

University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo, 315100, China

First published 2019

This work is made available under the terms of the Creative Commons Attribution 4.0 International License: <u>http://creativecommons.org/licenses/by/4.0</u>

The work is licenced to the University of Nottingham Ningbo China under the Global University Publication Licence:

https://www.nottingham.edu.cn/en/library/documents/researchsupport/global-university-publications-licence.pdf

1 Promotion Effect and Mechanism of the Addition of Mo on the Enhanced Low

2 Temperature SCR of NO_x by NH₃ over MnO_x/γ-Al₂O₃ Catalysts

Gang Yang^{a,b}, Haitao Zhao^{a,b}, Xiang Luo^{a,b}, Kaiqi Shi^{a,b}, Haibao Zhao^d, Wenkai Wang^b,
Quhan Chen^b, Hua Fan^{c,*}, Tao Wu^{a,b,*}

5 a, New Materials Institute, The University of Nottingham Ningbo China, Ningbo 315100, China

b, Municipal Key Laboratory of Clean Energy Conversion Technologies, The University ofNottingham Ningbo China, Ningbo 315100, China,

c, School of Resources Environmental & Chemical Engineering, Nanchang University, Nanchang,
330031, China

10 d, Zhejiang Feida Environmental Science & Technology CO., LTD, Zhuji, 311899, China.

11 Abstract

A series of Mn/γ -Al₂O₃ and $MnMo/\gamma$ -Al₂O₃ catalysts were prepared by using Incipient Wetness 12 13 Impregnation (IWI) method. The catalytic performance tests showed that the Mn₃Mo_{1.25}/ γ -Al₂O₃ 14 demonstrated a higher SCR performance (NO conversion of around 96%) at a broad low temperature range (150 to 300° C). The characterization showed that the addition of Mo to the 15 Mn/γ -Al₂O₃ catalysts could promote the dispersion of MnO_x on the surface of γ -Al₂O₃. The 16 17 adsorption of NO could form two different species, nitrites and nitrates on the surface of the 18 catalyst. The presence of nitrites is beneficial to low temperature SCR. It is also found that the existence of Mo in the catalyst favours the formation of Mn³⁺, which plays a critical role in the 19 20 adsorption of NH₃ and therefore improves NH₃ adsorption capacity of the MnO_x/ γ -Al₂O₃ catalysts. 21 The low temperature SCR of the Mn₃Mo_{1.25}/γ-Al₂O₃ catalyst was found to mainly follow L-H 22 mechanism, but E-R mechanism also plays a role to some extent. Moreover, it is also found that 23 the addition of Mo not only mitigates the deactivation of catalysts, but also broadens the effective temperature range of the SCR catalyst. 24

25 K

Keywords : Low temperature SCR; MnMo/γ-Al₂O₃; Mo addition; Promotion effects; Mechanism

26 **1. Introduction**

27 The emission of nitrogen oxides (NO_x) from combustion processes is associated with a series of 28 severe environmental problems, such as acid rain and ozone depletion, has become an issue of 29 great concern for decades [1-3]. To address this problem, the selective catalytic reduction (SCR) 30 of NO_x by NH_3 has been applied to treat flue gas from stationary and mobile sources [4, 5]. At 31 coal-fired power stations, V₂O₅-WO₃/TiO₂ is the most commonly used SCR catalyst. However, 32 the high operating temperature window of 300 - 400°C is associated with a variety of problems [6, 33 7], such as the possible oxidation of SO_2 and the high energy consumption [8, 9]. Therefore, there 34 is a need for the development of low temperature SCR catalysts, which has attracted a wide 35 attention in recent years [10, 11].

36 The manganese-based catalyst is a good alternative to vanadium-based SCR catalysts, which has demonstrated high catalytic activity and selectivity at low temperature [9, 12-20]. Mn-based oxides 37 38 catalysts, such as MnO_x-CeO₂/meso-TiO₂[21], MnO₂-(Co₃O₄)/TiO₂[22] and nano-flaky MnO_x 39 supported on carbon nanotubes [16], have outstanding SCR activity at low temperatures. The 40 addition of transition and/or rare earth metals, such as Fe, Ce and Sb etc, has been found to have 41 positive effects on the performance of these Mn-based catalysts [20, 23-26]. However, their operating temperature window was narrow. The development of novel SCR catalysts, which are 42 43 highly efficient at different temperature levels for different applications is highly desirable but 44 remains very challenging [14].

Previous studies have shown that Mo can promote the distribution of active constituents on the support and subsequently enhances the activity of the catalyst [27]. Moreover, most researchers believed that low temperature SCR reaction follows Eley-Rideal (E-R) mechanism [28, 29]. However, to date, very little work has been carried out on the addition of molybdenum to manganese-based catalysts (MnMo/ γ -Al₂O₃) to improve its low temperature SCR performance [30]. 51 In this study, Mo was doped on the Mn/γ -Al₂O₃ catalysts via Incipient Wetness Impregnation (IWI) 52 method aiming at improving its low temperature SCR performance. Systematic characterisation 53 and testing were carried out to show the effects of Mo addition on catalytic performance of the 54 Mn_xMo_y/γ -Al₂O₃. Moreover, the mechanism of the SCR process over the Mo-modified catalyst at 55 low temperature was investigated.

56 2 Experimental

57 **2.1 Preparation of catalysts**

58 In this research, a series of Mn-based catalysts with different Mo and Mn loadings supported on 59 γ -Al₂O₃ were prepared via IWI method (binary metal catalysts were prepared with a two-step IWI 60 method)

61 Chemicals of AR grade, such as $Mn(NO_3)_2 \cdot 4H_2O$ and $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$, were acquired from 62 Sinopharm Chemical Reagent Co., Ltd and used as precursors for the preparation of the catalysts. 63 To prepare a Mn_xMo_y/γ -Al₂O₃ catalyst, a controlled amount of $(NH_4)_6Mo_7O_{24} \cdot 4H_2O$ was loaded 64 on γ -Al₂O₃ via IWI method, followed by drying at 120°C for 24h and calcination at 520°C for 12h. 65 The sample prepared was then impregnated again with certain quantity of the Mn precursor, 66 followed by drying at 120°C for 24h and calcination at 520°C for 12h. The detailed procedure for 67 the preparation of these catalysts was described elsewhere in our previous research [31, 32].

68 In this study, the Mn_x/γ -Al₂O₃ catalysts means x wt% of Mn in the catalyst, while the Mn_xMo_y/γ -

 Al_2O_3 suggests y wt% of Mo in the catalyst.

70 **2.2 Characterization of catalysts**

The specific area of samples prepared in this study was characterised by N_2 adsorption/desorption at -196 °C using a Micromeritics ASAP 2020, the procedure of which is described elsewhere in literature [31]. The crystal phases of the catalysts were analysed by using an X-Ray Diffraction (XRD, Bruker D8 Advance) with Cu K α radiation. Oxidation states of metal species in the catalysts were also analysed using an X-Ray Photoelectron Spectroscopy (XPS Axis Ultra DLD

Multifunctional) [33]. The C^{1s} peak at 284.8eV was used as the standard for calibration. The 76 77 element compositions of catalysts were analysed by X-Ray Fluorescence (XRF, Bruker s8 TIGER). 78 Morphology, nanostructures and elemental distribution of catalysts were examined using 79 Transmission Electron Microscopy (TEM, FEI Tecnai G2F20). The H₂-temperature programmed 80 reduction (H₂-TPR) was performed to investigate the redox of the samples. Ammonia (NH₃) 81 Temperature Programmed Desorption (NH₃-TPD) method was also carried out to show the quantity and strength of acidic sites on the surface of the catalysts, which was carried out in a 82 83 Micromeritics AutoChem II 2920 with a heating rate of 10°C /min and NH₃ adsorption for 30min 84 at a flowrate of 30mL/min. NH₃ adsorptions on the surface of catalysts were carried out on a 85 Fourier Transform Infrared Spectroscopy (FTIR, Bruker vertex 70). NO-TPD was performed in a 86 specially designed reactor with gas composition measured by a flue gas analyser (Vario Plus, MRU, 87 Germany).

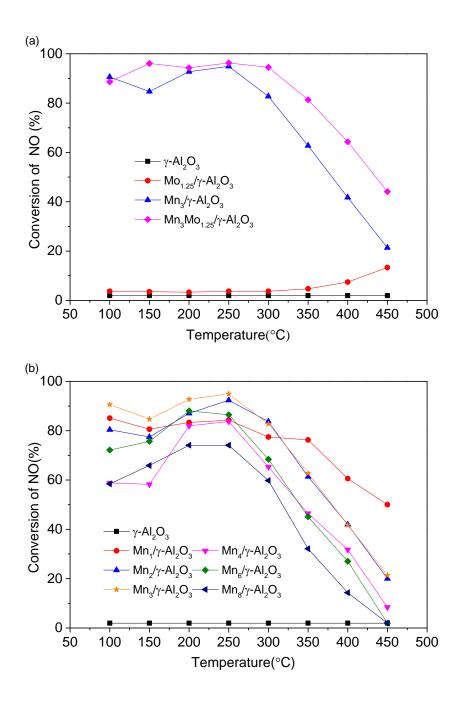
88 2.3 Measurement of catalytic activity

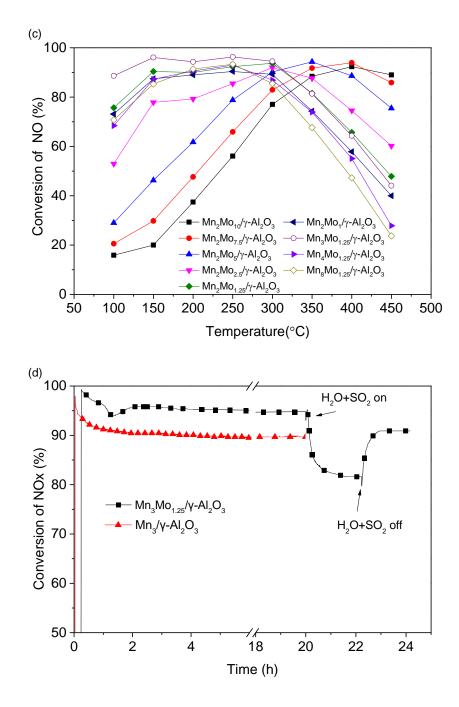
The prepared sample was loaded into a fixed-bed reactor and exposed to a simulated flue gas containing NO_x (500 ppm), NH₃ (500 ppm), O₂ (3vol%), and N₂. The gas hourly space velocity (GHSV) adopted in this study was 3 5000·h⁻¹. Prior to each test, NO_x concentration at the inlet ([NO_x]_{in}) was measured to confirm the initial concentration and to minimise experimental errors. The concentration of NO_x at the outlet ([NO_x]_{out}) was continuously monitored by the Flue Gas Analyser (MRU Vario Plus and Testo 350, Germany). The NO_x removal efficiency is therefore determined by following equation:

96

Nox removal efficiency (%) =
$$\frac{[NOX]_{in} - [NOX]_{out}}{[NOX]_{in}} \times 100\%$$
 (1)

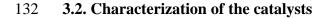
97 **3 Results and discussion**


98 **3.1. Catalytic performance**


99 Low temperature catalytic activity of the Mn_x/γ -Al₂O₃ and Mn_xMo_y/γ -Al₂O₃ catalysts was tested

100 in a downflow fixed-bed reactor. NO_x removal efficiency of the four catalysts is illustrated in Fig.

101 1(a). In Fig. 1(b), Mn_3/γ -Al₂O₃ showed outstanding low temperature NH₃-SCR activities, but the 102 optimal operation temperature was at 250°C. In order to further improve the low temperature NH₃-103 SCR activity of the Mn_x/γ -Al₂O₃ catalysts, Mo was added to modify the Mn_x/γ -Al₂O₃ catalysts. In 104 Fig. 1(a), γ -Al₂O₃ and Mo_y/ γ -Al₂O₃ did not show any SCR activity in a broad temperature range. 105 It is obvious that the NO conversion of Mn_3/γ -Al₂O₃ was below 90% at 150°C, above 90% when 106 temperature was raised to 200 and 250°C, but deteriorated when temperature was raised to higher levels. However, the impregnation of Mo significantly improved the low temperature catalytic 107 108 performance of the Mn₃Mo_{1.25}/ γ -Al₂O₃ catalyst, which showed a remarkable promoting effect at 109 150°C (NO conversion of 96%), and expanded the effective temperature window to 150-300°C. It 110 was found that at higher Mo loadings, the optimal SCR temperature window started to shift to high 111 temperature levels as shown in Fig. 1(c), which suggests that Mo is a good moderator for the 112 adjustment of effective temperature of SCR reaction. Therefore, it can be concluded that the 113 addition of Mo not only promotes the SCR activity of the Mn_x/γ -Al₂O₃ catalyst, but also adjusts 114 the effective temperature range of the catalyst.


115 The effect of H₂O and SO₂ on the activity of Mn₃Mo_{1.25}/ γ -Al₂O₃ catalysts is in Fig. 1(d). When 116 100ppm SO₂ and 5% H₂O were introduced into the reactant gas mixture, the NO conversion of the 117 $Mn_3Mo_{1,25}/\gamma$ -Al₂O₃ dropped to 81% after 2h, which is similar as what is reported by other 118 researchers [34-36]. However, when the supply of SO₂ and H₂O was stopped, the NO conversion 119 increased to about 91%. The decrease of NO conversion could be responsible for the deposit of 120 sulphate on the catalyst surface [24]. The results indicated that the $Mn_3Mo_{1.25}/\gamma$ -Al₂O₃ has 121 resistance to SO₂ and H₂O. In Fig. 1(d), the durability of Mn₃Mo_{1.25}/γ-Al₂O₃ and Mn₃Mo_{1.25}/γ-122 Al₂O₃ was also conducted at 150° C. The durability performance of the Mn₃Mo_{1.25}/ γ -Al₂O₃ was 123 much better than that of Mn_3/γ -Al₂O₃. NO conversion of $Mn_3Mo_{1.25}/\gamma$ -Al₂O₃ decreased slightly to 124 95% after 20h, which indicated that Mo enhanced the durability of Mn_x/γ -Al₂O₃ catalysts.

128

129Fig.1 NO conversion over different catalysts under different gas atmosphere. Reaction130condition: (a), (b), (c), (d), $[NH_3] = [NO] = 500$ ppm, $O_2=3\%$, N_2 balance, GHSV=35 000h⁻¹.131(d), SO₂=100ppm, H₂O=5%, Temperature 150° C.

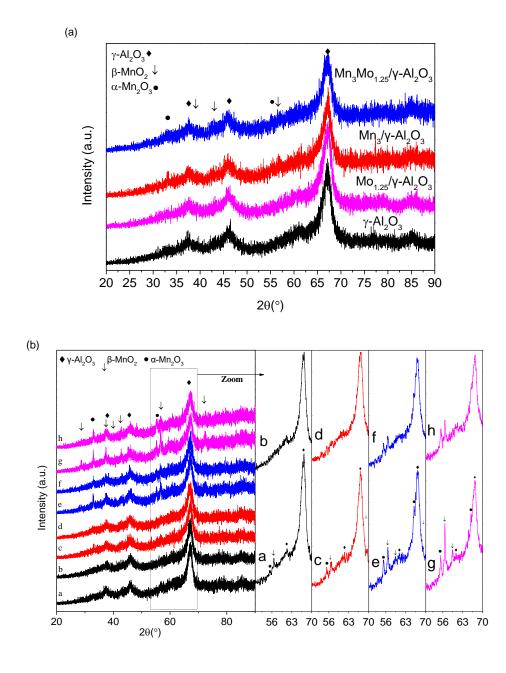
133 **3.2.1. Effects of Mo addition on Mn dispersion**

134 Structural and morphological properties of the catalysts were investigated by BET and XRD

analyses. As shown in Table. 1, the specific surface area of the $Mn_3Mo_{1.25}/\gamma$ -Al₂O₃ catalyst is larger

136 than that of the Mn_3/γ -Al₂O₃ catalyst, which provides more active sites for low temperature NH₃-

137 SCR reaction. In comparison with pure γ -Al₂O₃, the surface area of the γ -Al₂O₃ loaded with Mo


138 decreased slightly. When the Mo loading was below 5 wt %, the surface area of catalysts increased 139 with the increase in Mo loading, which means that the addition of Mo contributes to the dispersion 140 of active component on the support. However, further increase in Mo loading content prevents this 141 trend. It is clear from Table 1 that when Mo loading was greater than 5 wt %, surface areas of the 142 catalysts decreased with the increase in Mo loading. The low temperature SCR activity dropped 143 with the increase in Mo loading. Therefore, 1.25 wt % of Mo loading was found to be the optimal 144 that not only enhanced the dispersion of Mn on the surface of the catalysts, but also promoted the 145 surface area to certain extent.

146

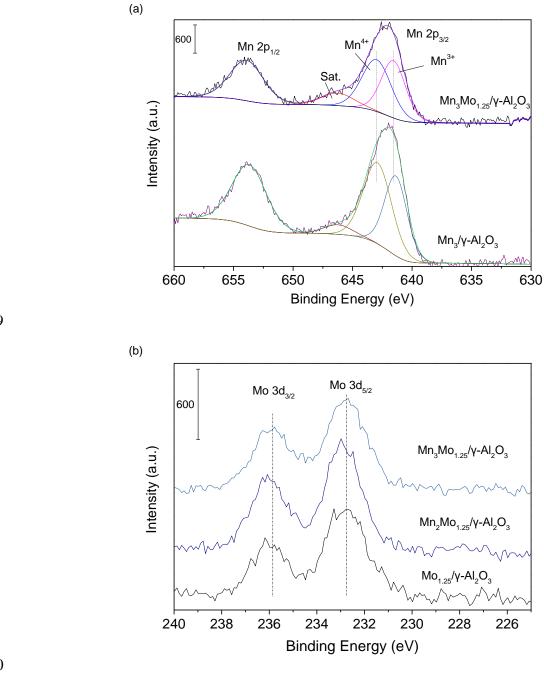
Catalyst	BET surface area (m^2/g)	Pore volume(cm ³ /g)	Pore size(Å)
γ-Al ₂ O ₃	242.2	0.48	79.7
Mn_2/γ - Al_2O_3	190.02	0.47	99.36
Mn_3/γ - Al_2O_3	216.4	0.45	82.7
Mn_4/γ - Al_2O_3	164.90	0.46	112.33
Mn_6/γ - Al_2O_3	172.18	0.40	88.08
$Mn_2Mo_1/\gamma\text{-}Al_2O_3$	194.45	0.44	90.86
$Mn_2Mo_{1.25}/\gamma\text{-}Al_2O_3$	207.61	0.46	89.08
$Mn_2Mo_{2.5}/\gamma\text{-}Al_2O_3$	209.65	0.45	86.38
Mn_2Mo_5/γ - Al_2O_3	209.91	0.42	81.16
$Mn_2Mo_{7.5}/\gamma\text{-}Al_2O_3$	209.53	0.42	80.42
$Mn_2Mo_{10}/\gamma\text{-}Al_2O_3$	189.67	0.37	78.93
$Mn_3Mo_{1.25}/\gamma\text{-}Al_2O_3$	225.7	0.46	80.7
$Mn_4Mo_{1.25}/\gamma\text{-}Al_2O_3$	219.70	0.45	88.11
$Mn_6Mo_{1.25}/\gamma\text{-}Al_2O_3$	192.38	0.41	85.81
Mo_1/γ - Al_2O_3	221.93	0.48	86.69
$Mo_{1.25}/\gamma$ - Al_2O_3	221.18	0.52	94.70
$Mo_{2.5}/\gamma$ - Al_2O_3	223.33	0.46	82.94
Mo ₅ /γ-Al ₂ O ₃	227.67	0.45	78.85
$Mo_{7.5}/\gamma$ - Al_2O_3	220.37	0.41	75.49
Mo_{10}/γ - Al_2O_3	211.06	0.40	75.00

148 XRD spectrum of the Mn₃Mo_{1.25}/ γ -Al₂O₃, Mn₃/ γ -Al₂O₃, Mo_{1.25}/ γ -Al₂O₃ and γ -Al₂O₃ are shown in 149 Fig 2 (a). It is clear that the XRD patterns showed four different compounds: γ-Al₂O₃ (JCPDS 04-150 0880), β-MnO₂ (JCPDS 24-0735), α-Mn₂O₃ (JCPDS 24-0508), while the MoO_x did not exist, 151 which was due to its low content. Pijun Gong's et al. [37] claimed that β-MnO₂ has the worst SCR 152 activity in among different MnO₂ species, while α-Mn₂O₃ was found to demonstrate high SCR 153 activity and selectivity by many researchers [38, 39]. Except for γ -Al₂O₃, the intensity of diffraction 154 peaks of Mn compounds was weak. However, in Fig 2(b), when Mn loading varied from 0 to 6 155 wt%, the diffraction peaks of α -Mn₂O₃, MnO, β -MnO₂, especially that of α -Mn₂O₃, started to

156 appear when Mn loading raised to 3 wt%, and the peaks intensity became higher with the increase 157 in Mn loadings, which means bulk MnO_x species began to form and accumulated on the surface of the catalyst. However, bulk MnOx species occupied great amount of surface space but 158 159 performed poor low temperature SCR activity[40]. While doping Mo first on the support, the 160 intensity of diffraction peaks intensity of Mn species decreased, as shown in Fig 2 (a) and (b). It 161 can be concluded that Mo species could improve the dispersion of MnOx species on the support 162 surface, prevent the formation of large MnO_x bulks, and strengthen the interaction between MnO_x 163 and the support.

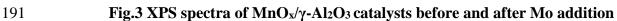
164

166 Fig.2 XRD patterns of catalysts. a. Mn₂/γ-Al₂O₃, b. Mn₂Mo_{1.25}/γ-Al₂O₃, c. Mn₃/γ-Al₂O₃, d.


167 Mn3M01.25/γ-Al2O3, e. Mn4/γ-Al2O3, f. Mn4M01.25/γ-Al2O3, g. Mn6/γ-Al2O3, h. Mn6M01.25/γ-

Al₂O₃

168


169 **3.2.2. XPS, XRF and TEM-EDX**

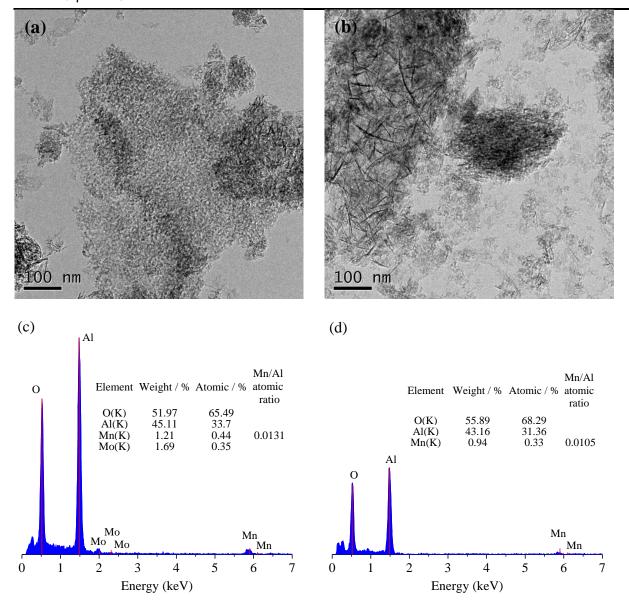
170 The XPS of Mn 2p (a), Mo 3d (b) are shown in Fig. 3. Different MnO_x species have specific and unique spectrums. In Fig. 3(a), $Mn3p_{3/2}$ peaks consist of three MnO_x species, Mn^{4+} (641.5-171 172 641.7eV), Mn³⁺ (541.5-541.7eV) and satellite[41]. The area ratio, respectively, represent the relative amount of species on the surface. A significant decrease in area ratio of Mn⁴⁺/Mn³⁺ from 173 1.26 to 1.08 was observed as a result of Mo addition, which is consistent with the results of XRD 174 analysis. It can be seen from Table 2 that the Mn₃Mo_{1.25}/ γ -Al₂O₃ catalyst had a lower Mn/Al atomic 175 176 ratio. Moreover, XRF and TEM/EDX tests were carried out to show the existence of different 177 species in the catalysts. In Table 3, the mass percentage of Mn, Mo, Al and O is consistent with 178 these species during the preparation of catalysts. Thus, it can be concluded that the Mn was well 179 loaded on the support. In Fig. 4(a) and (b), $Mn_3Mo_{1,25}/\gamma$ -Al₂O₃ is of a more uniform morphology 180 and structure as compared with Mn_3/γ -Al₂O₃. No aggradation of MnO_x was formed on the surface 181 of $Mo_3Mo_{1,25}/\gamma$ -Al₂O₃, which means MnOx species have a better dispersion on the surface of 182 $Mo_3Mo_{1,25}/\gamma$ -Al₂O₃. The surface Mn content had a significant increase after the doping Mo, as 183 shown in Fig. 4(c) and (d). It implied that the addition of Mo strengthens the interactions between 184 MnO_x species and the γ -Al₂O₃, promotes the dispersion of MnO_x on the surface of support. In Fig. 185 3(b), it can be seen that Mo was loaded on the catalysts surface in the form of MoO₃, which was 186 proved by Mo 3d XPS peak at 232.6 eV. In addition, it is speculated that Mo might just act as an 187 accelerant responsible for the formation of active components, itself state does not alter on the 188 surface of the support.

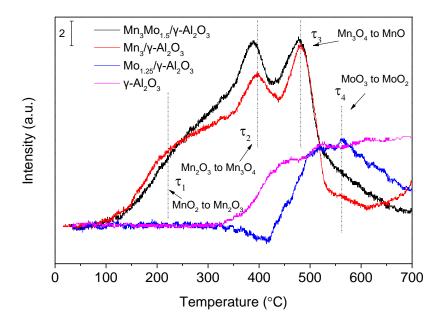
192	Table.2. Binding energy values and surface atomic ratio between Mn 2p for MnO _x / γ-Al ₂ O ₃
193	catalysts before and after modified by Mo addition

_	Bindi	ng Energy(eV)	PWHH	Mn^{4+}/Mn^{3+}	Mn/Al	Mo/Al
Catalyst	Mn 2p _{3/2}			atomic ratio (PP)	atomic ratio (PP)	
Mn ₃ Mo _{1.25} /γ-Al ₂ O ₃	Mn^{4+}	642.97	2.8	1.09	0.046	0.018
	Mn^{3+}	641.56	2.4	1.08	0.046	
Mn ₃ /γ-Al ₂ O ₃	Mn^{4+}	642.84	2.7	1.26	0.062	0
	Mn^{3+}	641.46	2.0	1.26	0.062	062 0

194 Table.3. The composition (wt.%) of catalysts measured by X-ray fluorescence (XRF)

Catalyst	Mn	Мо	Al	Mn/Al atomic ratio	Mo/Al atomic ratio
$Mn_3Mo_{1.25}/\gamma\text{-}Al_2O_3$	3.17	1.33	49.7	0.0313	0.0075
Mn ₃ /γ-Al ₂ O ₃	3.2	0	50.7	0.0310	0




Fig.4. TEM micrographs(a and b) and EDX (c and d) spectra of Mn₃/ γ -Al₂O₃ (b and d) and
Mn₃Mo_{1.25}/ γ -Al₂O₃ (a and c)

197 **3.2.3. H₂-TPR**

198 The H₂-TPR results of the γ -Al₂O₃, Mo_{1.25}/ γ -Al₂O₃, Mn₃/ γ -Al₂O₃, Mn₃Mo_{1.25}/ γ -Al₂O₃ are shown

- in Fig. 5. There are four distinct reduction peaks, $\tau 1$, $\tau 2$, $\tau 3$, $\tau 4$, which are corresponding to the
- 200 reduction of MnO_2 to Mn_2O_3 , Mn_2O_3 to Mn_3O_4 , Mn_3O_4 to MnO and MoO_3 to MoO_2

- 201 respectively[42]. Additionally, the curve of γ -Al₂O₃ did not change significantly except a
- 202 noticeable drift at the high temperatures.

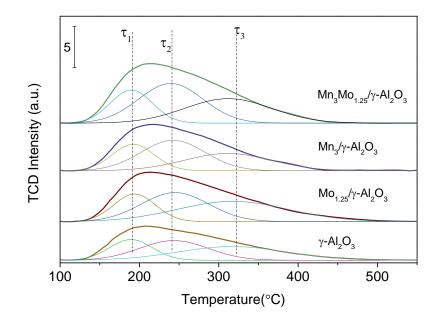

204

Fig.5 H₂-TPR profiles over Mo modified MnO_x/γ-Al₂O₃ catalysts

205 Comparing Mn₃Mo_{1.25}/ γ -Al₂O₃ with Mn₃/ γ -Al₂O₃, the temperature of τ 2, τ 3 decreased, which 206 suggests that Mn_2O_3 has a stronger interaction with the support in $Mn_3Mo_{1,25}/\gamma$ -Al₂O₃. The 207 intensity of $\tau 2$ and $\tau 3$ also increased. Based on observations, it is speculated that the Mo in catalysts promotes the formation of Mn₂O₃, which is consistent with the results of XRD and XPS analyses. 208 Normally, only the NH₃ being adsorbed on the Lewis acid site of Mn³⁺ shows low temperature 209 210 SCR activity and can activate the ammonia to -NH₂ [5]. The -NH₂ takes part in the SCR reaction which suggests that the more Mn₂O₃ the catalyst has, the more Mn³⁺ Lewis acid sites are formed. 211 212 which subsequently promotes low temperature SCR, while the MnO₂ plays a less important role 213 in the low temperature SCR reaction. In contrast, Mn₂O₃ dominated the selective catalytic 214 reduction performance at low temperature, which agreed well with the theory proposed by De 215 Fang[43]. Therefore, it could be concluded that the addition of Mo could promote low temperature 216 SCR activity of the Mn/ γ -Al₂O₃ catalyst by enabling the formation of more Lewis acid sites.


217 **3.2.4. NH₃-TPD and FTIR**

The amount and strength of surface acid sites of Mn_3/γ -Al₂O₃ catalyst before and after Mo addition was investigated using NH₃-TPD, which is shown in Fig. 6. There are three distinct peaks, which could be divided into weak, medium and strong acid sites, respectively. The temperature range of $\tau 1$, $\tau 2$ and $\tau 3$ is 150-250°C, 250-400°C and 400-500°C respectively. The Mn₃Mo_{1.25}/ γ -Al₂O₃ had higher intensity at all peaks, which suggests more medium and strong acid sites existed.

224 Fig.6. NH₃-TPD profiles of Mn₃/γ-Al₂O₃ catalysts before and after modified by Mo addition

225 226

Fig. 7. NH₃-TPD profiles over Mn₂/γ-Al₂O₃ catalysts with different Mo loadings

227 Moreover, catalytic activity of the Mn_x/γ -Al₂O₃ with different Mo loadings was investigated as 228 shown in Fig. 7. The strong and medium acid sites of catalyst increased significantly with the 229 increase in Mo loadings. It is also found that a higher Mo loading led to a higher catalytic 230 temperature of the catalysts in Fig. 1(c). Therefore, the low Mo content (1.25 wt%) favoured the 231 low temperature SCR.

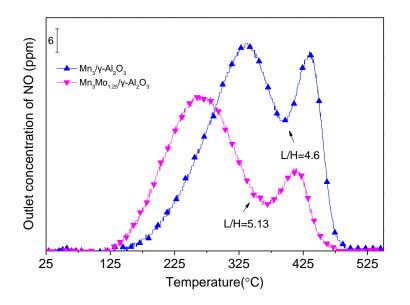
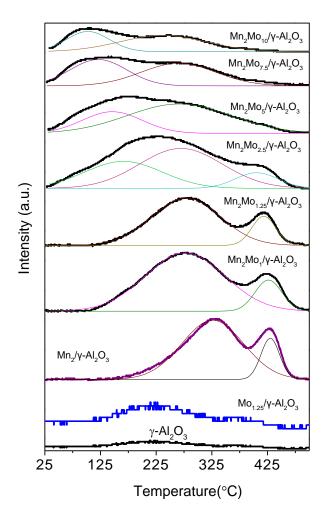

232

Fig. 8. FTIR spectra of Mn₃/γ-Al₂O₃ and Mn₃Mo_{1.25}/γ-Al₂O₃ treated in flowing 500ppm NH₃
at 100°C until saturation and then purged by N₂.

235 Fig. 8 shows the FTIR spectra of NH₃ adsorption over Mn₃/γ-Al₂O₃ and Mn₃Mo_{1.25}/γ-Al₂O₃ catalysts at 100°C. For Mn₃Mo_{1.25}/γ-Al₂O₃, two strong bands at 1266 and 1465 cm⁻¹ and two 236 relatively weaker bands at 1616 and 1681 cm⁻¹ were observed. The bands at 1230, 1251, 1266, 237 238 1616 cm⁻¹ can be assigned to bending vibrations of N-H bonds in the NH₃ linked to Lewis acidic sites [44]. The bands at 1397 cm⁻¹ were almost same, resulted from over NH₃ adsorption on γ -239 Al₂O₃[45]. The bands at 1459 and 1479cm⁻¹ were observed due to NH₃ adsorbed on Brönsted 240 241 acidic sites. What's more, an amide(-NH₂) species also was observed at 1510cm⁻¹. The bands at 1616cm⁻¹ (assigned to Lewis acidic sites) and 1681cm⁻¹ (assigned to Brönsted acidic sites mainly) 242 243 are mainly came from NH₃ adsorption on γ -Al₂O₃. In previous report[46], molybdenyl species were unsaturated on the catalyst surface and were deranged easily by adsorption of ammonia. In
Fig. 8, it can be seen that Lewis and Brönsted acidic sites at 1266 and 1465 cm⁻¹ were significantly
enhanced after the modification of Mo. This confirms what was found in NH3-TPD analysis.

247 **3.2.5. NO-TPD**


Fig. 9 shows the NO-TPD profiles of the Mn_3/γ -Al₂O₃ catalyst before and after Mo addition. Two 248 249 desorption peaks can be observed in Fig. 9, which contained a broad peak in the low temperature 250 region (LT-peak) and a strong peak at higher temperature region (HT-peak). The nitroso species 251 formed from the adsorbed NO at LT-peak will react with ammonia [45]. In contrast, the nitro 252 compounds formed from the NO adsorbed at HT-peak only decomposed at high temperature and 253 reacted with -NH₂[47]. Therefore, the area ratio between LT-peak and HT-peak could be utilized 254 to evaluate the activity of SCR catalyst and investigate the mechanism of catalytic process. In Fig. 255 9, after the addition of Mo, there is a shift in LT-peak and HT-peak toward lower temperature 256 region and the height of peak decreased, which indicates that the Mn₃Mo_{1,25}/ γ -Al₂O₃ had a lower 257 SCR activity temperature. In addition, the area ratio between LT-peak and HT-peak increased from 258 4.6 to 5.13, which means that more nitroso species formed on the $Mn_3Mo_{1.25}/\gamma$ -Al₂O₃ so that higher 259 low temperature SCR activity.

261

Fig. 9. NO-TPD profiles of the Mn₃/y-Al₂O₃ and Mn₃Mo_{1.25}/y-Al₂O₃

Fig. 10. NO-TPD profiles of the Mn₂Mo_x/γ-Al₂O₃

Fig. 10 shows that the LT-peak of Mn catalyst shifted to lower temperature region with the Mo loading increased to 2.5 wt% and a new desorption peak formed below 200°C. With the increase in Mo loading to 10 wt%, the center of the new peak shifted to below 100°C. Meanwhile, the intensity of HT-peaks weakened gradually and disappeared when the Mo loading was 7.5 wt%. This suggests that the addition of Mo had a significant influence on the adsorption of NO.

269 3.2.6. Mechanism of low temperature SCR over Mo-modified Mn-based catalyst

Four sets of NO adsorption and desorption experiment were carried out to investigate the adsorption of NH₃ and NO on the Mn₃Mo_{1.25}/ γ -Al₂O₃ catalysts.

I: The adsorption of NH₃ (500ppm) +NO (500ppm) +O₂ (3%) at 25°C for 1h, and then purged with N₂ until outlet concentration of NO became below 5ppm, followed by performing TPD process at 10° C/min;

275	II: The adsorption of NH_3 (500ppm) + O_2 (3%) at 25°C for 1h, switched to the adsorption
276	of NO (500ppm) + O_2 (3%) at 25°C for 1h, and then purged with N_2 until outlet
277	concentration of NO became below 5ppm, followed by performing TPD process at 10°C
278	/min;

279 III: The adsorption of NO (500ppm) $+O_2$ (3%) at 25°C for 1h, switched to the adsorption 280 of NH₃ (500ppm) $+ O_2$ (3%) at 25°C for 1h, and then purged with N₂ until outlet 281 concentration of NO became below 5ppm, followed by performing TPD Process at 10°C 282 /min;

IV: The adsorption of NO (500ppm) $+O_2$ (3%) at 25°C for 1h, and then purged with N₂ until outlet concentration of NO became below 5ppm, followed by performing TPD Process at 10°C /min.

286 In Fig. 11, Curve III coincided with Curve IV resulted from the adsorption of NO on the fresh 287 catalyst. However, Curve I shifted as compared with Curves III and IV when NH3 and NO were 288 simultaneously introduced, which indicates that NH₃ adsorbs on certain sites competitively with 289 NO. Curve II shifted up significantly in the first 25 min, and then shifted down to the level of curve 290 III and IV. It can therefore be concluded that some of the adsorption sites are occupied randomly 291 by NH₃ owing to NH₃ preferentially adsorbed on the catalyst. According to the calculation, the 292 adsorption capacity of Curve I was larger than that of Curve II, which is attributed to gas phase 293 NH₃ being competitively adsorbed with NO on the catalyst surface. Therefore, the adsorption sites 294 of the catalysts could be classified into four types: Type 1, adsorbs NH₃ preferentially; Type 2, 295 adsorbs NO preferentially; Type 3, adsorbs NH_3 competitively, and Type 4, random adsorption 296 sites, on which both NH₃ and NO can be adsorbed depending on their molecular movement.

As shown in Fig. 12, TPD Curves i and ii did not show high temperature desorption peak of NO and NO₂. TPD Curves iii and iv are similar, but low temperature desorption peaks of curve iii for NO are weak and high temperature desorption peaks also shifted. Compared Curve i with iii, TPD results did not show high temperature desorption peaks, which indicated that bidentate nitrate and bridge nitrate were not easy to form on the surface treated by $NH_3[5]$. It is speculated that O_2 will

- 302 accelerate the formation of these stable NO complexes, which only react with NH₃ at high
- 303 temperature and are responsible for the deactivation of SCR catalysts.

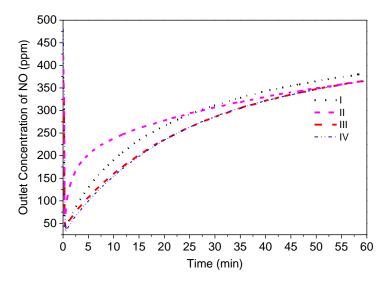


Fig. 11 NO adsorption over the Mn₃Mo_{1.25}/γ-Al₂O₃ catalyst

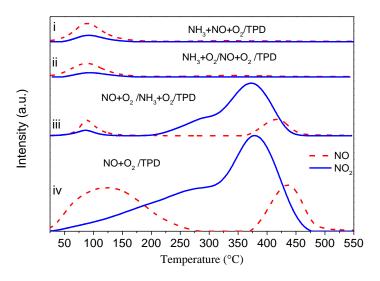
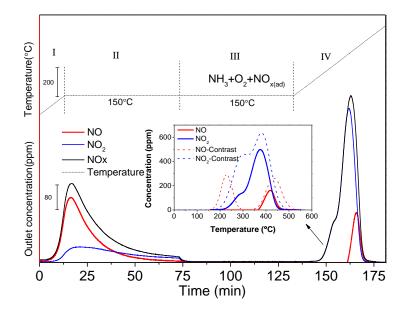
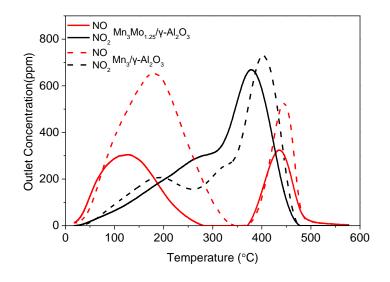



Fig. 12 TPD profiles of the NO adsorption over the Mn₃Mo_{1.25/γ}-Al₂O₃ catalyst

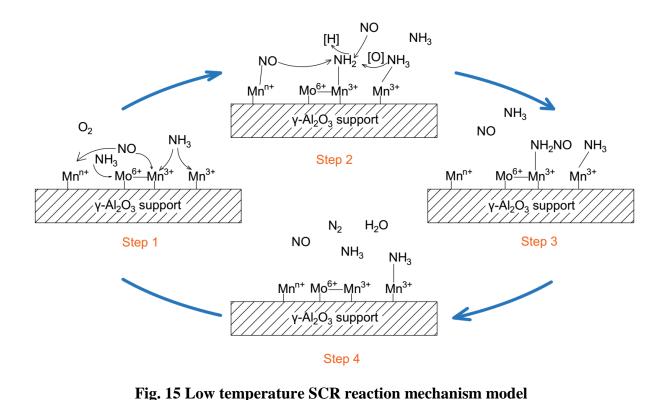
308 It is generally believed that SCR reaction starts with the adsorption of NH₃. But the mechanisms 309 of low temperature SCR for catalysts with different active components and support are different. 310 Marban et al. [48] suggested that there are two different SCR mechanisms associated with different 311 NH₃ species. In Fig. 12, NO-TPD peaks disappeared in Curves i and ii, which is attributed to the 312 reaction between NO and ad-NH₃ on the catalyst surface. As shown in Fig. 13, the $Mn_3Mo_{1.25}/\gamma$ -313 Al₂O₃ catalyst adsorbed NO for 1h and then carried out TPD test from 25°C to 150°C (Process I), 314 followed by purging with N₂ for 1h (Process II). In Process III, NH₃ and O₂ were introduced, and temperature was kept at 150°C. In Process IV, TPD test was carried out from 150°C to 630°C. In 315


316 order to compare, a similar test without Process III was taken into consideration, which is also 317 shown in Fig. 13 (dashed line). The amount of NO_x being adsorbed at low temperature around 318 250°C decreased, even disappeared, and high temperature species were also reduced to some 319 extent, which directly proves that low temperature SCR proceeds between the adsorbed NH_3 320 species and the adsorbed NO species via Langmuir-Hinshelwood (L-H) mechanism.

321

Fig. 13 TPD profiles of NO adsorption over the Mn₃Mo_{1.25}/γ-Al₂O₃ catalyst, Process I: TPD
 from 25-150°C; Process II: N₂ purging for 60min; Process III: adsorbed NO reacted with
 NH₃; Process IV: TPD from 150°C-630°C

325 In this study, the addition of Mo was found to improve NH₃ adsorption capacity of the catalyst. 326 With the increase in Mo loadings, the amount of surface acid sites increased, which was vital to 327 SCR reaction. In Fig. 14, when in the presence of gas phase O₂, the adsorption peaks of NO and 328 NO₂ decreased. Therefore, it can be concluded that the addition of Mo could reduce NO adsorption 329 on the catalysts surface but did not result in a lower low temperature SCR activity. Instead, the 330 low temperature SCR efficiency of the Mn₃Mo_{1.25}/γ-Al₂O₃ was much higher than that of the Mn₃/γ-331 Al₂O₃ catalyst. Additionally, in Fig.12, Curve II showed a small desorption peak at 100° C as 332 compared with Curve III. This means that the NOx being desorbed reacted with the NH₃ that is 333 adsorbed on the catalyst when the temperature was raised. Therefore, it is illustrated that low 334 temperature SCR reaction could proceed via Eley-Rideal (E-R) path.



335 336

Fig. 14 Effect of O₂ on the NO adsorption over the Mn₃/γ-Al₂O₃ and Mn₃Mo_{1.25}/ γ-Al₂O₃ catalyst

338 It is clear that the Mn₃Mo_{1.25}/ γ -Al₂O₃ catalyst performed outstanding low temperature SCR activity 339 as a result of Mo addition. It can be concluded that the addition of Mo improves the properties of the catalysts in several aspects. Firstly, the addition of Mo species to the catalyst inhibits the 340 341 growth of MnO_x clusters, therefore leads to the good dispersion of MnO_x on the γ -Al₂O₃ surface. 342 Secondly, the addition of Mo enhances the formation of Mn₂O₃ on the catalyst, which accelerates 343 the formation of intermediates, whereafter the -NH₃ is transformed into -NH₂ via H-abstraction. 344 Thirdly, the addition of Mo on the catalysts mitigates the deactivation of the catalysts. In Fig. 13, 345 NO adsorbed species at HT-Peak region were very difficult to react with NH₃ at 150°C. The reason 346 is that these NO formed some complexes (bridged and bidentate nitrates) that are thermally stable. 347 However, the addition of Mo could inhibit the transformation of nitrites into nitrates thus slow down the self-deactivation of the catalysts. 348

Therefore, the low temperature SCR reaction is composed of 4 steps as shown in Fig. 15: Step 1, the adsorption of NH_3 and NO on the surface of the catalysts; Step 2, the H-abstraction of adsorbed NH_3 , resulting in the formation of $-NH_2$ species as well as the formation of reactive nitrites from the adsorbed NO species; Step3, the $-NH_2$ species reacted with nitrites or gas phase NO via L-H and E-R mechanism, forming intermediate products $-NH_2NO$, and Step4, $-NH_2NO$ decomposed into N_2 and H_2O .

355 356

357 **4. Conclusions**

358 In this study, the $Mn_3Mo_{1,25}/\gamma$ -Al₂O₃ catalyst achieved a high NO conversion of around 96% at 359 150 -300°C. It is found that the addition of Mo to Mn-based SCR catalyst could not only inhibit the growth of MnO_x bulks, favour the formation of Mn^{3+} state and promote the NH_3 adsorption 360 361 capacity of the catalyst, but also act as a moderator to adjust the effective operating temperature 362 window of the SCR reaction, which could be achieved by adjusting Mo loading. Moreover, the 363 addition of Mo was found to mitigate the deactivation of the catalysts. The study on SCR mechanism showed that the low temperature SCR starts from the adsorption of NH₃ on Mn³⁺ sites. 364 365 The low temperature SCR followed mainly E-R mechanism, but L-H mechanism also plays a role 366 to some extent.

367 Acknowledgements

368 National Key R&D Program of China(2017YFB0603202) is acknowledged for partially sponsored
369 this research. Authors 1 and 2 contributed equally to this work.

370 **Reference**

- [1] F. Cao, J. Xiang, S. Su, P. Wang, S. Hu, L. Sun, Ag modified Mn–Ce/γ-Al₂O₃ catalyst for selective catalytic
 reduction of NO with NH₃ at low-temperature, Fuel Processing Technology, 135 (2015) 66-72.
- [2] G. Busca, L. Lietti, G. Ramis, F. Berti, Chemical and mechanistic aspects of the selective catalytic
 reduction of NOx by ammonia over oxide catalysts: A review, Applied Catalysis B: Environmental, 18 (1998)
- 375 1-36.
- 376 [3] L. Sun, Q. Cao, B. Hu, J. Li, J. Hao, G. Jing, X. Tang, Synthesis, characterization and catalytic activities of
- vanadium-cryptomelane manganese oxides in low-temperature NO reduction with NH₃, Applied Catalysis
 A: General, 393 (2011) 323-330.
- [4] J.A. Dumesic, N.Y. Topsøe, H. Topsøe, Y. Chen, T. Slabiak, Kinetics of Selective Catalytic Reduction of
 Nitric Oxide by Ammonia over Vanadia/Titania, Journal of Catalysis, 163 (1996) 409-417.
- 381 [5] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, Mechanism of the Selective Catalytic Reduction of NO
- with NH3 over MnOx/Al2O3 I. Adsorption and Desorption of the Single Reaction Components, Journal ofCatalysis, 71 (1997) 208-218.
- [6] S. Niksa, A. Freeman Sibley, Predicting the Multipollutant Performance of Utility SCR Systems,
 Industrial & Engineering Chemistry Research, 49 (2010) 6332-6341.
- 386 [7] S.S.R. Putluru, L. Schill, A. Godiksen, R. Poreddy, S. Mossin, A.D. Jensen, R. Fehrmann, Promoted
- V₂O₅/TiO₂ catalysts for selective catalytic reduction of NO with NH₃ at low temperatures, Applied Catalysis
 B: Environmental, 183 (2016) 282-290.
- 389 [8] Q.-I. Chen, R.-t. Guo, Q.-s. Wang, W.-g. Pan, W.-h. Wang, N.-z. Yang, C.-z. Lu, S.-x. Wang, The catalytic
- performance of Mn/TiWOx catalyst for selective catalytic reduction of NOx with NH₃, Fuel, 181 (2016)
 852-858.
- 392 [9] W. Sjoerd Kijlstra, M. Biervliet, E.K. Poels, A. Bliek, Deactivation by SO₂ of MnOx/Al₂O₃ catalysts used
- 393 for the selective catalytic reduction of NO with NH_3 at low temperatures, Applied Catalysis B: 394 Environmental, 16 (1998) 327-337.
- 395 [10] S.S.R. Putluru, L. Schill, A.D. Jensen, B. Siret, F. Tabaries, R. Fehrmann, Mn/TiO₂ and Mn–Fe/TiO₂
- catalysts synthesized by deposition precipitation—promising for selective catalytic reduction of NO with
 NH₃ at low temperatures, Applied Catalysis B: Environmental, 165 (2015) 628-635.
- 398 [11] H. Zhao, X. Mu, C. Zheng, S. Liu, Y. Zhu, X. Gao, T. Wu, Structural defects in 2D MoS₂ nanosheets and
- their roles in the adsorption of airborne elemental mercury, Journal of Hazardous Materials, 366 (2019)240-249.
- 401 [12] W.S. Kijlstra, D.S. Brands, E.K. Poels, A. Bliek, Mechanism of the Selective Catalytic Reduction of NO
 402 by NH₃ over MnOx/Al₂O₃ I. Adsorption and Desorption of the Single Reaction Journal of Catalysis, 171
 403 (1997) 208-218.
- 406 [14] F. Kapteijn, L. Singoredjo, A. Andreini, J.A. Moulijn, Activity and selectivity of pure manganese oxides
 407 in the selective catalytic reduction of nitric oxide with ammonia, Applied Catalysis B: Environmental, 3
 408 (1994) 173-189.
- 408 (1994) 173-189.
 409 [15] J. Zhu, A. Thomas, Perovskite-type mixed oxides as catalytic material for NO removal, Applied
 410 Catalysis B: Environmental, 92 (2009) 225-233.
- 410 Catalysis B. Environmental, 92 (2009) 223-255. 411 [16] C. Fang, D. Zhang, S. Cai, L. Zhang, L. Huang, H. Li, P. Maitarad, L. Shi, R. Gao, J. Zhang, Low-
- 411 [10] C. Fang, D. Zhang, S. Cal, E. Zhang, E. Huang, H. El, F. Matarau, E. Shi, K. Gao, J. Zhang, Low
 412 temperature selective catalytic reduction of NO with NH₃ over nanoflaky MnOx on carbon nanotubes in
 413 situ prepared via a chemical bath deposition route, Nanoscale, 5 (2013) 9199-9207.
- 414 [17] L. Yan, Y. Liu, K. Zha, H. Li, L. Shi, D. Zhang, Scale–Activity Relationship of MnOx-FeOy Nanocage 415 Catalysts Derived from Prussian Blue Analogues for Low-Temperature NO Reduction: Experimental and
- 415 Catalysts Derived from Prussian Blue Analogues for Low-Temperature
 416 DFT Studies, ACS Applied Materials & Interfaces, 9 (2017) 2581-2593.
- [18] K. Zha, L. Kang, C. Feng, L. Han, H. Li, T. Yan, P. Maitarad, L. Shi, D. Zhang, Improved NOx reduction in
 the presence of alkali metals by using hollandite Mn–Ti oxide promoted Cu-SAPO-34 catalysts,
 Environmental Science: Nano, 5 (2018) 1408-1419.
- 420 [19] C. Li, X. Tang, H. Yi, L. Wang, X. Cui, C. Chu, J. Li, R. Zhang, Q. Yu, Rational design of template-free
- 421 MnOx-CeO₂ hollow nanotube as de-NOx catalyst at low temperature, Applied Surface Science, 428 (2018)
- 422 924-932.

- 423 [20] X. Hu, L. Huang, J. Zhang, H. Li, K. Zha, L. Shi, D. Zhang, Facile and template-free fabrication of 424 mesoporous 3D nanosphere-like Mn_xCo_{3-x}O₄ as highly effective catalysts for low temperature SCR of NOx
- 425 with NH₃, Journal of Materials Chemistry A, 6 (2018) 2952-2963.
- 426 [21] K. Zha, S. Cai, H. Hu, H. Li, T. Yan, L. Shi, D. Zhang, In Situ DRIFTs Investigation of Promotional Effects 427 of Tungsten on MnOx-CeO₂/meso-TiO₂ Catalysts for NOx Reduction, The Journal of Physical Chemistry C, 428 121 (2017) 25243-25254.
- 429 [22] L. Huang, X. Hu, S. Yuan, H. Li, T. Yan, L. Shi, D. Zhang, Photocatalytic preparation of nanostructured
- 430 MnO₂-(Co₃O₄)/TiO₂ hybrids: The formation mechanism and catalytic application in SCR deNOx reaction, 431 Applied Catalysis B: Environmental, 203 (2017) 778-788.
- 432 [23] R. Jin, Y. Liu, Z. Wu, H. Wang, T. Gu, Low-temperature selective catalytic reduction of NO with NH₃
- 433 over Mn-Ce oxides supported on TiO₂ and Al₂O₃: a comparative study, Chemosphere, 78 (2010) 1160-1166.
- 434 [24] G. Qi, R.T. Yang, Low-temperature selective catalytic reduction of NO with NH₃ over iron and 435 manganese oxides supported on titania, Applied Catalysis B: Environmental, 44 (2003) 217-225.
- 436 [25] N.-z. Yang, R.-t. Guo, W.-g. Pan, Q.-I. Chen, Q.-s. Wang, C.-z. Lu, The promotion effect of Sb on the Na 437 resistance of Mn/TiO₂ catalyst for selective catalytic reduction of NO with NH₃, Fuel, 169 (2016) 87-92.
- 438 [26] L. Liu, C. Zheng, J. Wang, Y. Zhang, X. Gao, K. Cen, NO Adsorption and Oxidation on Mn Doped CeO₂ 439 (111) Surfaces: A DFT+ U Study, Aerosol and Air Quality Research, 18 (2018) 1080-1088+ ap1081.
- 440 [27] H. Zhao, X. Mu, G. Yang, M. George, P. Cao, B. Fanady, S. Rong, X. Gao, T. Wu, Graphene-like MoS₂ 441
- containing adsorbents for Hg⁰ capture at coal-fired power plants, Applied Energy, (2017).
- 442 [28] F. Cao, S. Su, J. Xiang, P. Wang, S. Hu, L. Sun, A. Zhang, The activity and mechanism study of Fe-Mn-443 Ce/y-Al₂O₃ catalyst for low temperature selective catalytic reduction of NO with NH₃, Fuel, 139 (2015) 444 232-239.
- 445 [29] L. Chen, J. Li, M. Ge, DRIFT Study on Cerium- Tungsten/Titiania Catalyst for Selective Catalytic 446 Reduction of NOx with NH₃, Environmental science & technology, 44 (2010) 9590-9596.
- 447 [30] S. Zhang, B. Zhang, B. Liu, S. Sun, A review of Mn-containing oxide catalysts for low temperature 448 selective catalytic reduction of NOx with NH₃: reaction mechanism and catalyst deactivation, RSC 449 Advances, 7 (2017) 26226-26242.
- 450 [31] H. Zhao, X. Luo, J. He, C. Peng, T. Wu, Recovery of elemental sulphur via selective catalytic reduction 451 of SO₂ over sulphided CoMo/γ-Al₂O₃ catalysts, Fuel, 147 (2015) 67-75.
- 452 [32] H. Zhao, G. Yang, X. Gao, C. Pang, S.W. Kingman, T. Wu, Hg0 capture over CoMoS/γ-Al₂O₃ with MoS₂ 453 nanosheets at low temperatures, Environmental Science & Technology, (2015).
- 454 [33] C. Zhou, X. Liu, C. Wu, Y. Wen, Y. Xue, R. Chen, Z. Zhang, B. Shan, H. Yin, W.G. Wang, NO oxidation
- 455 catalysis on copper doped hexagonal phase LaCoO3: a combined experimental and theoretical study, 456 Physical Chemistry Chemical Physics, 16 (2014) 5106-5112.
- 457 [34] Q. Yan, S. Chen, C. Zhang, Q. Wang, B. Louis, Synthesis and catalytic performance of Cu1Mn0.5Ti0.5Ox
- 458 mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2 resistance, Applied Catalysis B: 459 Environmental, 238 (2018) 236-247.
- 460 [35] Z. Liu, J. Zhu, S. Zhang, L. Ma, S.I. Woo, Selective catalytic reduction of NOx by NH3 over MoO3-461 promoted CeO2/TiO2 catalyst, Catalysis Communications, 46 (2014) 90-93.
- 462 [36] B. Shen, X. Zhang, H. Ma, Y. Yao, T. Liu, A comparative study of Mn/CeO2, Mn/ZrO2 and Mn/Ce-ZrO2
- 463 for low temperature selective catalytic reduction of NO with NH3 in the presence of SO2 and H2O, Journal 464 of Environmental Sciences, 25 (2013) 791-800.
- 465 [37] P. Gong, J. Xie, D. Fang, D. Han, F. He, F. Li, K. Qi, Effects of surface physicochemical properties on 466 NH₃-SCR activity of MnO₂ catalysts with different crystal structures, Chinese Journal of Catalysis, 38 (2017) 467 1925-1934.
- 468 [38] J. Xiang, L. Wang, F. Cao, K. Qian, S. Su, S. Hu, Y. Wang, L. Liu, Adsorption properties of NO and NH₃ 469 over MnOx based catalyst supported on γ -Al₂O₃, Chemical Engineering Journal, 302 (2016) 570-576.
- 470 [39] L. Cheng, Y. Men, J. Wang, H. Wang, W. An, Y. Wang, Z. Duan, J. Liu, Crystal facet-dependent reactivity
- 471 of α -Mn₂O₃ microcrystalline catalyst for soot combustion, Applied Catalysis B: Environmental, 204 (2017) 472 374-384.
- 473 [40] H.-L. Koh, H.-K. Park, Characterization of MoO₃–V₂O₅/Al₂O₃ catalysts for selective catalytic reduction
- 474 of NO by NH₃, Journal of Industrial and Engineering Chemistry, 19 (2013) 73-79.

- 475 [41] O.A. Bulavchenko, T.N. Afonasenko, P.G. Tsyrul'nikov, S.V. Tsybulya, Effect of heat treatment 476 conditions on the structure and catalytic properties of MnOx/Al₂O₃ in the reaction of CO oxidation,
- 477 Applied Catalysis A: General, 459 (2013) 73-80.
- 478 [42] K. Li, R. Wang, J. Chen, Hydrodeoxygenation of anisole over silica-supported Ni₂P, MoP, and NiMoP 479 catalysts, Energy & Fuels, 25 (2011) 854-863.
- 480 [43] D. Fang, J. Xie, H. Hu, H. Yang, F. He, Z. Fu, Identification of MnOx species and Mn valence states in
- 481 MnOx/TiO₂ catalysts for low temperature SCR, Chemical Engineering Journal, 271 (2015) 23-30.
- [44] L. Ma, Y. Cheng, G. Cavataio, R.W. McCabe, L. Fu, J. Li, In situ DRIFTS and temperature-programmed
 technology study on NH₃-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts, Applied Catalysis B:
 Environmental, 156-157 (2014) 428-437.
- 485 [45] W.S. Kijlstra, D.S. Brands, H.I. Smit, E.K. Poels, A. Bliek, Mechanism of the Selective Catalytic Reduction
- of NO with NH₃ over MnOx/Al₂O₃ II. Reactivity of Adorbed NH₃ and NO Complexes, Journal of Catalysis,
 171 (1997) 219-230.
- [46] Z. Liu, S. Zhang, J. Li, L. Ma, Promoting effect of MoO₃ on the NOx reduction by NH₃ over CeO₂/TiO₂
 catalyst studied with in situ DRIFTS, Applied Catalysis B: Environmental, 144 (2014) 90-95.
- 490 [47] G. Marbán, T. Valdés-Solís, A.B. Fuertes, Mechanism of low-temperature selective catalytic reduction
- $491 \qquad \text{of NO with NH}_3 \text{ over carbon-supported Mn}_3\text{O}_4\text{: Role of surface NH}_3 \text{ species: SCR mechanism, Journal of } \\$
- 492 Catalysis, 226 (2004) 138-155.
- 493 [48] G. Marban, T. Valdes-Solis, A.B. Fuertes, Mechanism of low temperature selective catalytic reduction
- of NO with NH₃ over carbon-supported Mn_3O_4 Active phase and role of surface NO species, Physical AO5 Chamistan Chamised Physical (2004) 452, 464
- 495 Chemistry Chemical Physics, 6 (2004) 453-464.
- 496