
Comparison of yield-vertex tangential loading and principal stress 

rotational loading 

Nan Lua, Yunming Yangb,*, Hai-Sui Yuc 

a Department of Civil Engineering, International Doctoral Innovation Centre, University of 

Nottingham Ningbo China, Ningbo 315100, PR China 

b Ningbo Nottingham New Materials Institute, University of Nottingham Ningbo China, Ningbo 315100, 

PR China 

c School of Civil Engineering, University of Leeds, Leeds LS2 9JT, UK 

* Corresponding to: ming.yang@nottingham.edu.cn (Yunming Yang) 

 

Abstract  

The yield-vertex tangential loading theory is a constitutive approach that accounts for the plastic 

straining induced by the part of a stress rate directed tangential to the yield surface. One of the 

important applications of this theory is in the study of geotechnical problems involving significant 

rotation of principal stress directions. However, it is inaccurate to simply regard the tangential loading 

as an equivalence to the principal stress rotation. For future reference, this paper presents an 

investigation into the difference between the tangential loading theory and a true purely principal stress 

rotational loading theory. Mathematical derivation shows that the tangential stress rate includes the 

rotational stress rate and an additional coaxial term that is associated with the variation of the Lode 

angle. Numerical applications of these two theories indicate that in shear dominated problems, such as 

simple shear, the two theories are almost identical and interchangeable, but in non-shear dominated 

circumstances, such as footing, the tangential loading theory produces considerably softer results than 

the rotational loading theory.  
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1. Introduction 

The yield-vertex tangential loading (TL) theory, firstly introduced by Rudnicki and Rice (1975), is a 

complementary framework to the conventional plasticity theory. It assumes that, in addition to the 

plastic loading along the ‘straight ahead’ stressing, the part of a stress rate directed tangential to the 

yield surface also induces plastic straining. This theory has strong influences on the predicted stress-

strain responses of soil and is found to be of importance in some geotechnical applications such as 

bifurcation (Yatomi et al., 1989, Papamichos and Vardoulakis, 1995). Extensive investigations, 

implementations, and some pertinent improvements regarding this theory can be found in the literature 

(Hashiguchi and Tsutsumi, 2001, Yang and Yu, 2006, Qian et al., 2008). In particular, it has been 

successfully applied to consider the responses of soil subjected to principal stress rotational loading 

(RL) (e.g. Tsutsumi and Hashiguchi (2005)), which refers to the condition of continuously rotated 

principal stress axes but fixed principal stress magnitudes.  

However, the TL theory is not designated solely for the study of RL. It can also be triggered by a 

circular stress path in the π-plane with centre at the origin, which is characterised by a continuous 

change of principal stress magnitudes but fixed principal stress directions. Given that the rotation of 

principal stress directions is of great academic and practical importance, experimental and numerical 

studies where principal stress axes rotated with other parameters remaining constant have drawn 

serious attention in the last three decades (Miura et al., 1986, Tong et al., 2010, Qian et al., 2017, Li 

and Dafalias, 2004, Tian and Yao, 2018, Li and Yu, 2010). In the literature, there exists a technique of 

mailto:ming.yang@nottingham.edu.cn


isolating the part of a stress rate that is responsible for the rotation of principal stress directions (see for 

example Yu and Yuan (2006), Yang and Yu (2013) and Yuan et al. (2018)). Computation shows that 

the inclusion of the plastic loading associated with this rotational stress rate significantly improves the 

accuracy of numerical prediction (Yang and Yu, 2013).  

Considering that the TL theory has been frequently used in geotechnical applications involving 

significant principal stress rotation, its difference from the true purely principal stress RL should be 

investigated. Thus, this paper presents a comparative analysis between the TL and RL theories. Their 

mathematical differences are discussed, and their performances in the simple shear and strip footing 

problems are compared.  

 

2. Tangential loading and rotational loading 

Within the elastoplasticity framework, the total strain rate is decomposed into 

𝜀�̇�𝑗 = 𝜀�̇�𝑗
𝑒 + 𝜀�̇�𝑗

𝑝
         (1) 

where the superscripts 𝑒 and 𝑝 denote elastic and plastic components, respectively. The elastic relation 

is assumed to be isotropic, which gives 

�̇�𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙𝜀�̇�𝑙
𝑒          (2) 

where  

𝐸𝑖𝑗𝑘𝑙 = 𝐾𝛿𝑖𝑗𝛿𝑘𝑙 + 𝐺(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 −
2

3
𝛿𝑖𝑗𝛿𝑘𝑙)     (3) 

with 𝛿𝑖𝑗  being the Kronecker delta, and 𝐾 and 𝐺 the elastic bulk and shear moduli, respectively. To 

facilitate later presentation, the plastic strain rate 𝜀�̇�𝑗
𝑝

 is further decomposed into two components. The 

first component, denoted by 𝜀�̇�𝑗
𝑝𝑐

, is associated with the conventional plasticity theory (superscript 𝑐), 

characterized with a modified Drucker-Prager yield surface given as 

𝑓 = √(𝑎 sin𝜙)2 + 𝜏2 − 𝑝 sin𝜙 − 𝑐 cos𝜙      (4) 

where 𝜏 = √(𝑠𝑖𝑗𝑠𝑖𝑗) 2⁄  and 𝑠𝑖𝑗  is the deviatoric stress tensor; 𝑝 is the mean normal stress; 𝑐 is the soil 

cohesion and 𝜙  is the friction angle. Both 𝑐  and 𝜙  are constant in this work, utilizing a perfect 

plasticity framework. The term (𝑎 sin 𝜙)2 inside the radical sign represents a hyperbolic approximation 

in the meridional (constant Lode angle) plane. When 𝑎 ≤ 0.5𝑐 ∙ cot 𝜙, Eq(4) closely represents the 

original Drucker-Prager yield surface. The plastic potential is then obtained by replacing the friction 

angle 𝜙 with a dilatation angle 𝜓 in Eq(4).  

The second component of 𝜀�̇�𝑗
𝑝

, is either 𝜀�̇�𝑗
𝑝𝑡

 when the TL mechanism is used, or 𝜀�̇�𝑗
𝑝𝑟

 when the RL 

mechanism is used. The meanings of superscripts 𝑡 and 𝑟 are self-evident. The development of 𝜀�̇�𝑗
𝑝𝑡

 and 

𝜀�̇�𝑗
𝑝𝑟

 is addressed in the following. 

2.1. TL model  

Rudnicki and Rice (1975) proposed that the tangential plastic strain rate 𝜀�̇�𝑗
𝑝𝑡

 is given by 

𝜀�̇�𝑗
𝑝𝑡

=
1

ℎ
�̇�𝑖𝑗

𝑡          (5) 

where ℎ is a plastic modulus governing the additional loading mechanism; and �̇�𝑖𝑗
𝑡  is the part of �̇�𝑖𝑗  

directed tangential to the yield surface, defined as 

�̇�𝑖𝑗
𝑡 = �̇�𝑖𝑗 −

𝑠𝑖𝑗𝑠𝑘𝑙

2𝜏2 �̇�𝑘𝑙 = 𝑁𝑖𝑗𝑘𝑙
𝑡 �̇�𝑘𝑙        (6) 

where  

𝑁𝑖𝑗𝑘𝑙
𝑡 =

1

2
(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘 −

2

3
𝛿𝑖𝑗𝛿𝑘𝑙 −

𝑠𝑖𝑗𝑠𝑘𝑙

𝜏2 )      (7)  



Substituting Eq(6) into Eq(5), one has  

𝜀�̇�𝑗
𝑝𝑡

=
1

ℎ
𝑁𝑖𝑗𝑘𝑙

𝑡 �̇�𝑘𝑙          (8)  

The fourth-order tensor 𝑁𝑖𝑗𝑘𝑙
𝑡  is known as the deviatoric tangential projection as it projects an arbitrary 

second-order tensor into its deviatoric part tangential to the yield surface (Hashiguchi, 2014). In Fig 

1(a), a schematic illustration of the tangential plastic strain rate is shown. It should be emphasized that 

the principal (deviatoric) stress presentation in Fig 1(a) illustrates only part of the TL mechanism since 

Eqs(5~8) are defined in the general stress space.  

Using Eq(8), the overall elastoplastic stress rate-strain rate relation becomes 

�̇�𝑖𝑗 = [𝐸𝑖𝑗𝑘𝑙 −
(𝐸𝑖𝑗𝑎𝑏𝑅𝑎𝑏)(𝑙𝑐𝑑𝐸𝑐𝑑𝑘𝑙)

(𝐾𝑝+𝑙𝑚𝑛𝐸𝑚𝑛𝑠𝑡𝑅𝑠𝑡)
−

4𝐺2

ℎ+2𝐺
𝑁𝑖𝑗𝑘𝑙

𝑡 ]𝜀�̇�𝑙      (9) 

where 𝑙𝑖𝑗 and 𝑅𝑖𝑗  are the normals to the yield and plastic potential surfaces, respectively; 𝐾𝑝  is the 

plastic modulus governing the conventional plastic loading and is zero in this paper as a result of the 

perfect plasticity setting.  

2.2. RL model 

For the purpose of comparison, the rotational plastic strain rate 𝜀�̇�𝑗
𝑝𝑟

 is given similar to Eq(5), written as  

𝜀�̇�𝑗
𝑝𝑟

=
1

ℎ
�̇�𝑖𝑗

𝑟          (10) 

where ℎ is the same parameter as in Eq(5); �̇�𝑖𝑗
𝑟  is the part of �̇�𝑖𝑗 that triggers the RL at fixed principal 

stress magnitudes. This rotational rate �̇�𝑖𝑗
𝑟  is taken as purely deviatoric since the RL occurs at constant 

mean normal stress 𝑝. It is firstly assumed that the direction of 𝜎𝑧 is fixed such that the RL takes place 

in the plane of (
σ𝑥−σ𝑦

2
, 𝜏𝑥𝑦) shown in Fig 1(b). Then, the �̇�𝑖𝑗

𝑟  must satisfy the following condition 

[
(�̇�𝑥

𝑟 − �̇�𝑦
𝑟) 2⁄

�̇�𝑥𝑦
𝑟 ] = [

(�̇�𝑥 − �̇�𝑦) 2⁄

�̇�𝑥𝑦
] −

1

4
(𝜎𝑥−𝜎𝑦)(�̇�𝑥−�̇�𝑦)+𝜏𝑥𝑦�̇�𝑥𝑦

1

4
(𝜎𝑥−𝜎𝑦)2+𝜏𝑥𝑦

2
[
(𝜎𝑥 − 𝜎𝑦) 2⁄

𝜏𝑥𝑦
]  (11) 

Using Eq(11) and noting that �̇�𝑥
𝑟 + �̇�𝑦

𝑟 = 0, the following expression for the components of �̇�𝑖𝑗
𝑟  is 

obtained 

[

�̇�𝑥
𝑟

�̇�𝑦
𝑟

�̇�𝑥𝑦
𝑟

] =

[
 
 
 
 

1

2
sin22𝛼𝜎 −

1

2
sin22𝛼𝜎 −cos 2𝛼𝜎 sin 2𝛼𝜎

−
1

2
sin22𝛼𝜎

1

2
sin22𝛼𝜎 cos 2𝛼𝜎 sin 2𝛼𝜎

−
1

2
cos 2𝛼𝜎 sin 2𝛼𝜎

1

2
cos 2𝛼𝜎 sin 2𝛼𝜎 cos22𝛼𝜎 ]

 
 
 
 

[

�̇�𝑥

�̇�𝑦

�̇�𝑥𝑦

]   (12) 

where 𝛼𝜎 is the direction of major principal stress with reference to the 𝑦-axis. Geometrical relation in 

Fig 1(b) indicates that sin 2𝛼𝜎 =
𝜏𝑥𝑦

√(𝜎𝑥−𝜎𝑦)2 4⁄ +𝜏𝑥𝑦
2

 and cos 2𝛼𝜎 =
(𝜎𝑥−𝜎𝑦) 2⁄

√(𝜎𝑥−𝜎𝑦)2 4⁄ +𝜏𝑥𝑦
2

. In the same way, the 

rotational stress rates in the planes of (
σ𝑦−σ𝑧

2
, 𝜏𝑦𝑧) and of (

σ𝑧−σ𝑥

2
, 𝜏𝑧𝑥) can also be obtained. Combining 

them altogether, a tensor expression for �̇�𝑖𝑗
𝑟  can be written as 

�̇�𝑖𝑗
𝑟 = 𝑁𝑖𝑗𝑘𝑙

𝑟 �̇�𝑘𝑙         (13) 

For detailed expression of the fourth-order tensor 𝑁𝑖𝑗𝑘𝑙
𝑟 , readers are referred to Yang and Yu (2013). 

Compared with the 𝑁𝑖𝑗𝑘𝑙
𝑡  in Eq(6), it is found that the role of 𝑁𝑖𝑗𝑘𝑙

𝑟  is to project an arbitrary second-

order tensor to its deviatoric part directed along the direction of principal stress rotation. In this sense, it 

can be called the deviatoric rotational projection. By substituting Eq(13) into Eq(10), one has 

𝜀�̇�𝑗
𝑝𝑟

=
1

ℎ
𝑁𝑖𝑗𝑘𝑙

𝑟 �̇�𝑘𝑙         (14) 

Obviously, Eq(14) is a counterpart to Eq(8) when the RL mechanism is used. Finally, the overall 

elastoplastic stress rate-strain rate relation in the RL model is given by  



�̇�𝑖𝑗 = [𝐸𝑖𝑗𝑘𝑙 −
(𝐸𝑖𝑗𝑎𝑏𝑅𝑎𝑏)(𝑙𝑐𝑑𝐸𝑐𝑑𝑘𝑙)

(𝐾𝑝+𝑙𝑚𝑛𝐸𝑚𝑛𝑠𝑡𝑅𝑠𝑡)
−

4𝐺2

ℎ+2𝐺
𝑁𝑖𝑗𝑘𝑙

𝑟 ]𝜀�̇�𝑙     (15) 

Inspection of the foregoing equations indicates that the TL and RL models in this paper are constructed 

in a very similar way to serve the purpose of comparison. The only difference between the two sets of 

model formulations is associated with the difference between 𝑁𝑖𝑗𝑘𝑙
𝑡  and 𝑁𝑖𝑗𝑘𝑙

𝑟  . 

It should be noted that the presentation given here implies circular yield surfaces in the π-plane and in 

the plane of (
σ𝑥−σ𝑦

2
, 𝜏𝑥𝑦) or any other relevant planes. Nevertheless, non-circular shapes can be easily 

accounted for along the line of Hashiguchi and Tsutsumi (2001).  

2.3. Comparison of TL and RL 

Yu (2006) commented that, under two-dimensional plane strain conditions, the tangential stress rate �̇�𝑖𝑗
𝑡  

will downgrade to the rotational stress rate �̇�𝑖𝑗
𝑟  using the definition of 𝑠𝑥 =

σ𝑥−σ𝑦

2
, 𝑠𝑦 =

σ𝑦−σ𝑥

2
, 𝑠𝑥𝑦 =

𝜏𝑥𝑦 and τ = √(𝜎𝑥 − 𝜎𝑦)2 4⁄ + 𝜏𝑥𝑦
2 . However, under general three-dimensional conditions, they are not 

identical.  

Noting the deviatoric nature of �̇�𝑖𝑗
𝑟  and 𝑁𝑖𝑗𝑘𝑙

𝑟 , Eq(13) can be reformulated as �̇�𝑖𝑗
𝑟 = �̇�𝑖𝑗

𝑟 = 𝑁𝑖𝑗𝑘𝑙
𝑟 (�̇�𝑘𝑙 +

1

3
�̇�𝑚𝑚𝛿𝑘𝑙) = 𝑁𝑖𝑗𝑘𝑙

𝑟 �̇�𝑘𝑙 . Thus, the deviatoric stress rate �̇�𝑖𝑗 can be decomposed into 

�̇�𝑖𝑗 = �̇�𝑖𝑗
𝑟 + (I𝑖𝑗𝑘𝑙 − 𝑁𝑖𝑗𝑘𝑙

𝑟 )�̇�𝑘𝑙        (16) 

where I𝑖𝑗𝑘𝑙 is the fourth-order identity tensor. Substituting Eq(16) into Eq(6), and noting that 𝑠𝑘𝑙 �̇�𝑘𝑙
𝑟 = 0, 

the tangential stress rate �̇�𝑖𝑗
𝑡  becomes 

�̇�𝑖𝑗
𝑡 = �̇�𝑖𝑗

𝑟 + (I𝑖𝑗𝑚𝑛 − 𝑁𝑖𝑗𝑚𝑛
𝑟 )�̇�𝑚𝑛 −

𝑠𝑖𝑗𝑠𝑘𝑙

2𝜏2
(I𝑘𝑙𝑠𝑡 − 𝑁𝑘𝑙𝑠𝑡

𝑟 )�̇�𝑠𝑡    (17) 

In the above equation, the terms (I𝑖𝑗𝑚𝑛 − 𝑁𝑖𝑗𝑚𝑛
𝑟 )�̇�𝑚𝑛 −

𝑠𝑖𝑗𝑠𝑘𝑙

2𝜏2
(I𝑘𝑙𝑠𝑡 − 𝑁𝑘𝑙𝑠𝑡

𝑟 )�̇�𝑠𝑡 are of the same form as 

the middle expression of Eq(6) with the substitution of (I𝑖𝑗𝑚𝑛 − 𝑁𝑖𝑗𝑚𝑛
𝑟 )�̇�𝑚𝑛 for �̇�𝑖𝑗 . Therefore, Eq(17) 

can be further written as 

�̇�𝑖𝑗
𝑡 = �̇�𝑖𝑗

𝑟 + 𝑁𝑖𝑗𝑚𝑛
𝑡 (I𝑚𝑛𝑘𝑙 − 𝑁𝑚𝑛𝑘𝑙

𝑟 )�̇�𝑘𝑙       (18) 

This expression indicates that the tangential stress rate �̇�𝑖𝑗
𝑡  includes the rotational stress rate �̇�𝑖𝑗

𝑟  and an 

additional term 𝑁𝑖𝑗𝑚𝑛
𝑡 (I𝑚𝑛𝑘𝑙 − 𝑁𝑚𝑛𝑘𝑙

𝑟 )�̇�𝑘𝑙 . To clarify the meaning of this additional term, consider 

again the simple case where the direction of 𝜎𝑧 is fixed. In this case, (I𝑚𝑛𝑘𝑙 − 𝑁𝑚𝑛𝑘𝑙
𝑟 )�̇�𝑘𝑙  represents the 

part of �̇�𝑘𝑙  directed along the principal stress directions, i.e. the coaxial part. Recalling the tangential 

projecting effect of 𝑁𝑖𝑗𝑚𝑛
𝑡 , the additional term in Eq(18) is therefore coaxial as well as tangential to the 

yield surface in the π-plane. In other words, it represents a stress rate that is associated with the 

variation of the Lode angle θ at fixed 𝑝, 𝜏 and principal stress directions. Referring back to Fig 1, it can 

be concluded that whilst the RL mechanism is succinctly illustrated in Fig 1(b), the TL mechanism 

actually includes both conditions illustrated in Figs 1(a) and 1(b).  

 

3. Numerical simulations 

 

3.1. Numerical implementation 

The constitutive models presented above are implemented into ABAQUS finite element software as 

user-defined material subroutines. The integration of soil models can be conducted by using explicit 

and implicit schemes, and each of them has its characteristics (Sloan, 1987, Abbo, 1997, Yang et al., 

2011, Rezania et al., 2014). For the yield vertex TL model and principal stress RL model, the explicit 

scheme has been employed throughout to integrate them by the authors, and it proves to be an effective 

integration scheme (Yang and Yu, 2006, Yang and Yu, 2010, Yang et al., 2011, Yang and Yu, 2013). It 

is characterized with automatic substepping and error control, leading to robustness and unconditional 

convergence. For example, it takes as few as two steps to simulate the entire load-displacement 



response by using this explicit scheme (Yang and Yu, 2010). Therefore, this explicit scheme is 

employed to integrate these two models in the paper. While reference can be made to Yang and Yu 

(2006) and Yang and Yu (2010) for detailed description of the explicit integration, a brief introduction 

is given below.  

For a given strain increment Δεn at step n, the constitutive equations are firstly integrated over Δεn 

using the first-order Euler scheme to obtain the stress increment Δσ1, followed by using the second-

order modified Euler scheme to obtain the stress increment Δσ2. A local truncation error Rn is 

determined by the difference between the results of the two schemes. If Rn is larger than a prescribed 

tolerance STOL, the computation restarts with a smaller increment size qΔεn where 

q=max[0.9√𝑆𝑇𝑂𝐿/𝑅𝑛 ,0.1]. If Rn is smaller than STOL, the stress state is updated to 𝜎𝑛 = 𝜎𝑛−1 +

(∆𝜎1 + ∆𝜎2)/2  and the size of the next increment is determined as Δεn+1=qΔεn where 

q=min[0.9√𝑆𝑇𝑂𝐿/𝑅𝑛 ,1.1]. Thus, the algorithm automatically divides the applied strain increment 

according to the prescribed error tolerance. The foregoing procedure repeats until all strain increments 

are applied. In addition, the algorithm also considers the yield surface intersection, the occurrence of 

negative loading index and the yield surface drift correction. Further details can be found in Sloan 

(1987) and Abbo (1997). 

In the following sections, analyses of the simple shear and strip footing problems are carried out to 

assess the models’ performances. The soil used has an elastic modulus 𝐸=10000 kPa, a Poisson’s ratio 

𝜈=0.3 and an initial static lateral earth pressure coefficient 𝐾0=0.5. The soil cohesion 𝑐 is set to 1 kPa, 

and the friction angle 𝜙 and dilation angle 𝜓 are both 30o. The associated flow rule is selected in order 

to avoid possible numerical problems in the strip footing analysis.  

3.2. Simple shear 

A soil element undergoing drained simple shear deformation is considered. A constant vertical stress 

𝜎𝑦=100 kPa is applied throughout the shearing. Fig 2 presents the normalized shear stress-shear strain 

responses using the TL and RL models with different values of ℎ/𝐺. The prediction by the Drucker-

Prager model is also shown for reference. Fig 3 presents a comparison of the magnitudes of the 

tangential and rotational plastic strain rates 𝜀�̇�𝑗
𝑝𝑡

 and 𝜀�̇�𝑗
𝑝𝑟

, normalized by the magnitude of the 

conventional plastic strain rate 𝜀�̇�𝑗
𝑝𝑐

. These figures indicate that, compared with the Drucker-Prager 

model, the inclusion of either the TL or RL mechanism softens the soil responses. Nevertheless, the 

difference between the TL and RL model predictions is almost negligible. With a smaller ℎ/𝐺, this 

difference becomes larger, and it can be seen that the TL model produces slightly more plastic strain 

and a softer stress-strain relation than the RL model.  

To give a better quantitative comparison, the variations of the Lode angle θ and the angle 2𝛼𝜎 during 

simple shearing are shown in Fig 4. For the convenience of comparison, θ is defined to range between 

0o and 60o with 0o standing for triaxial compression and 60o triaxial extension. The reason for 

comparing θ with 2𝛼𝜎 instead of with 𝛼𝜎 is because the principal stress rotation is signalled by varying 

2𝛼𝜎, not 𝛼𝜎, over the range of 360o (see Fig 1(b)). The impact of RL is triggered by the variation of 

2𝛼𝜎, whilst the impact of TL is triggered by the variations of both 2𝛼𝜎 and θ. It is shown in Fig 4 that, 

in the simple shear, the rotation of principal stress directions is predominant over the variation of the 

Lode angle, making the difference between �̇�𝑖𝑗
𝑡  and �̇�𝑖𝑗

𝑟  very small. In addition, it is interesting to note 

that the curve of 2𝛼𝜎 predicted by the RL model coincides with that by the TL model, however, the 

curve of θ predicted by the RL model coincides with that by the Drucker-Prager model. This 

discrepancy is another indication to the different loading patterns in the RL and TL mechanisms.  

In Fig 5, the deviation of the direction of major principal plastic strain rate 𝛼�̇�𝑝 from that of the stress 

𝛼𝜎 is shown to assess the models’ capability in reproducing non-coaxiality. Given the fact that slightly 

more plastic strain is induced by the tangential stress rate �̇�𝑖𝑗
𝑡 , it is less non-coaxial than the rotational 

stress rate �̇�𝑖𝑗
𝑟  owing to the coaxial term in �̇�𝑖𝑗

𝑡 , as discussed after Eq(18). Nevertheless, this difference is 

again almost negligible in the simple shear. 

3.3. Strip footing 



To further demonstrate the difference between the TL and RL theories, a rigid, rough and strip footing 

resting on weightless soil is analysed in this section. The finite element mesh is shown in Fig 6. A 

surcharge load of q=100 kPa is applied on the top of the domain, and a prescribed vertical downward 

displacement is applied to the nodes immediately underneath the footing. 

Fig 7 presents the computed footing load-displacement curves using the Drucker-Prager, TL and RL 

models. Two values of ℎ/𝐺=0.5 and 0.2 are used. These two values of ℎ have already been used in the 

simple shear analysis (see Fig 2), but the results are almost identical between the TL and RL model 

predictions. However, in the strip footing problem, a significant difference is observed, with the TL 

model predictions being considerably softer than those by the RL model. This is obviously due to the 

different loading patterns in the simple shear and strip footing. The former is a simple monotonic type 

of loading predominated by the change of shear stress, whereas the latter is a complicated case with 

different locations exposed to different and varying loading patterns consisting of changes in both 

normal and shear stresses.  

To demonstrate this, Figs 8 and 9 show the normalized vertical stress and the variation of θ and 2𝛼𝜎 at 

four different locations marked in the enlarged diagram of Fig 6. It is seen that the variation of 2𝛼𝜎 

(contributes to the RL as well as TL) is as small as 7o at location 1 and around 20o at location 3, but the 

variation of θ (contributes only to the TL) at these locations is as large as 46o and therefore is 

predominant over 2𝛼𝜎. As a result, the TL predictions are considerably softer than that by the RL at 

these two locations. On the other hand, at location 2, the 2𝛼𝜎 is rapidly increased to more than 65o, 

whereas the variation of θ is maintained at around 46o. Consequently, the difference between the TL 

and RL predictions is smaller at location 2, if compared with that at location 1. This is also seen for 

location 4 compared with location 3. These results are consistent with the different loading patterns 

associated with the TL and RL mechanisms. Apparently, in shear dominated conditions, the TL and RL 

theories are almost identical and interchangeable. However, in non-shear dominated conditions where 

the normal stress change plays an important role as much as the shear stress change, they are not.  

With the foregoing comparisons being presented, it can be concluded that, since the TL theory includes 

the RL, it is more versatile in applications. However, the respective contributions from the RL and the 

Lode angle variation are not clear. If the research focus is the pure principal stress rotation, the RL 

theory serves the purpose better since the Lode angle variation effect is eliminated.  

 

4. Conclusion 

The yield-vertex TL theory is a widely used approach in the constitutive modelling of soil response 

under principal stress rotational loading. However, the tangential stress rate �̇�𝑖𝑗
𝑡  employed in this theory 

is not solely designated to represent principal stress rotation. The theory of isolating the rotational 

stress rate �̇�𝑖𝑗
𝑟  is the true representation of the pure rotation of principal stress axes. 

This paper presents a comparative study between the yield-vertex TL and the true principal stress RL 

theories. Mathematical derivation and numerical simulations are carried out. The following conclusions 

are made: 

1. The tangential stress rate includes the rotational stress rate and an additional coaxial term that 

is associated with the variation of the Lode angle. 

2. The TL theory can be more versatile, but the respective contributions from the RL and the 

Lode angle variation are not clear in this theory. For the study of pure principal stress rotation, 

the RL theory serves the purpose better since the Lode angle variation effect is eliminated.  

3. Inclusion of either theory can soften the soil stress-strain response and therefore, ignoring 

them would result in unsafe design in geotechnical problems. 

4. In shear dominated problems, such as the simple shear, the two theories give almost identical 

results since the rotation of principal stress is predominant over the variation of the Lode angle. 

5. In non-shear dominated problems, such as the strip footing, the TL theory produces 

considerably softer results than the RL theory because the normal stress change leading to the 

variation of the Lode angle has a large impact as well as the principal stress rotation. 
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FIGURES 

 

 

Fig 1. Schematic illustration of the (a) tangential plastic strain rate 𝜀�̇�𝑗
𝑝𝑡

 in the π-plane and (b) rotational 

plastic strain rate 𝜀�̇�𝑗
𝑝𝑟

 in the plane of (
σ𝑥−σ𝑦

2
, 𝜏𝑥𝑦).  
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Fig 2. Normalized shear stress-shear strain responses during simple shear.  
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Fig 3. Normalized plastic strain rate magnitudes. 
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Fig 4. Variations of 2𝛼𝜎 and Lode angle θ.  

 

 

 

 

 

 

 

 

 



0 5 10 15
0

10

20

30

40

0.5

N
o

n
-c

o
a
x
ia

lit
y
, 


d
p
 -



 (

o
)

Shear strain,  (%)

 Tangential loading

 Rotational loading

h/G=0.05

 

Fig 5. Degree of non-coaxiality, 𝛼�̇�𝑝 − 𝛼𝜎 .   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig 6. Finite element mesh for strip footing problem.  
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Fig7. Predicted footing load-displacement curves.  
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Fig 8. Predicted results at locations 1 and 2: (a) normalized vertical stress predicted by TL and RL 

models with h/G=0.5, and (b) variations of θ and 2𝛼𝜎. 
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Fig 9. Predicted results at locations 3 and 4: (a) normalized vertical stress predicted by TL and RL 

models with h/G=0.5, and (b) variations of θ and 2𝛼𝜎. 

 


