algo-
12rithms, (GSBP and LSBP), and compared them with the random test

13 case prioritization and 2-wise FICBP technique. Similar to Petke et

14 al. [24], their work focused on the prioritization of combinatorial

15 test suites (i.e., covering arrays). Additionally, they focused mainly

16 testing software product lines, which means that the input models
17used were binary — each parameter containing exactly two possible

18 values.
19 Henard et al. [15] compared 20 TCP techniques (ten for white-

20 box and ten for black-box) — some of their black-box prioritization

21 techniques have also been considered in our study. Nevertheless,

22 their study focused on the comparison of white-box and black-box

23 test prioritization techniques, whereas our study is a comparison of

24 black-box ATCP techniques.

25 2.4 Research Questions

26 Our study was motivated by a number of outstanding issues in the

27 field of ATCP. The following five research questions (RQs) guided

28 the study in this paper.

29 RQ1: How well do the three ICBP strategies studied perform in

30 terms of the rates of interaction coverage and fault detection?

31 – For the FICBP methods, which strength is more suitable for

32 prioritizing ATCs?

33 – For the AICBP methods, which weighting distribution is more

34 effective?

35 – Which level of interaction coverage is adequate for the ICBP?

36 Answering RQ1 will help testers identify which interaction-

37 coverage-based technique is the most effective. For some ICBP

38 sub-categories, we also had sub-questions to further investigate their

39 effectiveness, and also analyzed the main influential parameters. All

40 ICBP methods use interaction coverage information to guide the pri-

41 oritization — but they use different levels of interaction coverage. It

42 is therefore meaningful to study which level of interaction coverage

43 is adequate.

44 RQ2: How well do the two IMBP techniques studied perform

45 according to the rates of interaction coverage and fault detection?

Table 2 Subject Programs

Answering RQ2 will help testers know which technique is the

most suitable for IMBP. Previous studies based on code coverage

information [1, 31] have shown that the ‘additional’ TCP tech-nique

performs better than the ‘total’ TCP technique, but there are no

reported observations related to input-model mutation coverage
information. It is therefore interesting to investigate this issue.

RQ3: How well do the two SBP techniques studied perform in

terms of interaction coverage rate and fault detection rate?
Answering RQ3 will help testers know which technique is the most

suitable for SBP. Previous investigations have indicated that the SBP

strategy is an effective technique for ATCs [22, 23], how-ever the

comparison between GSBP and LSBP has not yet been fully
explored.
RQ4: How differently do the NIGP, ICBP, IMBP, and SBPS tech-

niques perform, according to interaction coverage rate and fault
detection rate?

Answering RQ4 will help guide testers in their selections. It is

useful for testers to know which prioritization technique, among all
studied techniques, has the best performance.
RQ5: How do all the ATCP techniques compare in terms of

the required prioritization time?
ATCP is important, especially when testing resources are too

limited to allow execution of all ATCs. It is therefore useful to

consider the prioritization time of each prioritization technique.

Answering RQ5 will help testers make a decision on the selection
of prioritization techniques.

3 Methodology

3.1 Subject Programs

Five subject programs, written in the C language, were chosen.
These programs were obtained from the GNU FTP server

⇤
 . The

flex program is a fast lexical analysis generator; the grep program is a

widely-used utility for pattern matching; the sed program is a stream editor

that performs text transformations on an input stream; the make program

is to control the compile and build processes for programs; and the gzip

program is a popular command-line tool used for file compression and

decompression. These programs have been widely adopted in previous

TCP research [1, 7, 15, 21, 24, 34, 35].
Table 2 describes the detailed information for each subject pro-

gram such as, the version number, the year of release, the uncom-

mented size of code (measured by cloc
†

), and the number of

⇤ http://ftp.gnu.org/

†

http://cloc.sourceforge.net/

46
47
48
49
50
51

52
53

54
55
56
57
58

59
60
61

62
63
64

65
66

67
68

69
70
71

72

73

74
75
76
77
78
79
80
81
82
83
84

85

Program Input Model Test Pool Information V0 V1 V2 V3 V4 V5

Model(2
6

3
2

5
1

, C1), |C1| = 32
 Version 2.4.3 (1993) 2.4.7 (1994) 2.5.1 (1995) 2.5.2 (1996) 2.5.3 (1996) 2.5.4 (1997)

flex 500 LOC 8,959 9,470 12,231 12,249 12,370 12,366

 Faults - 32 32 20 33 32

Model(2

1
3
3

4
2

5
1

6
1

8
1

, C2), |C2| = 58
 Version 2.0 (1996) 2.2 (1998) 2.3 (1999) 2.4 (1999) 2.5 (2002) 2.7 (2010)

grep 440 LOC 8,163 11,988 12,724 12,826 20,838 58,344

 Faults - 56 58 54 58 59

Model(2

7
3
1

4
1

6
1

10
1

, C3), |C3| = 58
 Version 3.0.1 (1998) 3.0.2 (1998) 4.0.6 (2003) 4.0.8 (2003) 4.1.1 (2004) 4.2 (2009)

sed 324 LOC 7,790 7,793 18,545 18,687 21,743 26,466

 Faults - 16 18 18 19 22

Model(2

10
, C4), |C4| = 28

 Version 3.75 (1996) 3.76.1 (1997) 3.77 (1998) 3.78.1 (1999) 3.79 (2000) 3.80 (2002)

make 111 LOC 17,463 18,568 19,663 20,461 23,125 23,400

 Faults - 37 29 28 29 28

Model(2

13
3
1

, C5), |C5| = 69
 Version 1.0.7 (1993) 1.1.2 (1993) 1.2.2 (1993) 1.2.3 (1993) 1.2.4 (1993) 1.3 (1999)

gzip 156 LOC 4,324 4,521 5,048 5,059 5,178 5,682

 Faults - 8 8 7 7 7

4

1 mutated faults. The table also gives the information of input models

2 and sizes of candidate ATCs, where all input models and ATC sets

3 were downloaded from a standard library, i.e., the Software Infras-

4 tructure Repository (SIR) [40]. These input models were used in

5 previous work by Petke et al. [21, 24])

6 3.2 Fault Seeding

7 For each of the subject programs, the original version does not con-

8 tain any seeded-in faults. There are a number of hand-seeded faults

9 that are available from the SIR [40], but many of these faults can be

10detected by more than 60% of test cases (on average). Therefore, in

11 this paper we have used mutation analysis [39] to evaluate different

12 ATCP techniques. As discussed in previous studies [41, 42], muta-

13tion analysis can provide more realistic faults than hand-seeding, and

14 may be more appropriate for studying test case prioritization.
15 For the five subject programs, we used the same mutation faults
16 as used by Henard et al. [15]: that is, we employed the mutant oper-

17 ators set used by Andrews et al. [41], including statement deletion,

18 constant replacement, unary insertion, arithmetic operator replace-
19ment, logical operator replacement, relational operator replacement,

20 and bitwise logical operator replacement. Following previous prac-

21 tice [1, 31, 41], we removed the duplicate and equivalent mutants,

22 and also removed all those mutants that would not be killed by any

23 ATC. In addition, all subsuming mutants [43] (also called minimum

24 mutants [44] or disjoint mutants [45]) that would be too easily killed

25 were also removed — these mutants may otherwise negatively affect 26

the mutation score measurement [41, 44–46]. A mutation fault is said 27 to

be identified by a test case when the output of the original version

28 is different to that of the fault-seeded version. Table 2 shows the

29 number of faults in this study.

30 3.3 The 16 Investigated ATCP Algorithms

31 Table 3 presents an overview of the 16 ATCP techniques studied,

32 giving the mnemonic, description, a reference to its original research

33 publication, and category, for each. For NIGP, we only considered

34 random test case prioritization, because test-case-generation prior-

35 itization (TCGP), and its reversed version (RTCGP), only depend

36 on the original test set. However, because the test pool used in this

37 paper was provided by the SIR [40], which has no correspondence

38 for the original or reversed set, therefore, TCGP and RTCGP were

39 removed from the experiments. For FICBP, we considered the priori-

40 tization strengths λ = 1, 2, 3, 4, 5, and 6. For AICBP, we considered

41 three weighting distributions of prioritization strengths: equal, ran-

42 dom, and half weighting [20]. For IMBP, the model mutants needed

43 to be seeded, and in this study we used the model mutant matrix file
⇤

44 used by Henard et al. [15].
45 For SBP, compared to the previous versions of GSBP and

46 LSBP [23], the algorithms in our study have two main differences:

⇤ http://henard.net/research/regression/ICSE 2016/

Table 3 ATCP techniques considered in the experiments
Mnemonic Description Reference Category

RDP Random test case prioritization [32] NIGP

FP1 FICBP at prioritization strength 1 [33]

FP2 FICBP at prioritization strength 2 [32]

FP3 FICBP at prioritization strength 3 [32]

FP4 FICBP at prioritization strength 4 [38]

FP5 FICBP at prioritization strength 5 [37]

FP6 FICBP at prioritization strength 6 [21] ICBP

FPR FICBPR [36]

IIP IICBP [37]

APE AICBP with Equal Weighting [20]

APR AICBP with Random Weighting [20]

APH AICBP with Half Weighting [20]

TIM TIMBP [15]
IMBP

AIM AIMBP [15]

SPG GSBP [23]
SBP

SPL LSBP [23]

(1) When meeting a tie-breaking case, i.e., there exist more than 47

one pair of ATCs sharing the same minimum similarity, the original 48

version adopts a first-test-case tie-breaking technique (i.e., choosing 49

the first one) [47]. However our study uses the random tie-breaking 50

technique (i.e., choosing a pair randomly); (2) After choosing the 51

best pair of ATCs from candidates, the original version adds these 52

two ATCs to the prioritized set successively, however our study adds 53

them in a random order. Our GSBP and LSBP algorithms, therefore, 54

are less biased than the originals. 55

Because the ATCP techniques involve randomization (due to 56

random tie-breaking [47]), we ran each experiment 100 times. 57

3.4 Metrics 58

To evaluate different ATCP techniques, in this study we focused 59

on the following three metrics: (a) interaction coverage rate — to 60

measure the speed of achieving the interaction coverage of each pri- 61

oritized test suite; (b) fault detection rate — to measure the speed 62

of identifying faults of each prioritized test suite; and (c) prioritiza- 63

tion cost — to measure how quickly each prioritized test suite was 64

obtained. 65

3.4.1 Interaction Coverage Rate: The average percentage of 66

combinatorial coverage (APCC) [24, 48] was adopted to evaluate 67

the speed of achieving the interaction coverage at strength ⌘for a 68

prioritized set of ATCs. If S = htc1, tc2, · · · , tcni is an ordered set 69

of n ATCs, the ⌘-wise (1 ⌘ k) APCC definition for S is: 70

 n 1 i

APCC(⌘, S) =

 i=1 | j=1 CombSet(⌘, tcj)|
(2)

n ⇥ | S n (⌘, tc) |

 P
S

j=1 CombSet j

where CombSet(⌘, tcj) is a set of ⌘-wise value combinations cov- 71

ered by the abstract test case tcj . 72

The APCC metric values are numerical values ranging from 0.0 to 73

1.0, with higher values implying better rates of achieving interaction 74

coverage. Following previous investigations [21], in this paper, six ⌘ 75
values from 1 to 6 were considered for APCC. 76

3.4.2 Fault Detection Rate: The average percentage of faults 77
detected (APFD) was previously used to evaluate different prioriti- 78
zation techniques [1],. APFD requires details of the fault-detection 79
capability of each executed test case. 80

Let T be a test suite with size n, and F be a set of m faults that 81
can be detected by T . Let SFi be the number of test cases, required 82
to detect fault Fi 2 F , in a prioritized test suite S of T . The APFD 83
for S is given by the following equation (from [1]): 84

 APFD(S) = 1 SF1 + SF2 + · · · + SFm + 1 (3)

 n ⇥ m 2n
3.4.3 Prioritization Cost: The prioritization cost measures the 85
prioritization time required for each prioritization technique, and 86
represents the efficiency of the technique. Obviously, lower priori- 87
tization costs mean better performance. 88

3.5 Statistical Analysis 89

When assessing the statistical significance of the differences 90
between the APCC or APFD values (used to evaluate each priori- 91
tization technique), because there was no relationship between any 92
of the 100 runs, it is reasonable to use an unpaired test [49]. Further- 93
more, since no assumptions were made about which prioritization 94
technique is better than others, a two-tailed test is also appro- 95
priate [49]. Following previous studies dealing with randomized 96
algorithms [49, 50], we used the unpaired two-tailed Wilcoxon- 97
Mann-Whitney test of statistical significance (set at a 1% level of 98
significance). 99

Because multiple statistical prioritization techniques were 100
employed, we report the p-values — as the number of the exe- 101
cutions increases, p becomes sufficiently small [15], which means 102
that there are differences between the two algorithms. We used the 103

5

1 non-parametric Vargha and Delaney effect size measure [51], A
ˆ
12,

2 where the further away from 0.5, the larger the effect size. The effect

3 size can be also represented as the probability that one technique

4 is better than another — with a higher effect size (value) indi-

5 cating higher probability. For example, A
ˆ
12(x, y) = 1.0 indicates

6 that, based on the sample, algorithm x always performs better than

7 algorithm y; and A
ˆ
12(x, y) = 0.0 means that it always has worse

8 performance. Based on the classification [51], the effect size is cat-

9 egorized into one of three degrees — Small (S), Medium (M), or

Large (L) — where Small means |A12(x, y) ˆ 0.5| < 0.1; Medium

 ˆ

means 0.1 |A12(x, y) 0.5| < 0.17; and Large means 0.17

ˆ

ˆ

|A12(x, y) 0.5| 0.5. The p-value and effect size A12 value

were calculated for each pair-wise comparison of the

prioritization techniques.

10
11
12
13

14

A
P

C
C

 (
%

)

100 100 99

 98

99 99
97

98 98 96

 95

97 97
94

(%
)

96 96 93

 92

95 95
91

C

90

94 94

 89

93 93 88

92 92
 87

 86

91 91 85

RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

99

98

97
96

95

94
93
92

91
90
89

88

87
86

85

A
P

C
C

 (
%

)

Prioritization Technique Prioritization Technique

(a) ⌘ = 1 (b) ⌘ = 2

98 98 96 96

96 96 94 94

 92 92

94 94

 90 90

92 92
88 88

90 90 (%
)

86 86

88 88 84 84

 C

82 82
86 86

 80 80

84 84

 78 78

82 82
76 76

80 80 74 74

RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

A
P

C
C

 (
%

)

Prioritization Technique Prioritization Technique

(c) ⌘ = 3 (d) ⌘ = 4

92 92 86 86

90 90 84 84

88 88
82 82

86 86
80 80

84 84
78 78

(%
)

82 82 76 76

80 80

AP
C

C

 74 74

78 78

76 76 72 72

74 74 70 70

72 72 68 68

70 70 66 66

68 68 64 64

RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

Prioritization Technique Prioritization Technique

(e) ⌘ = 5 (f) ⌘ = 6

Fig. 2: APCCs for each ATCP technique for the five subject programs

6

1 4 Results

2 In the plots in Figures 2, 3, and 4, the X-axis shows the ATCP tech-

3 niques investigated, while the Y-axis lists the APCC or APFD values.

4 Each box plot describes the mean (a square in the box), median (a

5 line in the box), lower/upper quartile, and min/max APCC or APFD

6 values.

7 4.1 APCC Results

8 Figure 2 presents the APCC results at different ⌘ (1 ⌘ 6) val-
9 ues. Figure 3 gives the average APCC values over the six ⌘ values,

10 in which each plot describes the distribution of the 500 APCC val-

11 ues (100 orderings ⇥ 5 programs) at ⌘. Table 4 shows the statistical

12results for comparing any two techniques based on Figure 3.

13 4.1.1 RQ1: APCC Effectiveness: ICBP: Regarding the
14 FICBP techniques (the first subquestion of RQ1), the FPλ (1

15 λ 6) generally has the best APCCs at ⌘ (1 ⌘ 6), when ⌘

16 is equal to the prioritization strength λ. However, not every FPλ

17 always performs best at prioritization strength ⌘ = λ, because local

18 optimization instead of global optimization was applied. In other

19 words, no FICBP method always has the highest APCC values.

20 These observations are consistent with those reported in other stud-
21 ies [21, 24, 38]. Furthermore, at a fixed ⌘ (1 ⌘ 6), when λ
22 increases, FPλ achieves higher APCC while 1 λ ⌘; but lower

23 APCC when ⌘ λ 6. According to the average APCC over
the

24 six values of ⌘ (Figure 3), FP4, FP6, and FP5 are the three best

25 FICBP techniques, followed by FP3, and FP2; and FP1 performs

26 worst. Table 4 shows the APCC inferential statistical analysis, which

27 confirms the box plot results. As a consequence, the prioritization

28 strength λ should be assigned a value of at least 4, if we wish to

29 achieve the best performance (according to the interaction coverage

30 rate).
31 Regarding the AICBP techniques (the second subquestion of

32 RQ1), all three weighting distributions of prioritization strengths

33 have very similar APCC values, irrespective of ⌘ and program.

34 According to the statistical analysis, the p-values for comparisons

35 between any two techniques is greater than 0.01; and the effect size

36 measure A
ˆ
12 is approximately equal to 50%, which confirms the plot

37 observations. Therefore, the weighting distribution has only a very

38 slight impact on the AICBP techniques.

39 To answer the last subquestion of RQ1, we compared all eleven

40 ICBP techniques (FPi (i = 1, 2, 3, 4, 5, 6), FPR, APE, APR, APH,

41 and IICBP). Based on this comparison, we observe the following:

42 • When ⌘ = 1 (Figure 2(a)), FP6 and FP5 have the worst perfor-

43 mance, and the other nine ICBP techniques perform similarly (with

 96 96

 95 95

 94 94

 93 93

 92 92

 91 91

 90 90

 89 89

(%
) 88 88

87 87

A
P

C

C

86 86

 85 85

 84 84

 83 83

 82 82

 81 81

 80 80

 79 79

 78 78

 RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

Prioritization Technique

Fig. 3: Average APCC distribution (for ⌘ = 1, 2, 3, 4, 5, 6) for
each ATCP technique

FP1, FPR, and IICBP having slightly higher APCC results
than others).
• When ⌘ = 2 (Figure 2(b)), FP1 is worst, followed by FPR, FP6, and

FP5; and all other techniques have similar APCC results.
• When ⌘ = 3 (Figure 2(c)), FP1 and FPR have the worst ICBP

performance, followed by FP2; and all other techniques are similar.
• When ⌘ = 4, 5, 6, FP4, FP5, and FP6 generally have the
high-est APCC values, followed by IICBP. FP1, FP2, and FPR
generally perform worst.
• Based on the average APCC results, FP4, FP5, and FP6 are the three

best ICBP techniques, followed by IICBP. The next best tech-niques are

FP3, and the AICBP series. FP1 is worst, followed by FPR and FP2. The

statistical analysis also confirms these observations.

4.1.2 Q2: APCC Effectiveness: IMBP: Based on the experi-mental

data, it is clear that AIM has much higher APCC values than TIM,

regardless of ⌘values. Therefore, AIM also has much higher

average APCC values, which is confirmed by the statistical analysis:

the p-value is less than 2.04E-72, indicating a significant difference
ˆ

between them; and the effect size measure A12 is 0.1712, indicating
that AIM performs better than TIM about 83% of the time.

4.1.3 RQ3: APCC Effectiveness: SBP: When 1 ⌘ 4, SPG has

significantly better ⌘-wise APCC results than SPL; how-ever, when

⌘= 5, 6, SPG is better than SPL, although the differ-ences are small.

Based on the statistical analysis, it is clear that SPG performs

significantly better than SPL: their p-value is much
ˆ

less than 0.01, which indicates high significance; and their A12 is
0.6927, which means that SPG has a probability of about 69%

of obtaining higher APCC values than SPL.

4.1.4 RQ4: APCC Effectiveness of All Techniques: Consid-ering all

sixteen ATCP techniques, we can observe that as ⌘ (1 ⌘6)

increases, the APCC values of each prioritization technique

decrease, which is expected, due to the characteristics of the APCC

metric (Section 3.4.1). More specifically, given a candidate ATC set

T , the number of ⌘-wise value combinations covered by T is gen-
erally much larger than that of ⌘

0
-wise value combinations, when

1 ⌘
0

 < ⌘ 6. In other words, the number of ⌘-wise value com-binations

covered by T increases as ⌘increases. For each prioritized set S of T ,

therefore, the speed of covering ⌘
0

-wise value combi-nations is faster than

that of covering ⌘-wise value combinations: APCC(S,⌘
0

) > APCC(S,⌘).
Among all techniques, TIM generally has the worst performance:

this is a surprising result, because it performs worse than RDP,

which does not use any information to guide the prioritization

process. Additionally, the ICBP series has better APCC results than

any other series, such as NIGP, IMBP, and SBP; with SBP as the

second best (it should be noted that SPG is better than FP1),

followed by IMBP. This observation is also understandable, because

the ICBP series uses the interaction coverage information to guide

the prioritization, giving higher interaction coverage rates. In addition,

the SBP series does not use interaction coverage for prioritizing

ATCs, but the sim-ilarity comparison between two test cases

effectively achieves this interaction coverage: guaranteeing that at

least two test cases could cover the largest number of value

combinations at strength 1. How-ever, the IMBP series prioritizes

test cases according to the model mutation scores, and hence no

interaction coverage is considered for the prioritization.
To conclude, ICBP is the best, with fixed-strength ICBP at

higher prioritization strength λ giving the best APCC scores (it is
recom-mended that λ be assigned a value of at least 4), and
incremental-strength and aggregate-strength ICBP delivering
comparable APCC results. SBP is the second best, with the
global SBP achieving APCC results comparable to the ICBP
series, and better than the local SBP. A surprising result is that
NIGP (such as RDP) could some-times achieve better
performance than IMBP, according to the APCC values.

44
45
46
47
48
49
50
51
52
53
54
55
56

57
58
59
60
61
62
63

64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108

7

Table 4 Statistical APCC analysis of all pairwise comparisons (A, B)

A B p-value Superior Effect Size A B p-value Superior Effect Size
RDP FP1 8.50E-15 FP1 0.3583 (M) FP4 APH 6.96E-22 FP4 0.6756 (L)
RDP FP2 3.56E-44 FP2 0.2453 (L) FP4 TIM 5.86E-165 FP4 1.0000 (L)
RDP FP3 1.30E-48 FP3 0.2324 (L) FP4 AIM 2.22E-59 FP4 0.7968 (L)
RDP FP4 2.68E-58 FP4 0.2060 (L) FP4 SPG 5.67E-46 FP4 0.7600 (L)
RDP FP5 2.24E-58 FP5 0.2058 (L) FP4 SPL 1.05E-46 FP4 0.7621 (L)
RDP FP6 3.59E-56 FP6 0.2116 (L) FP5 FP6 0.0059 FP5 0.5503 (S)
RDP FPR 6.19E-42 FPR 0.2522 (L) FP5 FPR 3.70E-42 FP5 0.7485 (L)
RDP IIP 3.52E-51 IIP 0.2251 (L) FP5 IIP 3.77E-10 FP50.6144 (M)
RDP APE1.27E-48 APE 0.2323 (L) FP5 APE 1.29E-27 FP5 0.6989 (L)
RDP APR 1.15E-48 APR 0.2322 (L) FP5 APR 1.01E-28 FP5 0.7031 (L)
RDP APH 1.22E-48 APH 0.2323 (L) FP5 APH 5.25E-28 FP5 0.7004 (L)
RDP TIM 2.97E-71 RDP 0.8260 (L) FP5 TIM 5.86E-165 FP5 1.0000 (L)
RDP AIM 0.0273 AIM 0.4597 (S) FP5 AIM 1.99E-59 FP5 0.7970 (L)
RDP SPG 1.15E-41 SPG 0.2530 (L) FP5 SPG 5.67E-46 FP5 0.7600 (L)
RDP SPL 3.03E-11 SPL 0.3786 (M) FP5 SPL 1.01E-46 FP5 0.7622 (L)
FP1 FP2 7.62E-40 FP2 0.2587 (L) FP6 FPR 2.39E-42 FP6 0.7491 (L)
FP1 FP3 5.67E-46 FP3 0.2400 (L) FP6 IIP 6.19E-08 FP6 0.5989 (S)
FP1 FP4 3.14E-46 FP4 0.2392 (L) FP6 APE 4.90E-28 FP6 0.7005 (L)
FP1 FP5 3.06E-46 FP5 0.2392 (L) FP6 APR 4.66E-29 FP6 0.7044 (L)
FP1 FP6 3.07E-46 FP6 0.2392 (L) FP6 APH 2.08E-28 FP6 0.7019 (L)
FP1 FPR 2.13E-34 FPR 0.2766 (L) FP6 TIM 5.86E-165 FP6 1.0000 (L)
FP1 IIP 4.61E-46 IIP 0.2397 (L) FP6 AIM 3.61E-57 FP6 0.7911 (L)
FP1 APE 5.67E-46 APE 0.2400 (L) FP6 SPG 5.67E-46 FP6 0.7600 (L)
FP1 APR 5.67E-46 APR 0.2400 (L) FP6 SPL 1.83E-46 FP6 0.7614 (L)
FP1 APH 5.67E-46 APH 0.2400 (L) FPR IIP 6.53E-40 IIP 0.2585 (L)
FP1 TIM 1.26E-93 FP1 0.8749 (L) FPR APE 1.34E-29 APE 0.2936 (L)
FP1 AIM 5.82E-07 FP1 0.5913 (S) FPR APR 1.50E-29 APR 0.2938 (L)
FP1 SPG 6.60E-29 SPG 0.2962 (L) FPR APH 1.08E-29 APH 0.2933 (L)
FP1 SPL 0.3229 FP1 0.5181 (S) FPR TIM 1.61E-155 FPR 0.9853 (L)
FP2 FP3 4.83E-40 FP3 0.2581 (L) FPR AIM 1.45E-35 FPR 0.7274 (L)
FP2 FP4 1.56E-45 FP4 0.2413 (L) FPR SPG 1.39E-12 FPR0.6294 (M)
FP2 FP5 1.63E-45 FP5 0.2413 (L) FPR SPL 1.10E-33 FPR 0.7210 (L)
FP2 FP6 8.94E-46 FP6 0.2406 (L) IIP APE 4.99E-11 IIP 0.6200 (M)
FP2 FPR 8.67E-06 FP2 0.5813 (S) IIP APR 3.57E-11 IIP 0.6209 (M)
FP2 IIP 9.21E-45 IIP 0.2436 (L) IIP APH 4.46E-11 IIP 0.6203 (M)
FP2 APE 4.11E-40 APE 0.2578 (L) IIP TIM 5.86E-165 IIP 1.0000 (L)
FP2 APR 3.12E-40 APR 0.2575 (L) IIP AIM 3.22E-51 IIP 0.7750 (L)
FP2 APH 6.14E-40 APH 0.2584 (L) IIP SPG 5.67E-46 IIP 0.7600 (L)
FP2 TIM 8.24E-165 FP2 0.9998 (L) IIP SPL 3.67E-46 IIP 0.7606 (L)
FP2 AIM 5.92E-40 FP2 0.7417 (L) APE APR 0.9296 APE 0.5016 (S)
FP2 SPG 1.20E-19 FP2 0.6657 (M) APE APH 0.9936 APH 0.4999 (S)
FP2 SPL 4.43E-38 FP2 0.7357 (L) APE TIM 5.86E-165 APE 1.0000 (L)
FP3 FP4 1.56E-21 FP4 0.3259 (L) APE AIM 9.65E-48 APE 0.7652 (L)
FP3 FP5 1.93E-27 FP5 0.3018 (L) APE SPG 5.67E-46 APE 0.7600 (L)
FP3 FP6 9.68E-28 FP6 0.3006 (L) APE SPL 5.62E-46 APE 0.7600 (L)
FP3 FPR 1.16E-29 FP3 0.7066 (L) APR APH 0.9368 APH 0.4986 (S)
FP3 IIP 1.74E-10 IIP 0.3834 (M) APR TIM 5.86E-165 APR 1.0000 (L)
FP3 APE 0.9989 FP3 0.5001 (S) APR AIM 9.87E-48 APR 0.7651 (L)
FP3 APR 0.9263 FP3 0.5017 (S) APR SPG 5.67E-46 APR 0.7600 (L)
FP3 APH 0.9816 FP3 0.5004 (S) APR SPL 5.69E-46 APR 0.7600 (L)
FP3 TIM 5.86E-165 FP3 1.0000 (L) APH TIM 5.86E-165 APH 1.0000 (L)
FP3 AIM 1.11E-47 FP3 0.7650 (L) APH AIM 9.90E-48 APH 0.7651 (L)
FP3 SPG 5.67E-46 FP3 0.7600 (L) APH SPG 5.67E-46 APH 0.7600 (L)
FP3 SPL 5.67E-46 FP3 0.7600 (L) APH SPL 5.65E-46 APH 0.7600 (L)
FP4 FP5 0.0845 FP5 0.4685 (S) TIM AIM 2.04E-72 AIM 0.1712 (L)
FP4 FP6 0.7963 FP6 0.4953 (S) TIM SPG 6.34E-121 SPG 0.0729 (L)
FP4 FPR 5.52E-43 FP4 0.7511 (L) TIM SPL 1.70E-94 SPL 0.1233 (L)
FP4 IIP 0.0046 FP4 0.5518 (S) AIM SPG 7.24E-33 SPG 0.2819 (L)
FP4 APE 1.45E-21 FP4 0.6742 (L) AIM SPL 2.38E-05 SPL 0.4228 (S)
FP4 APR 2.38E-22 FP4 0.6776 (L) SPG SPL 5.18E-26 SPG 0.6927 (L)

S, M, and L represents Small, Medium, and Large in effect size, respectively.

1 4.2 APFD Results

2 Figure 4 presents the APFD results for each subject program (Fig-

3 ures 4(a) to 4(e)), in which each plot lists the distribution of the

4 500 APFD values (100 orderings ⇥ 5 versions). Figure 4(f) gives

5 the APFD results for all programs, in which each plot contains

6 2500 APFD values (100 orderings ⇥ 5 programs ⇥ 5
versions).

7 Table 5 shows the statistical APFD comparisons between two ATCP

8 techniques based on Figure 4(f).

9 4.2.1 RQ1: APFD Effectiveness: ICBP: To answer the first

10subquestion of RQ1, regarding FICBP, we have the following

11observations:

• As the prioritization strength λ (1 λ 6) increases, FPλ can
normally achieve higher APFD results, with a few exceptions:
for example, in program grep, FP2 performs better than FP3;
while FP4 performs worst for program make.
• According to mean and median APFD values, the largest
differ-ence between techniques is only 4%, and the differences
between high-strength FICBPs are very small. Lower-strength
FICBPs are, therefore, surprisingly comparable to higher-
strength ones, from the perspective of fault detection.
• As shown in Table 5, the comparisons between higher-strength (FP4,

FP5, and FP6) and lower-strength (FP1, FP2, and FP3) FICBP are highly

significant: except when comparing FP4 against FP3, the

12
13
14
15
16
17
18
19
20
21
22

23

8

A
P

F
D

 (
%

)

A
P

F
D

 (
%

)

96 96

94 94

92 92

90 90

88 88

86 86

(%
)

84 84

82 82

80
80 D

78 78

76 76

74 74

72 72

70 70

RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

 Prioritization Technique

 (a) flex

96 96

94 94

92 92

90 90

88 88

86 86

)

84 84

82 82 D

80 80

78 78

76 76

74 74

72 72

RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

94 94

92 92

90 90

88 88
86 86

84 84

82 82

80 80

78 78

76 76

74 74
RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

 Prioritization Technique

 (b) grep

74 74
72 72
70 70
68 68
66 66
64 64
62 62
60 60
58 58
56 56
54 54
52 52
50 50
48 48
46 46
44 44
42 42
40 40
38 38

RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

A
P

F
D

 (
%

)

Prioritization Technique Prioritization Technique

(c) sed (d) make

100 100 100 100

98 98
 95 95

 90 90

96 96 85 85

94 94 80 80

(%
) 75 75

92 92
70 70

 A P F D

 60 60

90 90 65 65

88 88
55

55

86 86 50 50

 45 45

84 84
40 40

82 82 35 35

RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL RDP FP1 FP2 FP3 FP4 FP5 FP6 FPR IIP APE APR APH TIM AIM SPG SPL

Prioritization Technique Prioritization Technique

(e) gzip (f) All programs

Fig. 4: APFDs for each ATCP technique for V1 to V5

1 p-values are less than 0.01. Among the higher-strength FICBPs,

2 the APFD results are not significantly different (their p-values are

3 greater than 0.01); but, among lower-strength FICBPs, the differ-

4 ence is highly significant, for example, when comparing FP1 with

5 FP2 or with FP3. In terms of the effect size measure (A
ˆ
12), higher-

6 strength FICBPs only outperform lower-strength ones between about

7 52% and 59% of the time. Among the higher-strength FICBPs, the

8 A
ˆ
12 values range from about 50% to 52%; while they range from

9 about 51% to 59% among the lower-strength FICBPs.

In answering the second subquestion, there is nearly no difference 10
between the AICBPs, irrespective of subject program. This is also 11
confirmed by the statistical comparison: the p-values are greater than 12
0.01, and the effect size measures are approximately 50%. 13
Regarding the third subquestion, among all eleven ICBP tech- 14

niques, we have the following observations: IIP and higher-strength 15
FICBPs generally have the highest APFD values, and IIP has bet- 16
ter performance than lower-strength FICBPs. The second best is the 17
AICBP series, followed by FP2, FP3, and FPR. FP1 has the worst 18

9

Table 5 Statistical APFD analysis of all pairwise comparisons (A, B)

 A B p-value Superior Effect Size A B p-value Superior Effect Size
 RDP FP1 1.27E-06 FP1 0.4604 (S) FP4 APH 0.1268 FP4 0.5125 (S)
 RDP FP2 7.79E-26 FP2 0.4142 (S) FP4 TIM 4.53E-28 FP4 0.5897 (S)
 RDP FP3 2.61E-30 FP3 0.4066 (S) FP4 AIM 3.51E-38 FP4 0.6055 (M)
 RDP FP4 9.97E-38 FP4 0.3952 (M) FP4 SPG 5.96E-05 FP4 0.5328 (S)
 RDP FP5 1.03E-46 FP5 0.3828 (M) FP4 SPL 3.31E-10 FP4 0.5513 (S)
 RDP FP6 4.56E-51 FP6 0.3773 (M) FP5 FP6 0.5841 FP6 0.4955 (S)
 RDP FPR 4.40E-26 FPR 0.4137 (S) FP5 FPR 3.20E-09 FP5 0.5483 (S)
 RDP IIP 4.86E-54 IIP 0.3736 (M) FP5 IIP 0.4432 FP5 0.4937 (M)
 RDP APE 1.38E-28 APE 0.4094 (S) FP5 APE 0.0022 FP5 0.5250 (S)
 RDP APR 2.14E-29 APR 0.4081 (S) FP5 APR 0.0128 FP5 0.5203 (S)
 RDP APH 2.29E-29 APH 0.4081 (S) FP5 APH 0.0037 FP5 0.5237 (S)
 RDP TIM 0.7419 RDP 0.5027 (S) FP5 TIM 5.76E-33 FP5 0.5977 (S)
 RDP AIM 0.6734 AIM 0.4966 (S) FP5 AIM 6.95E-48 FP5 0.6187 (M)
 RDP SPG 8.30E-28 SPG 0.4107 (S) FP5 SPG 2.14E-08 FP5 0.5457 (S)
 RDP SPL 1.05E-16 SPL 0.4322 (S) FP5 SPL 9.25E-15 FP5 0.5633 (S)
 FP1 FP2 7.49E-11 FP2 0.4468 (S) FP6 FPR 1.23E-10 FP6 0.5526 (S)
 FP1 FP3 9.29E-14 FP3 0.4392 (S) FP6 IIP 0.8092 FP6 0.4980 (S)
 FP1 FP4 1.37E-19 FP4 0.4261 (S) FP6 APE 0.0004 FP6 0.5292 (S)
 FP1 FP5 5.83E-27 FP5 0.4122 (S) FP6 APR 0.0025 FP6 0.5247 (S)
 FP1 FP6 1.17E-29 FP6 0.4076 (S) FP6 APH 0.0006 FP6 0.5279 (S)
 FP1 FPR 1.39E-09 FPR 0.4505 (S) FP6 TIM 6.45E-35 FP6 0.6007 (M)
 FP1 IIP 3.74E-32 IIP 0.4036 (S) FP6 AIM 2.06E-52 FP6 0.6244 (M)
 FP1 APE 5.81E-13 APE 0.4412 (S) FP6 SPG 1.67E-09 FP6 0.5492 (S)
 FP1 APR 1.21E-13 APR 0.4394 (S) FP6 SPL 2.03E-16 FP6 0.5671 (S)
 FP1 APH 1.33E-13 APH 0.4395 (S) FPR IIP 4.50E-12 IIP 0.4435 (S)
 FP1 TIM 0.0002 FP1 0.5300 (S) FPR APE 0.0255 APE 0.4818 (S)
 FP1 AIM 2.16E-06 FP1 0.5387 (S) FPR APR 0.0094 APR 0.4788 (S)
 FP1 SPG 2.69E-09 SPG 0.4514 (S) FPR APH 0.0142 APH 0.4800 (S)
 FP1 SPL 0.0007 FP1 0.4722 (S) FPR TIM 1.06E-17 FPR 0.5700 (S)
 FP2 FP3 0.3028 FP3 0.4916 (S) FPR AIM 1.26E-26 FPR 0.5872 (S)
 FP2 FP4 0.0080 FP4 0.4783 (S) FPR SPG 0.6340 FPR 0.5039 (M)
 FP2 FP5 5.18E-05 FP5 0.4669 (S) FPR SPL 0.0036 FPR 0.5237 (S)
 FP2 FP6 5.24E-06 FP6 0.4628 (S) IIP APE 0.0001 IIP 0.5314 (M)
 FP2 FPR 0.1867 FP2 0.5108 (S) IIP APR 0.0012 IIP 0.5265 (M)
 FP2 IIP 1.32E-06 IIP 0.4605 (S) IIP APH 0.0002 IIP 0.5303 (M)
 FP2 APE 0.3601 APE 0.4925 (S) IIP TIM 4.73E-37 IIP 0.6038 (M)
 FP2 APR 0.1785 APR 0.4890 (S) IIP AIM 2.34E-55 IIP 0.6280 (M)
 FP2 APH 0.2857 APH 0.4913 (S) IIP SPG 2.69E-11 IIP 0.5544 (S)
 FP2 TIM 3.34E-18 FP2 0.5710 (S) IIP SPL 9.54E-19 IIP 0.5722 (S)
 FP2 AIM 7.26E-26 FP2 0.5859 (S) APE APR 0.6566 APE 0.4964 (S)
 FP2 SPG 0.1543 FP2 0.5116 (M) APE APH 0.8601 APH 0.4986 (S)
 FP2 SPL 0.0002 FP2 0.5305 (S) APE TIM 1.41E-21 APE 0.5779 (S)
 FP3 FP4 0.1071 FP4 0.4868 (S) APE AIM 1.26E-28 APE 0.5906 (S)
 FP3 FP5 0.0030 FP5 0.4757 (S) APE SPG 0.0283 APE 0.5179 (S)
 FP3 FP6 0.0005 FP6 0.4714 (S) APE SPL 8.04E-06 APE 0.5365 (S)
 FP3 FPR 0.0196 FP3 0.5191 (S) APR APH 0.7745 APH 0.5023 (S)
 FP3 IIP 0.0002 IIP 0.4693 (S) APR TIM 3.20E-21 APR 0.5772 (S)
 FP3 APE 0.9032 FP3 0.5010 (S) APR AIM 1.94E-29 APR 0.5920 (S)
 FP3 APR 0.7688 FP3 0.4976 (S) APR SPG 0.0210 APR 0.5188 (S)
 FP3 APH 0.9618 FP3 0.4996 (S) APR SPL 5.76E-06 APR 0.5370 (S)
 FP3 TIM 1.41E-21 FP3 0.5779 (S) APH TIM 2.62E-22 APH 0.5793 (S)
 FP3 AIM 1.47E-30 FP3 0.5938 (S) APH AIM 1.83E-29 APH 0.5920 (S)
 FP3 SPG 0.0202 FP3 0.5190 (S) APH SPG 0.0200 APH 0.5190 (S)
 FP3 SPL 4.91E-06 FP3 0.5373 (S) APH SPL 4.60E-06 APH 0.5374 (S)
 FP4 FP5 0.1792 FP5 0.4890 (S) TIM AIM 0.6916 AIM 0.4968 (S)
 FP4 FP6 0.0595 FP6 0.4846 (S) TIM SPG 2.04E-13 SPG 0.4400 (S)
 FP4 FPR 2.71E-05 FP4 0.5343 (S) TIM SPL 2.14E-08 SPL 0.4543 (S)
 FP4 IIP 0.0344 FP4 0.4827 (S) AIM SPG 1.03E-28 SPG 0.4092 (S)
 FP4 APE 0.0880 FP4 0.5139 (S) AIM SPL 7.39E-17 SPL 0.4319 (S)
 FP4 APR 0.2311 FP4 0.5098 (S) SPG SPL 0.0266 SPG 0.5181 (S)

1 performance. It is surprising that FPR has APFD results comparable

2 to FP2 and FP3, and has higher APFD scores than FP1, because it

3 only repeats 1-wise interaction coverage. Overall, the statistical anal-

4 ysis (see Table 5) supports the box plot observations, with a degree of

5 variation in the performance of different ICBP techniques for differ-

6 ent programs. Nevertheless, based on the programs we have studied,

7 our results suggest that IIP and higher-strength FICBPs offer the best

8 rates of fault detection among the ICBP techniques.

9 4.2.2 RQ2: APFD Effectiveness: IMBP: For subject pro-
10 grams flex and gzip, AIM performs significantly better than TIM,

11 with respect to both the mean and median APFD values. However,

12 for the other three programs (grep, sed, and make), TIM achieves

much better APFD results (again from the perspective of both mean 13
and median APFD values). This is especially so for the program 14
make, where the mean APFD for TIM is close to 67%, but for AIM 15
it is only about 53%; the median APFD for TIM is 67.5%, but the 16
AIM median is also only about 53%. In contrast to previous TCP 17
studies [1, 31], an interesting result is that the ‘additional’ TCP tech- 18
niques do not guarantee to provide better fault detection rates than 19
the ‘total’ TCP techniques. 20

However, the statistical analysis for all five programs suggests that 21
the differences in performance between TIM and AIM are not sig- 22
nificant: their p-values are much greater than 0.01, and the effect 23
sizes are approximately 50%. In other words, TIM and AIM have 24
comparable fault detection rates. 25

10

1 4.2.3 RQ3: APFD Effectiveness: SBP: For programs flex and

2 make, SPG performs slightly better than SPL, however for the other

3 programs (grep, sed, and gzip) SPG is better than SPL, with respect

4 to both the mean and the median APFD values. Considering all pro-

5 grams (Figure 4(f)), overall, SPG is slightly better than SPL, but the

6 differences between them are less than 1%. Similarly, the statistical

7 comparison gives a p-value of 0.0266, and an effect size of 0.5181,

8 which indicates that the difference is not significant.

9 4.2.4 RQ4: APFD Effectiveness of All Techniques:

10 Although different techniques have different APFD performances

11 for different programs, we can nonetheless observe the following:

12 • For program flex, SPG and SPL are the two best techniques, fol-

13 lowed by IIP and FPR, in terms of both the median and the mean

14 APFD values — although the differences are very small (less than

15 1%). Additionally, and surprisingly, TIM has the worst performance

16 — even worse than RDP, which uses no additional information in

17 the prioritization process.
18 • For program make, TIM is significantly better than all other

19 ATCP techniques, followed by SPG and SPL. Additionally, RDP,
20 FPλ (1 λ 6; except λ = 4), IIP, APR, and AIM, all have simi-
21 lar APFD performance. FP4 and FPR are the two worst techniques.

22 • For the three programs grep, sed, and gzip, the FICBPs (except

23 FP1) and other ICBP techniques perform best, with FP1, SPG, SPL,

24 TIM, and AIM able to achieve comparable APFD results. Further-

25 more, it is again surprising that RDP could sometimes have similar

26 fault detection rates to TIM, AIM, and SPL.

27 • When all programs are considered together, overall, the ICBP

28 series has the best performance, followed by the SBP series; NIGP

29 and IMBP perform worst, with similar fault detection rates. Regard-

30 ing individual ATCP techniques, the ICBP series is best, as discussed

31 in the first subquestion of RQ1, with IIP and higher-strength FICBPs

32 performing best among all techniques. SPG and SPL are better

33 than AIM, TIM, and FP1; with SPG achieving comparable APFD

34 performance to FP2, FP3, FPR, and the AICBP series.

35 Taking into consideration both APCC and APFD results, we can

36 conclude that higher-strength FICBPs (FP4, FP5, and FP6) achieve

37 the best rates of both interaction coverage and fault detection, fol-

38 lowed by IIP. Although SPG has lower APCC results than the ICBP

39 techniques (as discussed before, because ICBP uses interaction cov-

40 erage to guide the prioritization), it can achieve higher APFD scores

41 than FP1, and has performance comparable to FP2, FP3, FPR, and

42 AICBP. Additionally, IMBP techniques generally perform similarly,

43 or worse, compared with random test case prioritization.

44 4.3 Prioritization Time Results

45 To address RQ5, Table 6 presents the mean prioritization time for

46 each ATCP technique for each subject program — it should be noted

47 that, because we used the model mutation matrix file from previous

48 studies [15], TIM and AIM do not include the model mutation time.

49 Based on the experimental data, and as expected, it is clear that RDP

50 needs the least prioritization time among all ATCP techniques, fol-

51 lowed by TIM, FP1, and AIM. The next best performance, in terms

52 of prioritization time, is by FPR, SPG, and SPL (all of which require

53 slightly more time than the four best techniques). FP5 has the slowest

54 prioritization time, followed by FP6, FP4, and IIP; and the AICBP

55 series has similar times to FP3.
56 Based on the effectiveness and efficiency experiments, our recom-

57 mendations and guidelines are as follows: given sufficient resources

58 (including time) for prioritizing ATCs, FICBPλ at higher strength

59 λ values (λ = 4, 5, 6) should be the best choice, followed by IIP.

60 However, if time resources are limited, then FPR and SPG would be

61 the best choices, followed by FP2, FP3, and the AICBP series; FP1

62 and RDP could also be alternatives, when facing very severe time

63 constraints. As discussed in Section 2.2.5, we believe that our exper-

64 imental results are basically consistent with the expected strengths

65 and weaknesses of each ATCP technique.

Table 6 Prioritization time (in seconds) for each ATCP technique

ATCP Technique Subject Program
Sum

flex grep sed make gzip

RDP 0.05 0.01 0.04 0.01 0.01 0.12

FP1 0.28 0.47 0.41 0.06 0.16 1.38

FP2 4.37 8.99 10.35 0.42 2.35 26.48

FP3 10.68 26.66 36.42 2.18 27.70 103.64

FP4 52.74 81.19 144.54 6.70 115.86 401.03

FP5 84.91 198.93 339.66 18.72 326.63 968.85

FP6 59.08 108.67 217.38 16.87 518.15 920.15

FPR 2.96 2.23 1.46 0.50 1.36 8.51

IIP 54.14 40.63 41.34 16.56 168.70 321.37

APE 12.32 29.51 40.05 3.94 43.94 129.76

APR 12.92 30.12 40.88 4.07 42.61 130.60

APH 12.94 29.99 40.08 4.13 43.20 130.34

TIM* 0.38 0.79 0.08 0.05 0.03 1.33

AIM* 1.36 1.89 0.13 0.10 0.03 3.51

SPG 3.78 3.23 1.73 0.19 0.49 9.42

SPL 3.84 2.02 1.50 0.17 0.28 7.81

“*" indicates that model mutation time is not included.

4.4 Threats to Validity

In this section, we list some potential threats to validity, including

external validity, internal validity, construct validity, and conclusion
validity.

4.4.1 External Validity: With respect to the external validity, the
main threat is the generalizability of our results. Although we
have used only five subject programs, written in C, all of which
are of a relatively medium size, we believe that by including six
versions of each (giving 30 subject versions under study), that
there is suffi-cient data from which to draw the conclusions.
Nevertheless, more larger subject programs, written in other
languages should also be examined in future work.

Another potential threat to external validity is the representative-

ness of ATCs for each subject program. In this paper, we focused on

ATCs originated from the SIR [40] (using the test specification

language to create the input model and construct ATCs [16]), which

is only one type of ATC encoding. However, there exist other ATC
encoding types [52], which we will investigate in our future work.

4.4.2 Internal Validity: The threat to internal validity relates mainly the

implementation of our algorithms. We have used C++ to implement

the algorithms, and have carefully tested the imple-
mentation to minimize this threat, as much as possible.

4.4.3 Construct Validity: In this study, we have focused on the testing

effectiveness and efficiency, measured by the rate of interac-tion

coverage, the rate of fault detection, and the prioritization time.

Although the APCC and APFD metrics have often been used in the

field of test case prioritization [1, 21, 24, 34], we acknowledge that
there may be other metrics which may also be relevant.

4.4.4 Conclusion Validity: As for the conclusion validity, the main

threat is the randomized computation of our algorithms. To minimize

this threat, all algorithms were repeated 100 times, and
inferential statistics were applied to the comparisons of results.

5 Conclusions and Future Work

This paper has reported on a comparison of 16 ATCP techniques,

classified into four categories, based on an extensive empirical

study. Based on comparisons of testing effectiveness and

efficiency, some recommendations and guidelines have also also

given, to help testers choose among ATCP techniques under

different testing situations and scenarios.
The main findings of this study can be summarized as:

(1) With respect to all ATCP categories, the ICBP category has the best

testing effectiveness, irrespective of the rates of interaction cov-erage

and fault detection. Somewhat surprisingly, because it does not use any

additional information to guide the prioritization, NIGP

66

67
68
69

70
71
72
73
74
75
76
77
78
79
80
81
82
83

84
85
86
87

88
89
90
91
92
93

94
95
96
97

98

99

100
101
102
103
104
105

106
107
108
109

11

1 could achieve comparable performance to IMBP; while SBP has

2 very good testing effectiveness, and even better than some ICBP

3 techniques sometimes. Additionally, IMBP has the worst rates of

4 interaction coverage, but it sometimes has the best fault detection

5 rates. Nevertheless, NIGP, IMBP, SBP, and some ICBP techniques

6 have better testing efficiency than others.
7 (2) In the category of ICBP techniques, it is evident that higher-

8 strength FICBP techniques, and IICBP have the best testing effec-

9 tiveness (according to interaction coverage and fault detection),

10 followed by AICBP and lower-strength FICBP techniques. However,

11 higher-strength FICBP and IICBP techniques are less efficient than

12 other ICBP techniques, according to the prioritization time.
13 (3) Regarding the IMBP techniques, although both ‘total’ and

14 ‘additional’ IMBP techniques have similar prioritization times, they

15 have different performances according to the other evaluation mea-
16sures. For example, the ‘additional’ IMBP has better rates of interac-

17 tion coverage than the ‘total’ IMBP, regardless of subject programs.

18 However, for three programs, the ‘additional’ IMBP has better fault

19 detection than the ‘total’ IMBP, but for another two cases, this is

20 reversed: the ‘total’ IMBP can obtain better fault detection.
21(4) For the SBP techniques, the global SBP has better rates of inter-

22action coverage than the local SBP. However, they have similar fault

23 detection rates and prioritization costs: the global SBP is slightly

24 better than the local one for some programs, but the opposite is the

25 case for some other programs.
26 (5) When testers select only some ATCP techniques for prioritizing

27 abstract test cases, we recommend that, given sufficient resources

28 and prioritization time, FICBPλ at higher strength λ values (i.e., λ =

29 4, 5, 6) should be the best choice, followed by IICBP. However, if

30 facing limited time resources, then GSBP may be the best choice,

31 followed by FICBP2, FICBP3, and AICBP; FICBP1 and NIGP may

32 be alternatives in situations with very severe time constraints.

33 As discussed before, IMBP uses the model mutation information

34 to prioritize ATCs, so the quality of IMBP is mainly dependent on

35 the model mutation, which may be a reason for the ineffectiveness of

36 IMBP in this study. It will therefore be very interesting to investigate

37 the correlation between model mutation and program mutation in our

38 future work. In addition, since this study adopted mutation analy-

39 sis [39] to investigate testing effectiveness of ATCP techniques, more

40 experiments with real faults should be conducted to validate our con-

41 clusions. Last but not the least, in this paper we only considered the

42 prioritization time as the resource factor for guiding the selection

43 of ATCP techniques. However, there are many other resource fac-

44 tors such as the execution time of test cases. Therefore, it would be

45 interesting to combine more testing requirements for designing more

46 comprehensive guidelines to select ATCP techniques.

47 Acknowledgements

48 We would like to thank Christopher Henard for sharing us the

49 fault data materials of each subject program. This work is sup-

50 ported by the National Natural Science Foundation of China (Grant

51 Nos. 61202110, 61502205, and 61872167), and the Senior Person-

52 nel Scientific Research Foundation of Jiangsu University (Grant

53 No. 14JDG039). This work is also supported by the Young Backbone

54 Teacher Cultivation Project of Jiangsu University, and the sponsor-

55 ship of Jiangsu Overseas Visiting Scholar Program for University

56 Prominent Young & Middle-aged Teachers and Presidents. A pre-

57 liminary version of this paper was presented at the 39th International

58 Conference on Software Engineering (ICSE’17) [53].

59 6 References

60 1 Rothermel, G., Untch, R.H., Chu, C., Harrold, M.J.: ‘Prioritizing test cases for
61 regression testing’, IEEE Transactions on Software Engineering, 2001, 27, (10),
62 pp. 929–948

63 2 Yoo, S., Harman, M.: ‘Regression testing minimization, selection and prioriti-
64 zation: A survey’, Software Testing, Verification and Reliability, 2012, 22, (2),
65 pp. 67–120

1 pp. 192–201
2 32 Bryce, R.C., Memon, A.M. ‘Test suite prioritization by interaction coverage’. In:
3 Proceedings of the Workshop on Domain Specific Approaches to Software Test
4 Automation (DoSTA’07). (, 2007. pp. 1–7

5 33 Bryce, R.C., Sampath, S., Memon, A.M.: ‘Developing a single model and test pri-
6 oritization strategies for event-driven software’, IEEE Transactions on Software

3 Di.Nardo, D., Alshahwan, N., Briand, L., Labiche, Y.: ‘Coverage-based regression 66
 test case selection, minimization and prioritization: a case study on an industrial 67
 system’, Software Testing, Verification and Reliability, 2015, 25, (4), pp. 371–396 68
4 Li, Z., Harman, M., Hierons, R.M.: ‘Search algorithms for regression test 69
 case prioritization’, IEEE Transactions on Software Engineering, 2007, 33, (4), 70
 pp. 225–237 71
5 Parejo, J.A., Sánchez, A.B., Segura, S., Ruiz.Cortés, A., Lopez.Herrejon, R.E., 72
 Egyed, A.: ‘Multi-objective test case prioritization in highly configurable systems: 73
 A case study’, Journal of Systems and Software, 2016, 122, pp. 287 – 310 74
6 Chen, J., Zhu, L., Chen, T.Y., Towey, D., Kuo, F.C., Huang, R., et al.: ‘Test case 75
 prioritization for object-oriented software: An adaptive random sequence approach 76
 based on clustering’, Journal of Systems and Software, 2018, 135, pp. 107 – 125 77
7 Jiang, B., Zhang, Z., Chan, W.K., Tse, T.H. ‘Adaptive random test case prior- 78

 itization’. In: Proceedings of the 24th IEEE/ACM International Conference on 79
 Automated Software Engineering (ASE’09). (, 2009. pp. 233–244 80
8 Zhang, X., Chen, T.Y., Liu, H. ‘An application of adaptive random sequence in 81
 test case prioritization’. In: Proceedings of the 26th International Conference on 82
 Software Engineering and Knowledge Engineering (SEKE’14). (, 2014. pp. 126– 83
 131 84
9 Zhang, X., Xie, X., Chen, T.Y. ‘Test case prioritization using adaptive random 85

 sequence with category-partition-based distance’. In: Proceedings of the 16th IEEE 86
 International Conference on Software Quality, Reliability and Security (QRS’16). 87
 (, 2016. pp. 374–385 88

10 Fang, C., Chen, Z., Wu, K., Zhao, Z.: ‘Similarity-based test case prioritization 89
 using ordered sequences of program entities’, Software Quality Journal, 2014, 22, 90
 (2), pp. 335–361 91

11 Noor, T.B., Hemmati, H. ‘A similarity-based approach for test case prioritization 92
 using historical failure data’. In: Proceedings of the 26th International Symposium 93
 on Software Reliability Engineering (ISSRE’15). (, 2015. pp. 58–68 94

12 Catal, C., Mishra, D.: ‘Test case prioritization: a systematic mapping study’, 95
 Software Quality Journal, 2013, 21, (3), pp. 445–478 96

13 Khatibsyarbini, M., Isa, M.A., Jawawi, D.N.A., Tumeng, R.: ‘Test case prioritiza- 97
 tion approaches in regression testing: A systematic literature review’, Information 98
 and Software Technology, 2018, 93, pp. 74 – 93 99

14 Grindal, M., Lindström, B., Offutt, J., Andler, S.F.: ‘An evaluation of combination 100
 strategies for test case selection’, Empirical Software Engineering, 2006, 11, (4), 101
 pp. 583–611 102

15 Henard, C., Papadakis, M., Harman, M., Jia, Y., Traon, Y.L. ‘Comparing white- 103
 box and black-box test prioritization’. In: Proceedings of the 38th International 104
 Conference on Software Engineering (ICSE’16). (, 2016. pp. 523–534 105

16 Ostrand, T.J., Balcer, M.J.: ‘The category-partition method for specifying and gen- 106
 erating fuctional tests’, Communications of the ACM, 1988, 31, (6), pp. 676–686 107

17 Nie, C., Leung, H.: ‘A survey of combinatorial testing’, ACM Computer Survey, 108
 2011, 43, (2), pp. 11:1–11:29 109

18 Utting, M., Legeard, B.: ‘Practical model-based testing - a tools approach.’, 110
 International Journal On Advances in Software, 2007, 2, (1), pp. 1–419 111

19 Bryce, R.C., Colbourn, C.J.: ‘Prioritized interaction testing for pairwise coverage 112
 with seeding and contraints’, Information and Software Technology, 2006, 48, (10), 113
 pp. 960–970 114

20 Huang, R., Chen, J., Towey, D., Chan, A.T.S., Lu, Y.: ‘Aggregate-strength inter- 115
 action test suite prioritization’, Journal of Systems and Software, 2015, 99, 116
 pp. 36–51 117

21 Petke, J., Cohen, M.B., Harman, M., Yoo, S.: ‘Practical combinatorial interac- 118
 tion testing: Empirical findings on efficiency and early fault detection’, IEEE 119
 Transactions on Software Engineering, 2015, 41, (9), pp. 901–924 120

22 Al.Hajjaji, M., Thüm, T., Meinicke, J., Lochau, M., Saake, G. ‘Similarity- 121
 based prioritization in software product-line testing’. In: Proceedings of 18th 122
 International Software Product Line Conference (SPLC’14). (, 2014. pp. 197–206 123
23 Henard, C., Papadakis, M., Perrouin, G., Klein, J., Heymans, P., Traon, Y.L.: 124
 ‘Bypassing the combinatorial explosion: Using similarity to generate and priori - 125
 tize t-wise test configurations for software product lines’, IEEE Transactions on 126
 Software Engineering, 2014, 40, (7), pp. 650–670 127

24 Petke, J., Cohen, M.B., Harman, M., Yoo, S. ‘Efficiency and early fault detection 128
 with lower and higher strength combinatorial interaction testing’. In: Proceed- 129
 ings of the 12th Joint Meeting on European Software Engineering Conference 130
 and the ACM SIGSOFT Symposium on the Foundations of Software Engineering 131
 (ESEC/FSE’13). (, 2013. pp. 26–36 132

25 Papadakis, M., Henard, C., Traon, Y.L. ‘Sampling program inputs with muta- 133
 tion analyais: Going beyond combinatorial interaction testing’. In: Proceedings of 134
 the 7th International Conference on Software Testing, Verification and Validation 135
 (ICST’14). (, 2014. pp. 1–10 136

26 Zhang, Z., Zhang, J. ‘Characterizing failure-causing parameter interactions by 137
 adaptive testing’. In: Proceedings of the 20th International Symposium on 138
 Software Testing and Analysis (ISSTA’11). (, 2011. pp. 331–341 139

27 Cohen, M.B., Dwyer, M.B., Shi, J.: ‘Constructing interaction test suites for highly- 140
 configurable systems in the presence of constraints: A greedy approach’, IEEE 141
 Transactions on Software Engineering, 2008, 34, (5), pp. 633–650 142

28 Yilmaz, C., Dumlu, E., Cohen, M.B., Porter, A.A.: ‘Reducing masking effects 143
 in combinatorial interaction testing: A feedback driven adaptive approach’, IEEE 144
 Transactions on Software Engineering, 2014, 40, (1), pp. 43–66 145

29 Thüm, T., Apel, S., Kästner, C., Schaefer, I., Saake, G.: ‘A classification and survey 146
 of analysis strategies for software product lines’, ACM Computing Survery, 2014, 147
 47, (1), pp. 6:1–6:45 148

30 Barus, A.C., Chen, T.Y., Kuo, F.C., Liu, H., Merkel, R., Rothermel, G.: ‘A cost - 149
 effective random testing method for programs with non-numeric inputs’, IEEE 150
 Transactions on Computers, 2016, 65, (12), pp. 3509–3523 151

31 Zhang, L., Hao, D., Zhang, L., Rothermel, G., Mei, H. ‘Bridging the gap between 152
 the total and additional test-case prioritization strategies’. In: Proceedings of 153
 the 35th International Conference on Software Engineering (ICSE’13). (, 2013. 154

12

7 Engineering, 2011, 37, (1), pp. 48–64

8 34 Qu, X., Cohen, M.B., Woolf, K.M. ‘Combinatorial interaction regression testing:
9 A study of test case generation and prioritization’. In: Proceedings of the 23rd

10 International Conference on Software Maintenance (ICSM’07). (, 2007. pp. 255–

11 264
12 35 Qu, X., Cohen, M.B., Woolf, K.M. ‘A study in prioritization for higher strength

13 combinatorial testing’. In: Proceedings of the 2nd International Workshop on

14 Combinatorial Testing, (IWCT’13). (, 2013. pp. 285–294

15 36 Huang, R., Zong, W., Chen, J., Towey, D., Zhou, Y., Chen, D. ‘Prioritizing inter-
16 action test suite using repeated base choice coverage’. In: Proceedings of the IEEE
17 40th Annual Computer Software and Applications Conference (COMPSAC’16). (,
18 2016. pp. 174–184

19 37 Huang, R., Chen, J., Zhang, T., Wang, R., Lu, Y. ‘Prioritizing variable-strength
20 covering array’. In: Proceedings of the IEEE 37th Annual Computer Software and

21 Applications Conference (COMPSAC’13). (, 2013. pp. 502–601

22 38 Huang, R., Xie, X., Towey, D., Chen, T.Y., Lu, Y., Chen, J.: ‘Prioritization of com-
23 binatorial test cases by incremental interaction coverage’, International Journal of
24 Software Engineering and Knowledge Engineering, 2013, 23, (10), pp. 1427–1457

25 39 Jia, Y., Harman, M.: ‘An analysis and survey of the development of mutation

26 testing’, IEEE Transactions on Software Engineering, 2011, 37, (5), pp. 649–678

27 40 Do, H., Elbaum, S.G., Rothermel, G.: ‘Supporting controlled experimentation with

28 testing techniques: An infrastructure and its potential impact’, Empirical Software
29 Engineering, 2005, 10, (4), pp. 405–435

30 41 Andrews, J.H., Briand, L.C., Labiche, Y., Namin, A.S.: ‘Using mutation analy-
31 sis for assessing and comparing testing coverage criteria’, IEEE Transactions on

32 Software Engineering, 2006, 32, (8), pp. 608–624

33 42 Do, H., Rothermel, G.: ‘On the use of mutation faults in empirical assessments of
34 test case prioritization techniques’, IEEE Transactions on Software Engineering,
35 2006, 32, (9), pp. 733–752

36 43 Jia, Y., Harman, M.: ‘Higher order mutation testing’, Information and Software
37 Technology, 2009, 51, (10), pp. 1379 – 1393

38 44 Ammann, P., Delamaro, M.E., Offutt, J. ‘Establishing theoretical minimal sets of
39 mutants’. In: Proceedings of the 7th International Conference on Software Testing,
40 Verification and Validation (ICST’14). (, 2014. pp. 21–30

41 45 Kintis, M., Papadakis, M., Malevris, N. ‘Evaluating mutation testing alterna-
42 tives: A collateral experiment’. In: Proceedings of the 17th Asia-Pacific Software

43 Engineering Conference (APSEC’10). (, 2010. pp. 300–309

44 46 Papadakis, M., Henard, C., Harman, M., Jia, Y., Le.Traon, Y. ‘Threats to the valid-
45 ity of mutation-based test assessment’. In: Proceedings of the 25th International
46 Symposium on Software Testing and Analysis (ISSTA’16). (, 2016. pp. 354—365
47 47 Huang, R., Chen, J., Chen, D., Wang, R. ‘How to do tie-breaking in prioritization

48 of interaction test suites?’. In: Proceedings of the 26th International Conference on

49 Software Engineering and Knowledge Engineering (SEKE’14). (, 2014. pp. 121–

50 125

51 48 Wang, Z., Chen, L., Xu, B., Huang, Y.: ‘Cost-cognizant combinatorial test case

52 prioritization’, International Journal of Software Engineering and Knowledge
53 Engineering, 2011, 21, (6), pp. 829–854

54 49 Arcuri, A., Briand, L.: ‘A hitchhiker’s guide to statistical tests for assessing ran-
55 domized algorithms in software engineering’, Software Testing, Verification and

56 Reliability, 2014, 24, (3), pp. 219–250

57 50 Harman, M., McMinn, P., Souza, J., Yoo, S.: ‘Search based software engineering:
58 Techniques, taxonomy, tutorial’, Empirical Software Engineering and Verification,
59 2012, pp. 1–59

60 51 Vargha, A., Delaney, H.D.: ‘A critique and improvme of the cl common language

61 effect size statistics of mcgraw and wong’, Journal of Education and Behavioral
62 Statistics, 2000, 25, (2), pp. 101–132

63 52 Hemmati, H., Arcuri, A., Briand, L.: ‘Achieving scalable model-based testing

64 through test case diversity’, ACM Transactions on Software Engineering and

65 Methodology, 2013, 22, (1), pp. 139–176

66 53 Huang, R., Zong, W., Towey, D., Zhou, Y., Chen, J. ‘An empirical examination

67 of abstract test case prioritization techniques’. In: Proceedings of the 39th Inter-
68 national Conference on Software Engineering Companion (ICSE-C’17). (, 2017.
69 pp. 141–143

14

13

