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19 Abstract:  Simultaneous and continuous measurements of visibility, meteorological parameters 

20 and the concentrations of six atmospheric pollutants (PM10, PM2.5, SO2, NO2, CO and O3) were 

21 determined at a suburban site of Ningbo, Eastern China from June 1, 2013 to May 31, 2015. The 

22 characteristics of visibility and relationships with air pollutants and meteorological factors were 

23 investigated using multiple statistical methods. Daily visibility ranged from 0.6 km to 34.1 km, 

24 with a mean value of 11.8 km. During the 2-years’ experiment, 43.4% of daily visibility was 

25 found to be less than 10.0 km and only 9.2% was greater than 20.0 km. Visibility was lower in 

26 winter with a frequency of 53.4% in the range of 0.0–5.0 km. Annual visibility had an obvious 

27 diurnal variation, with the lowest and highest visibility being 7.5 km at approximately 06:00 local 

28 time and 15.6 km at approximately 14:00 local time, respectively. Multiple correspondence 

29 analysis (MCA) indicates that visibility shows significant correlations with concentrations of 

30 pollutants and  meteorological conditions. Based on the analyses, visibility is found to be the 

31 exponential function of PM2.5 concentration within a certain range of relative humidity. Thus, 

32 non-linear models combining multiple linear regressions with exponential regression were 

33 subsequently developed using the data collected from June 2014 to May 2015, and the data from 

34 June 2013 to May 2014 was used to evaluate the performance of the model. It was demonstrated 

35 that the derived models can quantitatively describe the relationships between visibility, air quality 
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36 and meteorological parameters in Ningbo.

37
38 Keywords: Visibility; Multiple correspondence analysis (MCA); Multiple non-linear regression
39
40
41
42
43 Introduction
44
45 Horizontal visibility is defined as the greatest distance at which a black object can be visually 

46 identified with unaided eyesight against a light sky (Wark et al. 1998; Watson 2002). In the 

47 absence of unusual weather, the reduction of visibility is an important indicator of deteriorating 

48 ambient air quality which has become a serious environmental issue of public concern in 

49 populated cities and has been reported to have adverse effects on human health, crop growth and 

50 traffic safety (Che et al. 2006). It has been widely confirmed that the impairment of visibility is 

51 mainly due to the scattering and absorption of visible light by suspended particles (Chan et al. 

52 1999; Horvath. 1995).

53 Atmospheric particulate matter (PM) is associated with both anthropogenic and natural 

54 emissions that consist of minuscule particles of solid or liquid matter, with diameters ranging 

55 from 0.01 µm to 100 µm. Atmospheric particles can affect the climate by both direct and indirect 

56 radiative forcing (Charlson et al. 1992; Xu et al. 2002), especially fine aerosols with aerodynamic 

57 diameters of 2.5 μm  or less (PM2.5). The smaller a particle, the longer it will remain suspended in 

58 atmosphere and impact the environment over greater distances. In addition, many studies have 

59 shown that fine particles, which include sulfates, nitrates, organic and elemental carbon, could 

60 effectively scatter or absorb visible light and thus reduce visibility (Zhang et al. 2012; Kim et al. 

61 2006; Tan et al. 2009a, 2009b). All these airborne particles, together with other gaseous 

62 pollutants such as sulfur dioxide (SO2) and nitrogen oxides (NOx) could contribute to the increase 

63 of haze and lead to a low visual range (≤10 kilometers). Specifically, the heterogeneous aqueous 
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64 transformation from SO2 and NOx is enhanced during haze episodes, which probably leads to the 

65 remarkable secondary formation of sulfate and nitrate in fine particles, further impairing visibility 

66 (Wang et al. 2006). In addition to air pollutants, many meteorological parameters such as relative 

67 humidity (RH), wind speed (WS) and direction (WD), temperature, pressure and precipitation can 

68 also contribute to light extinction and degrade air quality (Zhao et al. 2011; Yang et al. 2007). In 

69 haze events, the rapid increase of PM concentrations, high RH, and low WS, can simultaneously 

70 adversely impact atmospheric visibility (Tsai, 2005; Zhang et al. 2010; Deng et al. 2011). As RH 

71 increases, hygroscopic particles progressively absorb more moisture, which will increase the 

72 scattering cross section of aerosols and proportionately reduce visibility. Therefore, RH could 

73 directly affect the particles that contribute to visibility reduction. While other meteorological 

74 variables such as WS, temperature, and pressure have indirect effects on visibility, they may also 

75 affect the concentration of atmospheric particles due to the thermal and mechanical turbulence 

76 (Du et al. 2013). The accumulation and transport of particles are closely related to the synoptic 

77 systems and atmospheric circulations. Tsai (2005) identified that conditions for reducing 

78 visibility included high atmospheric pressure, low WS, and low mixing layer height. Deng et al. 

79 (2011) have also highlighted the significant impact of synoptic systems on air pollution and 

80 visibility in Nanjing.  

81 The forecasting and early warning of visibility, which mainly based on the relationships 

82 between air pollution and light extinction, is not only very important for environment and public 

83 health, but also for traffic control and even military. A number of models were previously 

84 developed to describe the correlations between visibility and air pollution, and much continuous 

85 efforts have been made to improve the models based on the monitoring results of visibility meter. 

86 Wen and Yeh (2010) established multiple linear regression equations linking visibility and 

87 atmospheric air conditions for data collected in Taiwan. Both Lin et al. (2012) and Tsai (2005) 
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88 developed empirical regression models for visibility, with a logarithm of coarse particle 

89 concentration used in the regression analyses. Additionally, several studies have suggested that 

90 visibility is a linear response to the exponential function of PM2.5 concentrations under a certain 

91 RH range (Cao et al. 2012; Yu et al. 2016; Shen et al. 2016). All these studies suggested that the 

92 impacts of air quality and other variables on visibility are more complicated than linearity and 

93 need to be studied further.

94 In recent decades, four major regions in China (i.e. Beijing-Tianjin-Hebei region, the Yangtze 

95 River Delta (YRD) region, the Sichuan Basin, and the Pearl River Delta (PRD) region), have 

96 experienced a severe loss of visibility (Zhang et al. 2012). Ningbo is one of the most highly 

97 urbanized and industrialized cities in the YRD region and had a population of 7.87 million people 

98 and a vehicle fleet of 1.98 million by the end of September 2016. The city is located in the south 

99 of Hangzhou Bay and to the west of the East China Sea with an area of 9816 km2. With a rapid 

100 urbanization and an increase in motor vehicle numbers, Ningbo energy consumption has 

101 increased substantially and haze events have been frequently observed in recent years (He et al. 

102 2016; Cheng et al. 2014; Hua et al. 2015). Local visibility might be significantly influenced by 

103 the increasing frequency of haze episodes. However, there have been few studies focusing on the 

104 characteristics of visibility, and their relationships with air pollutants in Ningbo.

105 In this study, visibility was monitored from June 2013 to May 2015, with potential 

106 relationships between visibility and a range of air pollutants (i.e. SO2, NO2, CO, O3, PM10, and 

107 PM2.5) and meteorological variables (i.e. RH, WS, temperature, and atmospheric pressure) being 

108 investigated. The objectives of this study were (1) to characterize the temporal variations of 

109 visibility in the suburb of Ningbo; (2) to identify the relationships between classified visibility 

110 and other parameters using multiple correspondence analysis (MCA); (3) to develop a regression 



5

111 model suitable for the prediction of visibility in Ningbo based on air pollutant data and 

112 meteorological parameters.

113
114 1  Material and Methods
115
116 1.1 Study Area and Data Source

117 Ningbo (28°51′–30°33′ N, 120°55′–122°16′ E) is a coastal city of the Zhejiang Province in 

118 Eastern China. The climate conditions of Ningbo are governed by the sub-tropical monsoon, with 

119 prevailing northwest and southeast winds in winter and summer, respectively. The annual mean 

120 air temperature and precipitation are 16.4℃ and 1,480 mm, respectively. Annual mean air 

121 temperature reaches its maximum (28.0℃) in July and minimum (4.7℃) in January. During the 

122 whole year, approximately 60% of the annual mean precipitation occurs from May to September. 

123 The annual mean WS is 2–3 m/s in urban areas and > 5 m/s in coastal areas.

124 Air pollutant concentrations and meteorological data collected from June 1, 2013 to May 31, 

125 2015 at the Dongqian Lake (DQL) Monitoring Station (29°45′N, 121°37′E) were used in this 

126 study. The monitoring station is 12 km away from the city center of Ningbo and 1.3 km from the 

127 biggest freshwater lake (Dongqian Lake, 22 km2 in area) in the Zhejiang Province. There are 

128 several hills nearby to the west and east. Many small villages are distributed at the mountain foot 

129 less than 2 km to DQL site. There is a provincial road close to this site with small factories 

130 involved in mechanical processing built alongside. In recent years, the tourism resources around 

131 DQL have been greatly developed, with increasing numbers of urban residents visiting the area 

132 for recreational purposes. 

133 The DQL station is a part of the national air quality monitoring network of China, which is 

134 under the supervision of the national Ministry of Environmental Protection (MEP). Visibility is 

135 measured by trained operators using easily identifiable structures and objects, such as tall 

136 buildings, towers, and mountain ridges, at predetermined distances. The routine monitoring of air 
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137 quality with six conventional indices (i.e. SO2, CO, NO2, O3, PM10, PM2.5) at DQL station began 

138 in 2012 when the latest ambient air quality standards of China (GB 3095-2012) were established. 

139 Commercial instruments from Thermo-Fisher Scientific Inc. (USA) are used to measure gaseous 

140 pollutants, such as O3 (Model 49i), NO2 (Model 42i), CO (Model 48i) and SO2 (Model 43i). 

141 PM2.5 and PM10 are measured using a tapered-element oscillating microbalance sampler (R&P 

142 TEOM, 1400). The TEOM sampler is calibrated regularly by using filters with measured masses. 

143 Zero and span checks are made weekly. Hourly averaged data were used for all analyses in this 

144 study and described by local time (UTC+8). Meteorological variables including RH, WS, 

145 temperature, and atmospheric pressure are measured by automatic weather station (WS500-UMB, 

146 Lufft, Germany) at DQL site. The fire count map was retrieved from FIRMS Web Fire Mapper 

147 (NASA, https://earthdata.nasa.gov/). 

148 The Air Quality Index (AQI) has been developed to provide daily air quality information to 

149 the public in China (Zheng et al., 2014). On February 29, 2012, the Ministry of Environmental 

150 Protection (MEP) of the People’s Republic of China (PRC) approved the technical regulation on 

151 ambient air quality index (GB 3095-2012), which released PM2.5 values and calculated the AQI 

152 instead of the Air pollution Index (API). A sub-index is calculated for each pollutant from a 

153 segmented linear function that transforms ambient concentrations onto a scale from 0 to 500. AQI 

154 is calculated as the sub-index maximum (China’s Environmental Protection Standards, HJ 633-

155 2012). Daily AQI is defined as: 

156 AQI = max (AQIPM10
, AQIPM2.5

, AQISO2
, AQINO2

, AQICO, AQIO3
)                                                 (1)

157 where AQIPM10
, AQIPM2.5

, AQISO2
, AQINO2

, AQICO and AQIO3 are the partial index of air pollutants 

158 PM10, PM2.5, SO2, NO2, CO and O3, respectively.

159 AQIp = [(AQIph－AQIpl)／(Chigh－Clow)]×(Cp－Clow)＋AQIpl                                    (2)
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160 where AQIp is the partial index of air pollutant p, Cp is the daily average concentration of air 

161 pollutant p, Chigh and Clow are the threshold concentrations of p at air quality grade, respectively. 

162 Corresponding to Chigh and Clow, AQIph and AQIpl are the threshold partial indexes of air pollutant 

163 p at air quality grade, respectively.

164
165 1.2 Data Analysis

166 Multiple correspondence analysis (MCA) is a data analysis technique for categorical data, 

167 used to detect and represent the underlying relationships in a data set. It is complementary to 

168 analytical models as the reduction and display of contingency tables produces graphics, which 

169 could depict the structural relationships among categories within variables (Hair et al. 1995; Hill 

170 et al. 2007). The purpose of MCA, also known as homogeneity analysis, is to find quantifications 

171 that are optimal in the sense that the separation of categories is maximised. This implies that 

172 objects in the same category are plotted close to each other and objects in different categories are 

173 plotted as far apart as possible. The analysis is most successful when the variables are 

174 homogeneous; that is, when they partition objects into clusters with the same or similar 

175 categories. This statistical method has been widely used in sociology, economic statistics, 

176 medical science, but is still limited in environmental science (Van Stan et al. 2016; Sourial et al. 

177 2010). 

178
179 2  Results and Discussion
180
181 2.1  Overall Results of the Study Area

182 The overall statistical analysis of daily visibility, air pollutants, and meteorological variables 

183 during the two years of observations at DQL station are summarized in Table S1. Day-to-day 

184 variations of visibility, PM2.5 and PM10 are shown in Fig. S1. From June 1, 2013 to May 31, 

185 2015, the daily average visibility ranged from 0.6–34.1 km, with a mean value of 11.8 km, which 
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186 was just over the defined threshold for haze (i.e. visibility < 10.0 km), indicating poor air quality 

187 over the study region. The mean PM2.5, PM10, SO2, NO2, CO and O3 concentrations were 42.6 

188 µg/m3, 64.6 µg/m3, 15.0 µg/m3, 28.9 µg/m3, 0.9 mg/m3 and 70.2 µg/m3, respectively. The average 

189 value of AQI, RH, temperature, WS and surface pressure were 65.6, 73.2%, 17.8℃, 1.7 m/s and 

190 1013.0 hPa, respectively.

191 Visibility impairment mainly resulted from airborne particulate matter, particularly from fine 

192 particles with aerodynamic diameters less than 2.5 µm (Deng et al. 2014; Sabetghadam and 

193 Ahmadi-Givi 2014). According to air quality daily report from MEP, PM2.5 in the atmosphere 

194 was the primary pollutant of concern in Ningbo during the two years (http://www.zhb.gov.cn). 

195 Therefore, the daily variations of PM10 and PM2.5 were required for analysis during the study 

196 period in DQL station. Fig. S1 shows that the concentrations of PM2.5 and PM10 were generally 

197 higher in winter and lower in summer, and the proportion of PM2.5 in PM10 was relatively high. 

198 During the two years, almost all daily PM2.5 concentrations in winter exceeded the national 

199 ambient air quality standard GradeⅡ (75 µg/m3), revealing severe pollution from fine particles. 

200 In December, 2013, extremely high levels of PM10 and PM2.5 were observed with daily average 

201 concentrations of 511 and 389 µg/m3, respectively. At 22:00 on December 6, the hourly 

202 concentrations of PM10 and PM2.5 reached peak values of 707 and 530 µg/m3, respectively. 

203 Visibility dramatically decreased to 0.6 km during this episode, which was the minimum value 

204 measured during the two years. This haze episode was also observed by Xue et al. (2015) in the 

205 YRD region.

206
207 2.2  Seasonal and Diurnal Variation of Visibility

208 Fig. 1(a) shows that 43.4% of the daily visibility was less than 10.0 km during the two years 

209 and only 9.2% was greater than 20.0 km, indicating bad air quality in DQL area. The maximal 

210 frequency (33.4%) of daily visibility was observed in the range of 5.0–10.0 km. Poor visibility 
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211 (<5.0 km) often occurred in winter with a frequency of 53.4%. Daily visibilities of spring and 

212 summer contributed as much as 41.8% and 38.8% to the visual range of 20.0–35.0 km, 

213 respectively. 

214 Generally, the average value of AQI decreased with increasing visibility (Fig. 1). The mean 

215 value of AQI for the visual range of 0–5.0 km was 111.8 (≥100), which indicates the occurrence 

216 of a haze episode under low visibility. The AQI values were 72.3 and 61.4 for the visual range of 

217 5.0–10.0 km and 10.0–15.0 km, respectively. This indicates that the local air was moderately 

218 polluted. Good visibility (15.0–35.0 km) occurred simultaneously with the lowest AQI value 

219 (<50) i.e. when the air quality was good. These data confirm that the local air quality had an 

220 obvious positive correlation with visibility (Tsai et al. 2003).

221 Fig. 1(b) depicts the diurnal patterns of annual and seasonal mean visibility in Ningbo. 

222 Visibility shows an obvious and similar diurnal variation throughout four seasons, with a sharp 

223 decrease in early morning, i.e. 06:00-08:00 local time and a peak in afternoon, i.e. 14:00-16:00 

224 local time. From the perspective of the annual average, the lowest and highest visibility was 7.5 

225 km and 15.6 km, respectively. The diurnal patterns during different seasons were desynchronized, 

226 which is due to the difference in weather pattern (i.e. day-night length, sunrise and sunset time, 

227 monsoon etc.) and the stability of atmospheric boundary layer (ABL) in each season. For 

228 example, the trough and peak of visibility in wintertime are nearly two hours later than 

229 summertime, which is mainly attributed to a later sunrise time and smaller ABL depth. It can also 

230 be seen that visibility in spring and summer was better than autumn and winter, and winter is 

231 more likely associated with poor visibility and bad air quality. 

232
233 2.3  Monthly Variations of Visibility and Environmental Factors 

234 Monthly variations of visibility, air pollutant concentrations and meteorological factors were 

235 investigated in this study (Fig. 2). The highest average visibility was observed in July, with a 
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236 value of 16.6 km, and the lowest average visibility was observed in December with a value of 9.1 

237 km. Different trends of monthly variations were observed between visibility and other 

238 environmental variables in the study area (Fig. 2). It was noteworthy that the visibility greatly 

239 decreased in June, when the air pollutant concentrations stayed at low levels. As is well known 

240 that visibility is negatively correlated with air humidity (Deng et al., 2011). The relatively high 

241 level of RH in June (Fig. 2) might account for the lower visibility due to the light scattering and 

242 absorption of water vapour. 

243 Fig. 2 shows that the PM10 and PM2.5 pollution of the study area was severe. The monthly 

244 mass concentrations of PM10 and PM2.5 were in the range of 34.7–139.3 and 23.7–94.9 µg/m3, 

245 respectively. The concentrations of PM10 and PM2.5 were higher from November to February, 

246 while lower from June to September. The temporal variations of anthropogenic emissions and 

247 weather conditions might account for the seasonal cycle of PM. The average ratio of PM2.5 to 

248 PM10 (PM2.5/PM10) was 66.6% with a range of 59.3%–72.1%. Remarkably, there was an obvious 

249 inverse correlation between visibility and the ratio of PM2.5/PM10, especially in June, July and 

250 October. The high proportions of PM2.5 contained within PM10 in poor visibility episodes 

251 indicated that fine particles could play an important role in affecting local visibility.

252 The monthly variations of SO2, NO2 and CO were consistent with that of PM, with higher and 

253 lower concentrations being observed in winter and summer, respectively. All three gaseous 

254 pollutants showed non-significant correlation with visibility. However, a strong correlation 

255 between O3 and visibility was observed during the study period (Fig. 2). Two monthly peaks of 

256 O3 were observed in May (100.3 µg/m3) and October (71.4 µg/m3) along with better visibility, 

257 while the lowest O3 concentration (41.4 µg/m3) occurred in December when lower visibility was 

258 observed. The winter minimum O3 level is commonly observed in mid-latitude locations in the 

259 Northern Hemisphere (Tu et al. 2007; Semple et al. 2012; kumar et al. 2010), which is mainly 
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260 due to the relatively weaker photochemical processes. Good visibility is often related to stronger 

261 solar radiation, which can significantly promote the photochemical generation of O3 (Pudasainee 

262 et al. 2006). This might account for the good correlation between O3 levels and visibility during 

263 warm seasons in this study.

264 The variation of RH displayed a summer maximum and winter minimum, with the highest 

265 (82.1%) and lowest (62.3%) values occurring in June and December, respectively.  Clear positive 

266 and negative correlations existed between RH and PM2.5/PM10, and between RH and visibility, 

267 respectively. With the increase of RH, the generation of secondary aerosols in fine particles was 

268 enhanced and the hygroscopic components of aerosols such as sulfate, nitrate and sea salt 

269 absorbed more moisture, which would increase the scattering cross section of the aerosols and 

270 reduce visibility (Jung et al. 2009). 

271 Obvious monthly variations of surface WS were observed in the study area, with the highest 

272 value (2.4 m/s) occurring in July and the lowest value (1.4 m/s) occurring in November (Fig. 2). 

273 Monthly visibility was positively correlated with WS during most months, especially in summer 

274 (June-August) and autumn (September-November). Generally, the increase of WS accelerates the 

275 diffusion of dust and pollutants, which leads to an increase of the visual range. Meanwhile, the 

276 temperature and pressure also changed obviously in different months. Temperature was highest 

277 (29.5°C) in July and lowest (7.0°C) in December, while the barometric pressure was highest 

278 (1025.9 hPa) in December and lowest (1005.1 hPa) in July. In general, the variation of visibility 

279 was consistent with that of temperature and opposite to that of pressure. The correlations between 

280 visibility and temperature and pressure might be accounted for by the following reasons. High air 

281 temperature and low pressure usually enhances the dispersal capability of the atmosphere via 

282 thermal and mechanical turbulence, which could promote the improvement of air quality and 
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283 visibility and inversely, low temperature and high pressure indicate more stable weather 

284 condition, which would weaken the diffusion of air pollutants.

285
286 2.4  Multiple Correspondence Analysis of Visibility

287 In multiple correspondence analysis, all variables were divided into four categories according 

288 to the values from small to large (Table S2). In the following discussion, the Arabic 1 to 4 were 

289 used to represent the four categories respectively; the category indicator was added as a prefix for 

290 air pollution; and as a suffix for meteorological parameter. The correspondence map and loading 

291 factors of visibility and other environmental variables based on MCA are shown in Fig. 3 and 

292 Table S3, respectively. Most of the variance in our data was accounted for in the analysis with 

293 axes 1 and 2 explaining 41.5% and 25.4% variation, respectively. Almost all air pollutants and 

294 meteorological factors were classified into four quadrants in the map. The relative distance 

295 between variables and the closeness of points on the map with respect to their angle from the 

296 origin, and points in the same quadrant can be used to interpret relationships between variables 

297 (Higgs et al. 1991; Garson et al. 2012). The origin on the map corresponds to the centroid of each 

298 variable. The closer a variable is to the origin, the closer it is to the average profile. As shown in 

299 Fig. 3, V2 and V3 was near the origin and was the primary visual range during the study period, 

300 as described above. During the study period, the frequency of daily visibility appearing in the 

301 range of 5.0–15.0 km was higher than those of others (Fig. 1). In addition, 4NO2, 4CO and 4SO2 

302 were located far from the origin in the first quadrant and therefore had the greater variability. This 

303 implied that the concentration of air pollutants were inclined to have the greatest effect compared 

304 to other factors during the poor visual range (V1 <5 km). Along dimension 2, it was observed that 

305 T4, 1PM2.5, 1CO and WS4 had the most effect, indicating that the lower concentrations of 

306 pollutants except for O3, higher temperature and higher wind speed had a significant influence on 

307 good visibility (V4 > 15km).
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308 Fig. 3 illustrates that the first two dimensions accounted for 66.9% of the total variance and 

309 the majority of variables were clearly discriminated in both dimensions. Along dimension 1, 

310 values of PM2.5, SO2, CO, NO2 and P increased positively with the direction of dimension 1. 

311 Conversely, T, V and WS decreased in dimension 1. However, only WS along dimension 2 

312 changed regularly, which increased in a positive direction. Generally, dimension 1 could account 

313 for most air pollutants, P, T, V and WS; and dimension 2 only explained WS additionally. 

314 However, the two dimensions in our study could not well represent the variations of O3 and RH, 

315 and the lower loading factors of O3 and RH in Table S3 also confirmed this. 

316 The variation of O3 concentrations and RH did not regularly change with dimension 1 or 2, 

317 indicating that further dimensions may need to be analysed, i.e. the variation of O3 has unique 

318 characteristics. As previously discussed, visibility was usually positively related with O3 

319 concentrations. 4O3 was closely distributed with V3 rather than V4 in the correspondence map 

320 (Fig. 3), but the concentration of O3 did not increase with visibility completely. In fact, except for 

321 the lower concentrations of O3, the points of 2O3 to 4O3 were all closely placed within the third 

322 quadrants of Fig. 3, which were generally associated with a relatively higher temperature and 

323 lower WS. The relatively high WS (WS4 & WS3) in the second quadrant was unfavourable to the 

324 accumulation of O3. These data also indicated that the production of O3 was not only affected by 

325 visibility, other pollutants and meteorological parameters, but also factors including solar 

326 radiation, which was not included in this study (Tong et al., 2017). In addition, the effects of RH 

327 on visibility could not be ignored. The visibility was always below 15 km (V1 ~ V3) when RH 

328 was higher than 80% (i.e. RH3 & RH4), which indicated that visibility remained at low values 

329 even with low air pollution concentrations.

330
331 2.5  Relationship Between Visibility and Other Factors
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332 To gain a deeper insight into how relevant factors affect visibility, Pearson correlations were 

333 performed between daily visibility, air pollutants and meteorological variables (Table S4). 

334 Visibility had significantly negative correlations with PM2.5 (r = –0.50), CO (r = –0.51), and NO2 

335 (r = –0.47). The moderate relationship between visibility and PM2.5 was expected, given the 

336 scattering effect of aerosols, especially fine aerosols with aerodynamic diameters of 2.5μm or less 

337 (Charlson et al. 1992; Xu et al. 2002). Visibility had no direct relationship with CO, but the 

338 correlation coefficient between both variables was a little higher than that between visibility and 

339 PM2.5. This may be because CO is generated by intensive biomass burning together with 

340 incomplete combustion from vehicle engines, during which large quantities of particles would be 

341 generated. Fine particles formed simultaneously with CO could lead to visibility reduction by 

342 scattering and absorbing light radiation (Xue et al. 2015), which might account for the negative 

343 correlation between visibility and CO. For NO2, there was a weak direct influence on visibility. 

344 However, secondary pollutants such as nitrate, which is produced by photochemical conversions 

345 from NO2 might play an important role in visibility reduction (Sabetghadam and Ahmadi-Givi 

346 2014). Nitrate is the main water-soluble constituent in PM2.5 and is an important factor in the 

347 increase of PM2.5 concentrations. A strong positive correlation between NO2 and PM2.5 (r= 0.70, 

348 Table S4) was observed in this study, which might explain why NO2 was significantly correlated 

349 with visibility in the DQL area.

350 In analyses examining effects of meteorological factors, visibility showed a significant 

351 positive correlation (r= 0.39) with WS and negative correlation ( r= –0.40) with RH, which was 

352 in accordance with previous research (Deng et al. 2011; Zhang et al. 2015). High wind speed 

353 would promote the dispersion of pollutants and could reduce air pollutant concentrations and 

354 increase visibility. Also, hygroscopic aerosols are greatly increased with high RH, which could 

355 cause the increase of PM concentration and extinction capability, further reducing visibility. As 
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356 presented in Table S4, visibility showed a rather weak negative and positive correlation with air 

357 pressure and temperature, respectively. Air pressure and temperature are both important 

358 indicators of weather system at a given location, and they have no direct effect on visibility. The 

359 changes of air pressure and temperature could have an impact on the diffusivity of atmosphere, 

360 and further affect the concentration of air pollutants. The relatively high correlation between 

361 PM2.5 and temperature (r= –0.45), and between PM2.5 and pressure (r= 0.43) also confirmed this 

362 conclusion. 

363 Scatter plots and regression functions of one-year data (Fig. 4) were applied in this study in 

364 order to examine the deep connections between visibility and the two major factors (i.e. PM2.5 

365 and RH). Fig. 4 and obtained equation (3) show the relationships between hourly-averaged 

366 visibility and mass concentration of PM2.5 under different RH conditions (Yu et al., 2016). RH 

367 was classified over four ranges: RH ≤60%, 60 < RH ≤80%, 80 < RH ≤90%, and RH > 90%. The 

368 visibility decreased exponentially with increasing PM2.5 concentrations in each RH range.

369 (3)Visibility = 𝑓(PM2.5) = { 35.65 × exp( - 0.017 × PM2.5),       (RH ≤ 60%), r =  0.835
28.99 × exp( - 0.020 × PM2.5),    (60% < RH ≤ 80%), r =  0.732
22.84 × exp( - 0.027 × PM2.5),   (80% < RH ≤ 90%), r = 0.599

9.32 × exp( - 0.021 × PM2.5),          (RH > 90%), r = 0.384
      

370 Firstly, with the increase of PM2.5 concentration, the visual range decreased exponentially. 

371 Initially, the visibility decreased sharply while the PM2.5 concentration increased; but when PM2.5 

372 concentrations reached a certain level (for example above 100µg/m3), the change in visibility was 

373 not sensitive to PM2.5 concentrations any further. Secondly, with the increase of RH, a lower 

374 correlation coefficient between PM2.5 and visibility was observed. This implied that visibility 

375 stayed at a very low level when RH values were very high (>80%), even with low PM2.5 

376 concentrations. In this case, a large amount of water vapour could cover particle surfaces, 

377 enhancing the scattering ability of aerosol and reduce visibility significantly. Thirdly, the 
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378 maximum visibility under different RH conditions was decreased with the increase of RH value 

379 (Fig. 4). Equation (3) suggested that the maximum visibility was just 9.32 km in the case of RH 

380 >90%, and this result was consistent with MCA (Fig. 3).

381 Obviously, a single parameter regression as the equation (3) are not suitable for the 

382 forecasting of visibility at another location or in another year, which ignores the effects of other 

383 environmental variables, such as NO2, CO, T, WS etc. As presented in Fig. S2, in which a 

384 separate year’s hourly visibility was predicted with equation (3), the regression lines between 

385 observed and simulated visibility significantly deviate from the 1:1 diagonal line. A larger 

386 deviation existed when RH>90%, indicating a greater contribution of other factors to visibility. 

387 Nevertheless, the above equation further confirmed the exponential relationship between 

388 visibility and PM2.5 under different RH level. This finding should be the basis of a forecasting 

389 model of visibility.   

390
391 2.6 Regression Model Development and Validation 

392 To further develop a brief model for visibility prediction in Ningbo, it was first assumed that 

393 the apparent visibility is the final result of a combination of factors influencing air pollution 

394 together with meteorological parameters. As shown in Equation (4),

395                  (4)𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 = 𝑓(𝑃𝑀2.5) + 𝑓(𝑅𝐻, 𝑇,𝑁𝑂2,𝑂3⋯) = 𝑓(𝑃𝑀2.5) + ∑
𝑖(𝑎𝑖 ∙ 𝑥𝑖) + 𝜀

396 where xi represents any important factor for visibility, ai is a linear regression coefficient, and  is 

397 the error term.

398                                                                           (5)𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ‒ 𝑓(𝑃𝑀2.5) = ∑
i
(a𝑖 ∙ 𝑥𝑖) + 𝜀

399 or

400                                                                           (6)𝑉𝑖𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 ‒ ∑
i
(a𝑖 ∙ 𝑥𝑖) = 𝑓(𝑃𝑀2.5) + 𝜀
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401 The obtained regression parameters in equation (3) were chosen as initial values of modelling 

402 fit. Multiple linear regression was conducted between the residue of prediction and other 

403 environmental parameters. Datasets with hourly resolution from June 2014 to May 2015 were 

404 used to develop the multiple nonlinear regression equations. An independent variable was added 

405 into the regression equation by a stepwise procedure based on importance. It demonstrated that 

406 for the first two RH categories, i.e. RH≤80%,  RH is the common factor in addition to particle 

407 concentration for the variation of visibility, then the regression equations for these two levels 

408 were eventually combined together. After several circles of regression and iteration, the final 

409 modelling results considering main influencing factors besides PM2.5 and RH within three RH 

410 ranges were listed in Table 1. It showed that the main contributors to visibility under different 

411 RH are different, and the influence of all variables on visibility was additive. Specifically, the 

412 independent variables in the model are PM2.5, and RH when RH ≤ 80%, while O3 is the major 

413 contributor to the visibility (aside from PM2.5 and RH) within RH of 80-90%. The importance of 

414 O3 in the model requires further investigation. Results presented in Table 1 also suggested 

415 temperature can affect visibility when RH > 90%. Likely, temperature affects visibility by 

416 influencing condensation of water vapour in the atmosphere.         

417 To further verify the validity of the non-linear models combining exponential and multiple 

418 linear regressions, hourly observed visibility data from June 2013 to May 2014 were examined.  

419 Fig. 5 presents the simulated results based on equations in Table 1 vs. the observed visibility. 

420 The newly developed multiple nonlinear model improved the visibility prediction with generally 

421 higher R values compared to those based on single parameter regression model (equation 3), 

422 especially under high RH (>90%) conditions (Fig. S2). Time series of daily observed visibility 

423 and daily visibility simulated by nonlinear regression model from June 2013 to May 2014 was 

424 plotted in Fig. 6. There was a high degree of consistency between model-fitted visibility and 
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425 observed visibility, indicating that the newly developed model is a suitable and practical model 

426 for simulating visibility based on air quality in DQL area. 

427
428 3  Conclusions
429
430 Visibility, atmospheric pollutants and meteorological variables monitored in a suburban area 

431 (DQL) of Ningbo from June 1, 2013 to May 31, 2015 were analyzed in this study. The 

432 characteristics of visibility and its affecting factors were described in detail using multiple 

433 statistical methods. Based on these analyses, the following conclusions can be derived:

434 The temporal variation of visibility in DQL during the study period demonstrated notable 

435 regional characteristics. The seasonal pattern of visibility was characterized by higher levels in 

436 spring-summer and lower levels in autumn-winter. Nearly half of all measurements of visibility 

437 were lower than 10 km, indicating poor air quality over the study region. Visibility displayed an 

438 obvious diurnal variation in each season, with the lowest and highest visibility being 7.5 km at 

439 approximately 06:00, and 15.6 km at approximately 14:00, respectively. 

440 The results of multiple correspondence analysis (MCA) indicated that good visibility was 

441 always associated with good meteorological conditions and low levels air pollutants, except for 

442 O3. The results of MCA explained 66.9% necessity of the segmented studies of visibility. Based 

443 on the correlation analysis, PM2.5, WS and relative humidity were found to have significant 

444 impacts on visibility in Ningbo. Also, model equations between visibility, PM and RH were 

445 derived, with visibility decreasing exponentially with increasing PM2.5 concentrations in different 

446 RH ranges. Additionally, the non-linear models combining exponential and multiple linear 

447 regressions were developed to investigate the underlying relationships between visibility, air 

448 quality and meteorological conditions. The main factors which have the largest influences on 

449 visibility under different RH ranges are different. Based on comparative evaluation, the model 

450 prediction effect is regarded to be relatively good for this suburban area. 
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451 This study demonstrated that the correlations between visibility and air pollutants/metrological 

452 parameters are relative consistent; and it is possible to predict the visibility based on air quality 

453 and weather conditions, although it was based on only two years of data collected from one 

454 research station. In order to gain a more accurate understanding of the relationships between 

455 visibility and other factors, and to modify the regression equations developed for these Ningbo 

456 datasets, analyses on long term and multipoint data are necessary. In addition, the effects of large- 

457 and meso-scale phenomena on visibility warrants further study.
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582 Table 1  Regression models of visibility under different RH in DQL, June 2014-May 2015.

Stepwise regression model correlation coefficient N.
V = 23.044+27.853*exp(-0.04199PM2.5) –0.196RH RH≤80% 0.816 4247
V = 56.072+24.44*exp(-0.07128PM2.5) –0.536RH-0.037O3 80<RH≤90% 0.671 2049
V = 79.095+10.228*exp(-0.06571PM2.5) –0.822RH+0.033T RH>90% 0.589 1697
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591 Fig. 1. Distribution of frequency of occurrence of daily visibility (a), and Diurnal variations of 
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593 deviations for the annual data.
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646 Table S1. Summary of visibility, AQI, and environmental factors from June, 2013 to May, 2015.
Number Min Max Mean SD

Visibility (km) 730 0.6 34.1 11.8 5.9
AQI 717 12.7 428.9 65.6 39.0
PM2.5 (µg/m3) 717 5.3 389.8 42.6 33.4
PM10 (µg/m3) 717 10.0 511.4 64.6 46.3
CO (mg/m3) 717 0.1 2.6 0.9 0.3
NO2 (µg/m3) 717 0.5 98.3 28.9 17.6
SO2 (µg/m3) 717 2.0 76.2 15.0 12.3
O3 (µg/m3) 717 5.3 184.9 70.2 29.9
Temperature (°C) 730 0.5 34.2 17.8 8.4
Pressure (hPa) 730 996.2 1034.3 1013.0 8.7
RH (%) 730 31.8 96.6 73.2 12.5
WS (m/s) 730 0.1 4.8 1.7 0.8

647
648
649
650
651
652
653
654 Table S2. Indices of classified variables in MCA.

Categories CO (mg/m3) NO2 (µg/m3) PM2.5 (µg/m3) SO2 (µg/m3) P (Pa) Color
1 0-0.5 0-20 0-15 0-10 990-1010 blue
2 0.5-1 20-40 15-35 10-20 1010-1020 green
3 1-1.5 40-60 35-75 20-40 1020-1030 red
4 >1.5 >60 >75 >40 1030-1040 black
Categories Vis (km) RH (%) WS (m/s) T (℃) O3 (µg/m3) Color
1 0<V<5 <60 0-1 0-10 0-40 black
2 5<V<10 60-80 1-2 10-20 40-80 red
3 10<V<15 80-90 2-3 20-30 80-120 green
4 V>15 >90 >3 30-40 >120 blue

655
656
657
658
659
660
661
662
663
664
665
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666
667 Table S3. The discrimination measures of the variables in MCA.

Dimension
　 1 2 Mean
CO 0.42 0.28 0.35
NO2 0.77 0.47 0.62
PM2.5 0.66 0.42 0.54
SO2 0.54 0.30 0.42
O3 0.14 0.18 0.16
WS 0.10 0.14 0.12
T 0.56 0.27 0.42
RH 0.06 0.05 0.06
P 0.59 0.24 0.41
V 0.31 0.18 0.25
Total 4.15 2.54 3.34
Variance (%) 41.5 25.4 33.4

668
669
670
671
672
673
674 Table S4. Pearson correlation coefficient of visibility and other environmental variables.

　 Visibility PM2.5 CO NO2 SO2 O3 WS RH T P
Visibility 1
PM2.5 –0.50** 1
CO –0.51** 0.68** 1
NO2 –0.47** 0.70** 0.54** 1
SO2 –0.18** 0.57** 0.40** 0.63** 1
O3 0.18** –0.14** –0.22** –0.39** –0.23** 1
WS 0.39** –0.26** –0.19** –0.27** –0.14** 0.04 1
RH –0.40** –0.22** –0.07* –0.15** –0.40** –0.23** –0.20** 1
T 0.30** –0.45** –0.37** –0.65** –0.40** 0.18** 0.15** 0.17** 1
P –0.18** 0.43** 0.33** 0.62** 0.43** –0.18** –0.19** –0.29** –0.89** 1
Rainfall –0.13** –0.17** –0.08* –0.13** –0.07 –0.14** –0.02 0.36** 0.11** –0.17**

675 *Correlation is significant at the 0.05 level (two-tailed). ** Correlation is significant at the 0.01 
676 level (two-tailed).
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678 Fig. S1. Day-to-day variations of visibility, PM2.5 and PM10 from June, 2013 to May, 2015 at DQL station in Ningbo.
679
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681 Fig. S2. Comparison between the observed hourly visibility and exponential equation (3) simulated hourly visibility during 2013.6-2014.5. 
682 (V-obs: the observed visibility; V-sim: the simulated visibility).
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