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Abstract Given the unique institutional regulations in the Chinese commodity futures

market as well as the characteristics of the data it generates, we utilize contracts with

three months to delivery, the most liquid contract series, to systematically explore

volatility forecasting for aluminum, copper, fuel oil, and sugar at the daily and three

intraday sampling frequencies. We adopt popular volatility models in the literature and

assess the forecasts obtained via these models against alternative proxies for the true

volatility. Our results suggest that the long memory property is an essential feature in the

commodity futures volatility dynamics and that the ARFIMA model consistently produces

the best forecasts or forecasts not inferior to the best in statistical terms.
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1 Introduction

In this paper, we are concerned with volatility forecasting in the Chinese commodity

futures market. Volatility modeling and forecasting is a much devoted area of research as

volatility is considered the ‘‘barometer for the vulnerability of financial markets and the

economy’’ (Poon and Granger 2003, p. 479) and central to asset pricing, derivative val-

uation, portfolio allocation, and risk management. We are interested in this particular

market in part because it has become an important part of the global futures markets with

tremendous trading volume.1;2 More importantly, this market is regulated by two unique

institutional rules that makes it interesting to explore.

The first regulation is the time-dependent margin rate, whereby the margin as a fraction

of the contract value increases as contracts move closer to delivery. Take sugar as an

example. The margin rate for deposit two months prior to delivery is 6 % of the contract

value for an investor. In the month before delivery, it increases to 8 % in the first 10 days,

15 % between the 11th to the 20th day of the month, 25 % in the final 10 days of the

month, culminating to 30 % in the delivery month.3 The second regulation is that, although

they represent 97 % of all investors in the futures markets, individual investors are not

allowed to trade nearby contracts.4 Both regulations effectively push market participation

and trading volume to more distant contracts with implications for market liquidity.

Our contribution to the literature is that we take into account unique institutional reg-

ulations of this market and design empirical volatility forecasting exercises that are

appropriate for the characteristics of the market and the data it generates. Our data on

aluminum, copper, and fuel oil consistently show that contracts with three months to

delivery enjoy the best liquidity. We are not the first to note this pattern (see Liu et al.

2014; Peck 2008), but we are the first to offer solid and detailed evidence. Using 5-min

returns data over long sample periods, we compute three popular liquidity measures that

capture different aspects of liquidity, namely the effective spread of Roll (1984), the

proportion of zero returns of Lesmond et al. (1999), and the Amihud (2002) illiquidity

measure (Goyenko et al. 2009). Our results show that contracts with three months to

delivery are the most liquid as they exhibit the lowest effective spread, the lowest per-

centage of zero returns, and the smallest value for the Amihud (2002) illiquidity measure.

This is different from the majority of futures markets and contracts for which the nearby

contracts are usually the most liquid (see Baillie et al. 2007; Lee 2009; and the references

therein). Crucially, this liquidity pattern results from the unique institutional environment

in which trading takes place.

On the other hand, being an emerging market, the Chinese commodity futures market

exhibits large proportion of zero returns (Bekaert et al. 2007) and this is particularly

evident in our 5-min return series. Even for the most liquid 3-month to maturity contracts,

1 See the Annual Volume Survey Report 2014 published by the Futures Industry Association, the primary
industry association for centrally cleared futures and swaps based in Washington D.C., at https://fia.org. The
Chinese sugar futures contracts rank 3rd globally in terms of trading volume in the Agricultural Category,
while copper ranks 4th in the Metals Category.
2 Our paper is related to Liu et al. (2014) which examine hedging with metal futures in China using
commodity futures contracts, and to Fung et al. (2003) which adopt the bivariate GARCH framework to
analyze the information flow between commodity futures traded both in the US and China.
3 See the document entitled White Sugar Futures (April 2009) on the Zhengzhou Commodity Exchange
website http://www.czce.com.cn.
4 By the end of 2013, there were 2.47 million investors trading in the futures market, 2.39 million of whom
were individual investors (Chinese Futures Association 2015, p. 211).
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the fraction of zero returns is as high as 36.27, 23.90, and 31.50 % on average, respec-

tively, for aluminum, copper, and fuel oil. In the existing literature, intraday data are

widely adopted for volatility modeling and forecasting as they are shown to contain more

information and provide more accurate and efficient forecasts (see Fuertes et al. 2015;

Hseu et al. 2007; Shi and Lee 2008; and the references therein). However, the large

proportion of zero returns in our data suggests that higher data sampling frequency does

not necessarily translate into better forecasting performance due to information loss or

noise in the data (Bandi and Russell 2006; Phillips and Yu 2009). Hence we choose to

perform volatility forecasting by aggregating 5-min data into 15-, 30-, and 60-min intraday

returns and compute daily returns from daily prices so that we can observe and compare

how good different models are at capturing the volatility dynamics given the data.

Equally important for the volatility forecast comparison is the choice of the true

volatility proxy. While true volatility is a latent variable that cannot be observed in the

market, an efficient and accurate representation of it is of great importance for the eval-

uation of volatility forecasts [see Andersen et al. (2010) for an excellent survey]. In this

paper, we undertake three different proxies for the true daily volatility. In addition to the

widely adopted realized volatility measure of Andersen and Bollerslev (1998), we also

consider the median-based measure of Andersen et al. (2012) and the range-based proxy

advocated by Parkinson (1980), both of which are shown to be robust to zero returns,

potential jumps in the underlying price dynamics, and other microstructure related effects.

In terms of volatility models, we begin with the conventional generalized autoregressive

conditional heteroskedastic (GARCH) model of Bollerslev (1986, 1990). Our choice of

models is also motivated by Baillie et al. (2007), which document strong long memory

properties in commodity futures and argue that the fractionally integrated GARCH

(FIGARCH) model captures this feature very well. At the same time, a natural alternative

that works well at capturing the long memory property in realized volatility is the

autoregressive fractionally integrated moving average (ARFIMA) model of Granger

(1980) and Granger and Joyeux (1980). The two models differ in the manner in which

information is extracted from intraday data: intraday returns are first aggregated to obtain

daily realized volatility before the ARFIMA model is adopted to describe and forecast

realized volatility at the daily level; whereas for the FIGARCH model, deseasonalized

intraday data are directly fed into the model. So it is empirically interesting to compare the

performance of the two models using our data.

Our empirical analysis reveals a host of interesting findings. First, in terms of the out-of-

sample forecasting performance, the Diebold and Mariano (1995) and West (1996) test

applied on a pairwise basis and the superior predicative ability test of Hansen (2005),

which tests across alternative models simultaneously, suggest that the ARFIMA model

consistently outperforms the GARCH-type models in the out-of-sample tests. It is the best

performing model in 11 out of 15 commodity/volatility proxy combinations, and for the

remaining four combinations the difference between the forecasting performance of the

ARFIMA model and that of the best performing model is statistically insignificant at any

conventional level. In other words, the ARFIMA model consistently produces the best

forecasts or forecasts not inferior to the best in statistical terms.

It highlights the importance of incorporating the long memory dimension in volatility

modeling in line with the literature. This finding also contributes to the discussion in the

literature of whether the FIGARCH or the ARFIMA model is empirically better at cap-

turing the long memory feature in the volatility dynamics (Chortareas et al. 2011). Given

that the intraday Chinese commodity futures data contain large proportion of zero returns
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which are directly fed in the FIGARCH model, it is not surprising that the ARFIMA model

performs better.

Second, we show that within the GARCH family of models, the forecasting perfor-

mance using the daily data is consistently as good as, if not better than, those using the

intraday data. This finding suggests that the GARCH-type models may not be very efficient

in utilizing the information contained in the intraday data of this particular market for

volatility forecasting purpose due to high percentage of zero returns.

Finally, it is interesting to note that although sugar contracts with January maturity and

November maturity differ massively in terms of trading volume and show different levels

of liquidity, the underlying volatility dynamics is nevertheless captured by the same model

at the same data sampling frequency. For example, when the median- and range-based

proxies are adopted, both futures contracts are best forecasted by the AFRIMA model

using daily realized volatility obtained from the 60-min returns. This further suggests that

the ARFIMA model is a reliable and robust tool for forecasting volatility regardless of the

underlying liquidity level with practical implications for traders and risk managers.

The rest of the paper is structured as follows. In Sect. 2, we briefly outline the alter-

native volatility models, the proxies for the true volatility dynamics, and the statistical

metrics for the out-of-sample volatility forecasts evaluation. Section 3 describes the data

and the model estimates. In Sect. 4, we discuss and analyze main empirical findings.

Finally, Sect. 5 concludes. Details of the three liquidity measures are provided in the

‘‘Appendix’’.

2 Models and statistical evaluation

2.1 Volatility models

In this paper, we consider four popular volatility models at four different data sampling

frequencies for volatility modeling and out-of-sample forecasting. In particular, we make

use of the: (1) intraday GARCH, integrated GARCH (IGARCH), and FIGARCH models at

the 15-, 30-, and 60-min intervals; (2) daily GARCH, IGARCH, and FIGARCH models;

and (3) ARFIMA model applied to the daily realized volatility computed from the 15-, 30-,

and 60-min intervals. The model specifications are briefly outlined below.

2.1.1 GARCH model

The GARCH model is the workhorse in the volatility estimation and forecasting literature

(see Bollerslev 1986, 1990; among others). We use an ARMA(1,1) process in the condi-

tional mean equation of the GARCH-type models. To allow for possible fat tails, we model

the innovations in the GARCH process as independently and identically distributed Stu-

dent’s t-distribution while implementing the ARMA(1,1)-GARCH(1,1) model using both

intraday and daily data. The model specification is given by

~rt;n ¼ lþ c~rt;n�1 þ et;n þ het;n�1; et;njXt;n�1 �Dvð0; ht;nÞ
ht;n ¼ xþ ae2

t;n�1 þ bht;n�1;
ð1Þ

where ~rt;n is the deseasonalized logarithmic return on day t for the nth time interval [see

Eqs. (10)–(12)], l, c, and h are the parameters of the conditional mean equation, and x, a,
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and b are the parameters of the conditional variance equation.5 The error term et;n, which is

conditional on the information set Xt;n�1, follows a Student’s t-distribution (denoted by Dv)

with zero mean, variance ht;n, and v degrees of freedom. The GARCH model requires that

aþ b\1 for the volatility process to be stationary. For the IGARCH model, however, the

corresponding requirement is aþ b ¼ 1.

2.1.2 FIGARCH model

The FIGARCH model extends the conditional variance equation of the standard GARCH

model by adding fractional differences in order to allow for long memory property of the

GARCH volatility process (Baillie et al. 1996; Baillie and Morana 2009). Following

Baillie et al. (2000), we implement an ARMA(1,1)-FIGARCH(1,d,1) model given by

~rt;n ¼ lþ c~rt;n�1 þ et;n þ het;n�1; et;njXt;n�1 �Dvð0; ht;nÞ
ht;n ¼ xþ bht;n�1 þ ½1 � bL1 � ð1 � uL1Þð1 � L1Þd�e2

t;n;
ð2Þ

where x, b, and u are the parameters of the conditional variance equation, d is the order of

fractional integration, L1 is the lag operator on n, and Dv is the Student’s t-distribution

defined above.

2.1.3 ARFIMA model

Granger (1980) and Granger and Joyeux (1980) introduce a flexible class of long memory

processes based on realized volatilities not belonging to the ARCH family. It has been

widely adopted in the literature when long memory properties are assumed in the data (see

Martin and Wilkins 1999; Pong et al. 2003; and the references therein). The ARFIMA

(p, d, q) model for a process yt is defined as

/ðL2Þð1 � L2Þdðyt � lÞ ¼ hðL2Þet; ð3Þ

where d is the order of fractional integration and L2 is the lag operator on t. The AR and

MA polynomial components are given as /ðL2Þ ¼ 1 þ /1L2 þ � � � þ /pL
p
2 and

hðL2Þ ¼ 1 þ h1L2 þ � � � þ hqL
q
2, respectively, and l is the mean of yt. In the empirical

estimation of the ARFIMA (p, d, q) model, we follow Andersen et al. (2003) and replace

yt by the log of the daily realized volatility [denoted as logðr̂tÞ] obtained from the 15-, 30-,

and 60-min returns.

2.2 True volatility proxies

2.2.1 5-min realized volatility

The most popular proxy for the unobservable true volatility is the realized volatility

measure proposed by Andersen and Bollerslev (1998). This is obtained by aggregating the

intraday squared returns. We follow this approach and use a realized volatility series

constructed from 5-min log price series, which is the highest frequency in our data. The

proxy is given by

5 In case of daily data, rt, ht , et , and Xt�1 replace ~rt;n, ~ht;n, et;n, and Xt;n�1, respectively. Moreover, we do

not deseasonalize daily returns used in the empirical analysis.
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r̂2
rv;t ¼

XN

n¼1

r2
t;n; ð4Þ

where r̂2
rv;t is the realized variance for day t and r2

t;n is the squared 5-min (log) return on day

t for interval n (n ¼ 1; 2; . . .;NÞ.

2.2.2 Median-based volatility

The second proxy we exploit for true volatility is the median-based volatility measure

introduced by Andersen et al. (2012). The measure is robust to jumps in the underlying

return dynamics and to small (‘‘zero’’) returns. The median-based true volatility proxy is

defined as

r̂2
med;t ¼

p

6 � 4
ffiffiffi
3

p
þ p

N

N � 2

� �
�
XN�1

n¼2

med ðjDrn�1j; jDrnj; jDrnþ1jÞ2; ð5Þ

where r̂2
med;t is the median-based variance for day t and jDrnj is the absolute return over the

nth interval on day t.

2.2.3 Range-based volatility

The third proxy for true volatility is the range-based measure proposed by Parkinson (1980). It

has been further refined and adopted in Garman and Klass (1980), Yang and Zhang (2000),

and Li and Hong (2011). Taking into account of daily high and low prices, this measure is able

to deal with microstructure biases in the market. The proxy is defined as follows:

r̂2
rng;t ¼

1

4 ln 2
ðlnHt � lnLtÞ

� �2

; ð6Þ

where r̂2
rng;t is the range-based variance for day t , and Ht and Lt are the daily high and low

prices, respectively.

2.3 Forecasting accuracy

We use three different metrics to evaluate the out-of-sample forecasting accuracy of the

volatility models, all of which are commonly adopted statistical measures in the literature

(see, for example, Ahmed et al. 2016).

2.3.1 Root mean squared forecast error

The root mean squared forecast error (RMSFE) compares the true volatility with the

forecasted volatility from a given model and is computed as

RMSFE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

XR

t0¼1

ðĥtþ1 � r̂2
tþ1Þ

2

vuut ; ð7Þ

where R is the number of daily observations, ĥtþ1 is the variance forecast, and r̂2
tþ1 is the

chosen proxy for true variance in the out-of-sample period.
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2.3.2 Diebold and Mariano (1995) and West (1996) test

The second out-of-sample statistical metric of accuracy is the Diebold and Mariano (1995)

and West (1996) MSFE t-statistic, which in our case tests whether a competing volatility

model outperforms the benchmark volatility model by generating more accurate variance

forecasts. We chose the benchmark model based on the lowest RMSFE. The test statistic is

as follows:

MSFE-t ¼ 1ffiffiffiffiffiffiffi
RX̂

p
XR

t¼1

DLosstþ1; ð8Þ

where DLosstþ1 is the difference between the squared forecast error loss functions of the

benchmark and competing volatility models and X̂ is the consistent estimate of the

asymptotic variance of R�0:5
PR

t¼1 DLosstþ1. The null hypothesis can be expressed as

H0 : E½DLosstþ1� ¼ 0: ð9Þ

Since the volatility models are non-nested, the alternative hypothesis in this case is two-

sided. The test statistic in Eq. (12) follows an asymptotic standard normal distribution

under the null hypothesis of equal predictive ability. We regress DLosst0þ1 on a constant

and obtain the MSFE-t statistic for a zero coefficient based on the Andrews and Monahan

(1992) estimator. A positive (negative) and statistically significant MSFE-t statistic sug-

gests that the competing model outperforms (is outperformed by) the benchmark volatility

model.

2.3.3 Superior predictive ability test

To address the multiple-testing problem in the light of data mining, we conduct the

superior predictive ability (henceforth SPA) test of Hansen (2005). Under the composite

null hypothesis, there is no predictive ability across all competing volatility models. In

other words, the null states that the benchmark model is not inferior to any of the alter-

native models. A rejection of the null hypothesis indicates that at least one competing

model produces forecasts more accurate than the benchmark. Once again, we chose the

benchmark model based on the lowest RMSFE and evaluate the out-of-sample forecasts

based on the MSFE. For inference, we report stationary bootstrap p values obtained using

10,000 replications.

3 Data and estimation

The data come from the GTA Information Technology Company. We obtain contract ID,

trading date, trading time, trading venue, contract expiry date, last recorded (Renminbi)

price, high and low prices, and volume for 5-min time series on four commodity futures

contracts: aluminum, copper, fuel oil, and sugar. The full sample period as well as the in-

sample and out-of-sample periods for each commodity are provided in Table 1.6;7 In Panel

D, we find seasonality in trading volume for each contract over the full sample period.

6 The starting and ending dates of the four commodities are constrained by data availability.
7 Chortareas et al. (2011) and Liu et al. (2014) adopt similar sample period for the out-of-sample fore-
casting exercise with foreign exchange and commodity futures data, respectively.
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More precisely, we observe that in terms of average number of contracts traded for each

delivery, there is not much variation across the 12 delivery months for aluminum and

copper, and there is a slight variation for fuel oil. In other words, the number of contracts

traded is relatively stable all-year round. However, with only six delivery months per year,

sugar shows a notable variation in the average number of contracts traded across the

delivery months. In particular, contracts for January, May, and September exhibit huge

trading volumes, while contracts for March, July, and November show the opposite. The

trading volume for January delivery is the highest on average with more than 5.6 million

contracts, whereas for November delivery the average trading volume is the lowest at

18,418 contracts, about 0.32 % of that for January delivery. This striking yet interesting

variation naturally raises the question of how much the volatility dynamics for these two

delivery months are different, if they are different at all. Hence, in the empirical exercises,

we examine two futures contract series for sugar, one for the very liquid January delivery

and the other for the very illiquid November delivery.

Table 1 Sample periods and trading volumes for commodity futures contracts

Aluminum Copper Fuel oil Sugar

Panel A: full sample period

From 1 Aug 2003 1 Aug 2003 8 Oct 2004 6 Jan 2006

To 19 Dec 2013 19 Dec 2013 30 Sep 2011 14 Jul 2014

Panel B: in-sample period

From 1 Aug 2003 1 Aug 2003 8 Oct 2004 6 Jan 2006

To 17 Sep 2012 17 Sep 2012 8 Dec 2010 17 Apr 2013

Panel C: out-of-sample period

From 18 Sep 2012 18 Sep 2012 9 Dec 2010 18 Apr 2013

To 19 Dec 2013 19 Dec 2013 30 Sep 2011 14 Jul 2014

No. of days 300 300 200 300

Panel D: trading volume

Jan 144,825 546,380 238,806 5,686,023

Feb 109,620 452,251 513,169 N/A

Mar 154,988 420,790 396,213 296,452

Apr 114,904 297,649 24,687 N/A

May 138,448 357,730 341,555 4,460,179

Jun 115,161 364,373 192,583 N/A

Jul 117,022 392,841 197,663 300,749

Aug 104,490 520,152 130,340 N/A

Sep 98,125 611,807 162,952 4,343,036

Oct 132,359 635,110 117,432 N/A

Nov 156,022 592,573 175,998 18,418

Dec 125,845 557,593 176,067 N/A

The table presents the full sample periods, the in-sample periods, and the out-of-sample periods, respec-
tively, in Panels A–C for aluminum, copper, fuel oil, and sugar. Panel C reports the number of trading days
for the out-of-sample forecasts. Panel D reports the average number of contracts traded for each delivery
month over the full sample period for each commodity
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In Table 2, we report descriptive statistics of three measures adopted to describe liquidity of

futures contracts at 5-min interval, which is the highest sampling frequency in our data.8 For

aluminum, the Roll spread measure for nearby contracts averages at 0.0006, zero returns account

for 61 % of all 5-min returns on average in a trading day, and the scaled Amihud measure is 0.23.

Comparing these figures to those for the 3 months to delivery contracts, we notice a marked

improvement. In particular, the Roll spread drops to 0.0004, the percentage of zero returns

decreases to 36 %, and the scaled Amihud illiquidity measure drops to 0.03. The liquidity of the

futures contract series subsequently worsens with longer time to delivery. For example, alu-

minum contracts with 3 months to delivery are the most liquid and this liquidity decreases for

contracts with longer or shorter time to maturity. The pattern is mirrored in the liquidity estimators

for other commodities as well. Hence, in our volatility estimation and forecasting exercises for

aluminum, copper, and fuel oil, we use futures contracts with 3 months to delivery, as they are the

most liquid among all maturities, and volatility forecasts are least expected to be biased by the

large proportion of zero returns. While constructing the time series on returns with 3 months to

maturity for aluminum, copper, and fuel oil, we choose prices of the third month prior to delivery

month until the contract reaches the first day of 2 months prior to delivery month. We then switch

to next contract, which is to be matured in 3 months to make continuous time series. Hence, for

these three commodities, the contract time to maturity is always around 3 months. For sugar

futures, however, we are mostly interested in the effect that seasonality in trading volume has on

volatility forecasting. Therefore, we take contracts from January to December for next January

delivery and from November to October for next November delivery. This results in the contract

time to maturity to change over time. The practice of switching contracts to the next delivery

month is common in the literature (see, for example, Baillie et al. 2007).

In our sample, all commodity futures are traded for 4 h on a trading day starting at 9:00

a.m. and closing at 3:00 p.m. with a 2-h break between 11:30 a.m. and 1:30 p.m. As a

result, there are 48 5-min returns on any business day. The (log) return rt;n on a trading day

t for the nth interval is computed as

rt;n ¼ lnPt;n � lnPt;n�1; ð10Þ

wherePt;n denote the commodity futures price on day t and the end of thenth interval. The 15-,

30-, 60-min and daily returns are obtained by taking the logarithmic difference between prices

that are 15, 30, and 60 min apart. The daily returns are computed as rt ¼ lnPt � lnPt�1.

In Table 3, we provide descriptive statistics of commodity futures contract returns at 5-,

15-, 30-, 60-min and daily intervals. We notice that the average returns are very close to

zero irrespective of contracts and data frequencies. Returns are left skewed with fat tails,

although the degree of negative skewness and excess kurtosis tend to drop with decreasing

sampling frequency. In addition, the percentage of zero returns drops considerably from

the 5-min to daily intervals. For example, it is 31.50 % at the 5-min interval, 17 % at the

15-min interval, while only 3.60 % at the daily level for Fuel oil. The trade-off between the

improvement in data quality and the loss of information at lower frequencies could be

crucial for the outcome of volatility measurement and forecasting exercises. In Fig. 1, we

plot the time series of 30-min returns for aluminium, copper, fuel oil, and sugar with

January delivery as an example of the data we employ in this paper.

The volatility of intraday returns are known to display periodicity within a trading day,

which could contaminate the estimation of conventional volatility models (Andersen and

Bollerslev 1997). Following Taylor and Xu (1997), we estimate a simple seasonality term

St;n by averaging the squared returns for each intraday period as follows:

8 A brief discussion of the three liquidity measures are contained in the ‘‘Appendix’’.
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Ŝ
2

t;n ¼
1

T

XT

t¼1

r2
t;n; ð11Þ

where T is the number of trading days in the full sample period. The deseasonalized

intraday returns are obtained as

~rt;n ¼
rt;n

Ŝt;n
: ð12Þ

We then make use of the deseasonlized returns to estimate the intraday GARCH family of

models. In the out-of-sample forecasting, the intraday forecasts are based on the desea-

sonlized filtered returns and therefore transformed back to those from the original returns.

This is implemented as follows:

ĥt;n ¼ Ŝ
2

t;n � ~ht;n; ð13Þ

Table 3 Descriptive statistics of commodity futures returns

Commodity Interval Mean Stdev Skew Kurt Min Max Count Zero
return
(%)

Aluminum 5-min -2.9E-06 0.002 -2.960 180.469 -0.056 0.046 119,357 36.27

15-min -8.7E-06 0.003 -1.695 64.442 -0.055 0.046 39,982 22.78

30-min -1.6E-05 0.004 -1.232 34.453 -0.055 0.046 20,230 15.38

60-min -3.4E-05 0.005 -0.943 18.404 -0.058 0.046 10,334 10.42

Daily -1.2E-04 0.010 -0.602 4.573 -0.060 0.041 2521 0.04

Copper 5-min 1.28E-05 0.003 -1.291 126.346 -0.062 0.064 120,606 23.90

15-min 3.84E-05 0.004 -0.608 42.690 -0.062 0.063 40,478 12.50

30-min 7.68E-05 0.006 -0.388 21.504 -0.062 0.066 20,446 8.16

60-min 1.49E-04 0.008 -0.296 10.161 -0.062 0.068 10,438 3.30

Daily 5.92E-04 0.016 -0.226 1.364 -0.062 0.057 2522 1.98

Fuel oil 5-min 1.05E-05 0.002 -2.071 121.288 -0.061 0.056 74,160 31.50

15-min 3.16E-05 0.004 -1.196 43.084 -0.061 0.055 24,720 17.00

30-min 6.13E-05 0.005 -0.848 21.564 -0.061 0.058 12,360 11.70

60-min 1.24E-04 0.008 -0.676 10.372 -0.061 0.059 6172 7.00

Daily 5.36E-04 0.015 -0.268 2.249 -0.059 0.058 1544 3.60

Sugar (Jan) 5-min -1.40E-06 0.002 -1.570 148.205 -0.078 0.058 98,661 21.84

15-min -3.95E-06 0.003 -0.961 57.962 -0.078 0.058 33,253 11.81

30-min -7.84E-06 0.005 -0.782 31.775 -0.078 0.058 16,901 7.00

60-min -9.34E-06 0.006 0.012 27.693 -0.079 0.116 8725 5.20

Daily 1.64E-05 0.013 -0.050 2.478 -0.078 0.058 2046 1.00

Sugar (Nov) 5-min -4.00E-07 0.002 -0.448 115.778 -0.078 0.053 98,556 55.60

15-min -1.30E-06 0.003 -0.413 44.935 -0.078 0.055 33,212 34.92

30-min -2.90E-06 0.005 -0.161 24.756 -0.078 0.055 16,877 24.27

60-min -8.31E-06 0.006 -0.264 13.689 -0.078 0.053 8707 16.97

Daily -4.63E-05 0.012 -0.045 2.935 -0.075 0.058 2037 1.70
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where ~ht;n is the intraday variance forecast using the deseasonalized returns and ĥt;n is the

transformed variance forecast for the original returns. We produce one-step ahead daily

volatility forecasts for daily models. But for intraday models, we produce 16-, 8-, and

4-step ahead forecasts for 15-, 30-, and 60-min intervals and aggregate them to transform

into daily forecasts. For the ARFIMA model, it is fitted directly to daily realized volatility

aggregated from intraday returns. The out-of-sample forecasts are evaluated against the

daily true volatility proxies described earlier. For all sampling frequencies, we use a rolling

window forecasting scheme to obtain forecasts from all volatility models.

4 Empirical analysis

4.1 In-sample results

We report the in-sample parameter estimates of the intraday GARCH, FIGARCH, and

IGARCH models for five futures contracts at 15-, 30-, and 60-min intervals in Table 4. For

the ARMA(1,1)-GARCH(1,1) model specification in Panel A, most of the AR parameter
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Fig. 1 The time series of returns to the Chinese commodity futures contracts. This figure plots the 30-min
returns series for aluminium (top left), copper (top right), fuel oil (bottom left), and sugar with January
expiry (bottom right) for the full sample
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û
0

.5
9

*
*

*
0

.4
5

*
*

*
0

.2
9
*

*
*

0
.5

6
*

*
*

0
.5

0
*

*
*

0
.3

8
*

*
*

(2
0

.1
0
)

(1
3

.1
6
)

(6
.7

2
)

(8
.0

7
)

(8
.3

1
)

(5
.7

1
)

d̂
0

.4
2

*
*

*
0

.5
1

*
*

*
0

.4
7
*

*
*

0
.3

3
*

*
*

0
.4

2
*

*
*

0
.5

4
*

*
*

(1
8

.8
4
)

(1
2

.9
7
)

(8
.3

1
)

(1
3

.9
6

)
(9

.5
3

)
(4

.1
3

)

v̂
3

.1
5

*
*

*
3

.1
6

*
*

*
3

.3
2
*

*
*

(6
6

.6
4

(4
7

.0
9
)

(2
9

.7
4

)

P
a
n
el

C
:
A
R
M
A
(1
,1
)-
IG

A
R
C
H
(1
,1
)

ĉ
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estimates ĉ are statistically significant at conventional levels. Also, the MA parameter

estimate ĥ is significantly negative in most cases, capturing the first order negative auto-

correlation in the returns. All the parameters in the conditional variance equations are

highly significant at the 1 % level except â for 15-min copper contracts. The fact that

âþ b̂\1 reveals that the GARCH process is stationary, and, since âþ b̂ is close to 1, the

volatility process is persistent. For the contract series with return innovations following a

Student’s t-distribution, the degrees of freedom parameter is between 2 and 4 and statis-

tically significant at the 1 % level. This indicates a fat tail in the return distributions.

In Panel B, when the volatility process is described by an ARMA(1,1)-FIGARCH(1,d,1)

model, we notice that the parameter d, the order of fractional integration, is significantly

different from zero at the 1 % level for all futures contract series. This implies that the

volatility process exhibits a long memory property and attests to the importance of adding

this feature in the volatility dynamics of the commodity futures contract returns under

scrutiny. It is also worth noting that, similar to the results in Panel A, the degrees of

freedom parameter v is highly significant. Panel C shows the parameter estimates of the

ARMA(1,1)-IGARCH(1,1) model specification and the results are qualitatively similar to

those in Panel A.

Table 5 shows the in-sample parameter estimation for the daily GARCH, FIGARCH,

and IGARCH models. These results are qualitatively similar to those in Table 4. We

observe: (1) negative and significant first order autocorrelation in the conditional mean

equation for each model and contract except for the daily IGARCH model using the sugar

contract with January delivery; (2) statistically significant b̂ parameters; (3) highly sig-

nificant fractional integration parameters d̂; and (4) highly significant degrees of freedom

parameters v̂.

We present the in-sample parameter estimates of the ARFIMA model using the daily

realized volatility obtained from the 15-, 30-, and 60-min returns in Table 6. For alu-

minum, copper, and fuel oil, we set the MA term q ¼ 0 as it is statistically insignificant at

any conventional level. The first order autoregression term p̂ is negative and highly sig-

nificant and the fractional integration term d̂ hovers around 0.4 for each of these three

commodities. In cases of January and November contracts for sugar, the first order auto-

correlation p̂ tends to be positive and quite often significant. The MA parameter q̂ is close

to �0:4 and significant at the 1 % level. Similar to other commodities, the fractional

integration parameter estimate for sugar is in the vicinity of 0.45 and is highly significant.

Overall, the in-sample estimates of the GARCH, FIGARCH, IGARCH, and ARMIFA

models reported in Tables 4, 5, and 6 using intraday and daily data reveal that, for the four

commodities, the return innovations are generally negatively autocorrelated with fat tails.

Moreover, the underlying volatility processes are persistent with clear evidence of long

memory properties.

4.2 Out-of-sample predictions

Table 7 reports RMSFEs for all volatility models, where forecasts errors are computed in

comparison with three alternative true volatility proxies. In Panel A, we use the most

widely exploited proxy in the literature, namely, the realized volatility measure constructed

from the 5-min returns. It is interesting to notice that for aluminum and copper futures

contracts, the IGARCH and FIGARCH models produce the smallest RMSFEs, respec-

tively, and both at the daily level. This preliminary evidence suggests that for this par-

ticular true volatility proxy, used in computing forecast errors, information contained in
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ĉ
ĥ
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intraday prices does not help in generating more accurate volatility forecasts. For fuel oil,

the 30-min FIGARCH model produces the smallest RMSFE. It is also interesting to

observe that although the January and November deliveries for sugar contracts differ

massively in terms of trading volume (see Table 1), the ARFIMA model utilizing the daily

realized volatility obtained from the 15-min returns provides the best forecasts for both

futures contracts.

In Panel B, we consider median-based daily volatility as a proxy for true volatility. In

this case, the ARFIMA model beats the rest of the competing models by producing the

lowest RMSFE. More precisely, the ARFIMA model outperforms the other models for

copper, fuel oil, and sugar (both January and November deliveries) when the daily

realized volatility is obtained from the 60-min returns. For aluminum, it is the ARFIMA

model using the daily realized volatility computed from the 30-min returns. Finally, in

Panel C, we make use of range-based volatility as true volatility proxy. Once again, the

ARFIMA model is the best performing model for four out of five commodity futures

contracts. In particular, the ARFIMA model applied to the daily realized volatility

obtained from the 15-min returns leads to the lowest RMSFE for copper. But for alu-

minum and January and November deliveries of sugar contracts, it is the the 60-min

returns based daily realized volatility applied to the ARFIMA model. Fuel oil is the only

exception, for which the daily IGARCH model provides the most accurate out-of-sample

variance forecasts.

Taken together, we notice three interesting and consistent patterns from the preliminary

results in Table 7. First, the ARFIMA model, with its long memory dimension, dominates

the other three volatility models in 11 out of 15 commodity/true volatility proxy combi-

nations. Second, GARCH-type models using daily data outperform similar models using

Table 6 In-sample parameter estimation of the ARFIMA(p, d, q) model

Commodity Return interval AR(1) MA(1) d

Aluminum 15-min -0.14 (-5.15)*** 0.47 (24.40)***

30-min -0.16 (-5.74)*** 0.47 (21.60)***

60-min -0.12 (-3.97)*** 0.38 (17.80)***

Copper 15-min -0.20 (-7.15)*** 0.41 (19.40)***

30-min -0.22 (-8.15)*** 0.40 (19.20)***

60-min -0.22 (-8.11)*** 0.37 (17.60)***

Fuel oil 15-min -0.22 (-6.55)*** 0.38 (15.60)***

30-min -0.23 (-6.77)*** 0.37 (14.80)***

60-min -0.20 (-5.73)*** 0.33 (13.50)***

Sugar (Jan) 15-min 0.20 (1.95)** -0.40 (-3.87)*** 0.48 (21.00)***

30-min 0.20 (2.30)** -0.45 (-4.94)*** 0.48 (16.30)***

60-min 0.12 (1.25) -0.41 (-3.49)*** 0.45 (10.50)***

Sugar (Nov) 15-min 0.22 (2.43)** -0.45 (-4.91)*** 0.48 (16.80)***

30-min 0.19 (2.30)** -0.45 (-5.03)*** 0.47 (14.50)***

60-min 0.17 (1.59) -0.42 (-3.11)*** 0.42 (8.39)***

The table reports the in-sample parameter estimates of the ARFIMA(p, d, q) model using the daily realized
volatility computed from the 15-, 30-, and 60-min returns. Numbers in parentheses are t-statistics, and ***,
**, and * indicate statistical significance at the 1, 5, and 10 % levels, respectively. The in-sample period for
each commodity futures contract is reported in Table 1
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Table 7 Root mean squared forecast error

Interval Model Aluminum Copper Fuel oil Sugar (Jan) Sugar (Nov)

Panel A: 5-min volatility

15-min ARFIMA 5.065 18.767 23.295 6.372 6.699

GARCH 6.343 27.982 33.415 10.236 9.369

FIGARCH 5.866 24.223 32.233 8.604 9.697

IGARCH 5.556 25.056 36.064 8.559 8.887

30-min ARFIMA 5.072 18.819 23.474 6.467 6.796

GARCH 6.855 23.381 28.183 10.061 8.930

FIGARCH 6.117 21.988 21.916 8.626 8.922

IGARCH 5.956 22.270 27.298 8.917 9.301

60-min ARFIMA 5.078 18.981 23.507 6.509 6.944

GARCH 6.845 21.939 25.094 8.737 8.370

FIGARCH 5.764 20.788 22.649 7.993 8.597

IGARCH 5.848 21.505 24.985 8.418 8.749

Daily GARCH 5.081 18.912 23.474 7.315 6.728

FIGARCH 5.052 18.606 23.476 7.101 6.728

IGARCH 5.050 19.038 23.465 7.394 6.765

Panel B: median-based volatility

15-min ARFIMA 1.366 6.461 11.154 2.869 10.962

GARCH 5.064 30.450 30.190 11.128 14.441

FIGARCH 4.002 25.299 30.063 8.934 14.615

IGARCH 3.687 26.740 33.895 8.927 13.893

30-min ARFIMA 1.330 6.282 11.120 2.629 10.877

GARCH 5.655 25.723 24.134 10.997 14.318

FIGARCH 4.410 22.722 12.787 9.009 14.220

IGARCH 4.258 23.808 22.800 9.518 14.655

60-min ARFIMA 1.333 5.938 11.065 2.510 10.827

GARCH 5.593 22.637 19.369 9.483 13.872

FIGARCH 3.754 20.180 13.334 8.169 13.901

IGARCH 4.013 21.828 19.164 9.033 14.196

Daily GARCH 2.109 14.708 11.349 7.328 12.470

FIGARCH 1.699 13.537 11.339 6.943 12.296

IGARCH 1.962 15.196 11.337 7.471 12.516

Panel C: range-based volatility

15-min ARFIMA 1.994 5.581 14.147 5.466 5.464

GARCH 5.190 26.133 35.255 12.659 10.395

FIGARCH 4.178 20.592 36.589 10.617 10.641

IGARCH 3.893 22.314 39.476 10.618 9.668

30-min ARFIMA 1.963 5.685 14.106 5.299 5.314

GARCH 5.747 21.612 24.335 12.516 10.217

FIGARCH 4.571 19.046 18.225 10.705 10.117

IGARCH 4.414 19.771 23.077 11.135 10.647
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intraday data. Third, the ARFIMA model applied to the daily realized volatility obtained

from the higher frequency returns (i.e., 15-min returns) does not always beat the ARFIMA

model using the daily realized volatility computed from the lower frequency returns. The

latter two observations are novel for our chosen futures market because the literature seems

to agree that intraday data enjoy informational advantage over daily data and that fore-

casting performance of the ARFIMA model improves with sampling frequency (Martens

2001; Martens and Zein 2004). We plot in Fig. 2 the time series of forecast errors between

the ARFIMA model and the GARCH model using 30-min returns when the benchmark is

the median-based volatility measure. It is quite evident that for the two products depicted

in this figure, the ARFIMA model provides smaller forecast errors over time.

In Table 8, we provide pair-wise comparison following the well-known Diebold and

Mariano (1995) and West (1996) test based on the Andrews and Monahan (1992) esti-

mator. We choose the benchmark model in each case as the one with the lowest RMSFE in

Table 7. The results suggest that the competing model forecasts are either as accurate

statistically as the benchmark model, or, in most cases, significantly worse. It is interesting

to notice that in Panel A, for aluminum, the ARFIMA model utilizing the daily realized

volatility from the 15-, 30-, ad 60-min returns produces inferior forecasts but the difference

from the benchmark is statistically insignificant. Put differently, the null hypothesis of

equal MSFEs can not be rejected at any conventional level. In fact, for all model/true

volatility proxy combinations, whenever the best performing model utilizes daily data, the

ARFIMA model provides forecasts just as good statistically. These include the daily

IGARCH model for aluminum and the daily FIGARCH model for copper in Panel A, and

the daily IGARCH model for fuel oil in Panel C. For other model/true volatility proxy

combinations, the competing models tend to produce statistically inferior forecasts,

including both sugar contracts in Panels A and C.

As a robustness check, we provide the Diebold and Mariano (1995) and West (1996)

test results obtained by sequentially using each volatility model as the benchmark, based

on their increasing RMSFEs, against the remaining alternative models in Tables 10, 11 and

12. These additional results corroborate the conclusion in Table 8 that the benchmark,

chosen as the one with the lowest RMSFE in Table 7, is indeed the one with the best

volatility forecasting ability.

In Table 9, we perform the SPA test of Hansen (2005) to examine out-of-sample

forecasting ability across all competing models and compute the stationary bootstrap

p values. The null hypothesis is that the benchmark model, the one with the lowest

Table 7 continued

Interval Model Aluminum Copper Fuel oil Sugar (Jan) Sugar (Nov)

60-min ARFIMA 1.957 5.674 14.053 5.249 5.206

GARCH 5.660 18.789 20.009 11.066 9.560

FIGARCH 3.933 16.443 16.070 9.871 9.505

IGARCH 4.159 18.019 19.822 10.639 9.975

Daily GARCH 2.429 11.556 13.902 9.058 7.782

FIGARCH 2.129 10.530 13.905 8.711 7.514

IGARCH 2.319 11.993 13.898 9.180 7.848

This table reports the daily out-of-sample RMSFEs (�10�5) for all models relative to the true volatility
proxies: 5-min realized volatility (Panel A), median-based volatility (Panel B), and range-based volatility
(Panel C). The out-of-sample period for each commodity futures contract is reported in Table 1
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RMSFE, is not inferior to any of the competing models. The test results are resounding.

The probability that the benchmark model is at least as good as the competing models in

forecasting volatility in the out of sample is 1 or very close to it. Taken together, the results

in Tables 8 and 9 clearly confirm and substantiate the observations in Table 7. In other

words, when intraday data are directly used in the GARCH-type models, they are no better

than daily data for volatility forecasting even after deseasonalization. Hence, if a model is

to be recommended for volatility forecasting in the Chinese futures market, it would be the

ARFIMA model, as it is consistently the best performing model or not inferior to the best

performing one statistically.

Finally, we note that although sugar contracts for January and November deliveries

differ in terms of trading volume and liquidity, the underlying volatility dynamics is very

similar. The in-sample parameter estimates are similar between these two series and both

are best forecasted by the same model. When the 5-min realized volatility is the proxy for

true volatility, the ARFIMA model using the realized volatility computed from the 15-min

returns produces the most accurate forecast for both series, while the ARFIMA model

applied to the realized volatility computed from the 60-min interval outperforms
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Fig. 2 The forecast errors for different volatility models. This figure plots the out-of-sample forecast errors
between the ARFIMA model and the GARCH model using the 30-min return series for aluminium (top left),
copper (top right), fuel oil (bottom left), and sugar with January expiry (bottom right). The benchmark is the
median-based volatility measure
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competing models for the other two volatility proxies for both series. In other words,

seasonality in trading volume and differences in liquidity do not affect volatility model

selection.

5 Conclusion

In this paper, we undertake a comprehensive volatility forecasting exercise in a futures

market with unique institutional regulations. In the Chinese commodity futures market,

margin rate is time-dependent and investors face higher deposit as contracts move closer to

maturity. In addition, although individuals account for the majority of investors, they are

not allowed to trade nearby contracts. These two regulations result in a liquidity pattern

whereby contracts with 3 months to delivery are the most liquid and we demonstrate this

by computing three popular liquidity measures with 5-min intraday data for aluminum,

copper, fuel oil, and sugar. In addition, even these most liquid contract series contain large

percentage of zero returns at the 5-min interval.

We explicitly take these features into account when forecasting volatility and utilize

more distant 3 months to maturity contracts at the daily and three different intraday

sampling frequencies. We demonstrate that the long memory dimension is present in our

data in the in-sample volatility modeling. When it comes to out-of-sample forecasting, we

show that the ARFIMA model, which aggregates intraday returns to daily level in gen-

erating daily forecasts, is the best-performing model, or equivalent to the best-performing

model in statistical terms. The FIGARCH model, which also incorporates the long memory

feature in the volatility dynamics, is less efficient in generating forecasts probably due to

the fact that large proportions of intraday returns are zero and the deseasonalized intraday

returns are directly fed into the model.

Table 9 Superior predictive
ability test results

The table reports the Hansen
(2005) SPA test results based on
the MSFE. The benchmark
models are those with the lowest
RMSFE in Table 7. The forecast
errors are computed relative to
5-min realized volatility (Panel
A), median-based volatility
(Panel B), and range-based
volatility (Panel C) measures.
The null hypothesis is that the
benchmark model is not inferior
to the alternative models. The
stationary bootstrap p values are
obtained using 10,000
replications. The out-of-sample
period for each commodity
futures contract is reported in
Table 1

Commodity Benchmark p value

Panel A: 5-min volatility

Aluminum IGARCH daily 1.00

Copper FIGARCH daily 1.00

Fuel oil FIGARCH 30-min 0.99

Sugar (Jan) ARFIMA 15-min 1.00

Sugar (Nov) ARFIMA 15-min 1.00

Panel B: median-based volatility

Aluminum ARFIMA 30-min 0.99

Copper ARFIMA 60-min 1.00

Fuel oil ARFIMA 60-min 0.99

Sugar (Jan) ARFIMA 60-min 1.00

Sugar (Nov) ARFIMA 60-min 1.00

Panel C: range-based volatility

Aluminum ARFIMA 60-min 0.99

Copper ARFIMA 15-min 1.00

Fuel oil IGARCH daily 1.00

Sugar (Jan) ARFIMA 60-min 1.00

Sugar (Nov) ARFIMA 60-min 1.00
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Furthermore, we show that within the GARCH-family of models, the forecasting per-

formance using the daily data is consistently as good as, if not better than, those using the

intraday data, which also attests to the trade-off between information and noise in the

intraday data with many zero returns. Finally, it is interesting to note that even though

January and November contract series for sugar differ massively in terms of trading

volume, their underlying volatility dynamics are well captured and forecasted by the

ARFIMA model at the same data sampling frequency.
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Appendix: Liquidity measures

We use three liquidity estimators widely adopted in the literature to describe the liquidity

of the Chinese commodity futures contracts. They are the effective spread of Roll (1984),

the proportion of zero returns as in Lesmond et al. (1999), and the Amihud (2002) illiq-

uidity estimator. These measures are shown to perform quite well in capturing the different

aspects of the asset liquidity (Goyenko et al. 2009) (Tables 10, 11, 12).

Roll spread

In the seminal paper of Roll (1984), a simple serial covariance spread estimation model is

developed to capture asset liquidity. The effective spread is derived from the serial

covariance properties of transaction price changes. The model has led to a burgeoning

research area in the market microstructure literature with many modifications and exten-

sions (see George et al. 1991; Chang and Chang 1993; and the references therein).

To illustrate, let E and Pt denote the effective spread and the closing price on day t,

respectively, and D is the change operator. Roll (1984) shows that the serial covariance

between changes in prices is

E ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� Cov ðDPt;DPt�1Þ

p
: ð14Þ

In this paper, we follow Goyenko et al. (2009) and adopt a modified version of the Roll

(1984) spread so that we can always obtain a numerical value for this liquidity measure.

Denoting the price change over the nth time interval as DPn, the effective spread can be

expressed as follows:

Roll =
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Cov(DPn;DPn�1

p
if Cov(DPn;DPn�1Þ\0

0 otherwise

�
ð15Þ

Hence, the lower the effective spread, the higher the liquidity of the asset.
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Proportion of zero returns

The second liquidity measure we exploit is proposed in Lesmond et al. (1999) and proves

especially useful and effective in studying liquidity of emerging markets (see, among

others, Bekaert et al. 2007; Lesmond 2005). This measure is based on the transaction cost,

that is, if the value of an information signal is insufficient to outweigh the cost associated

with trading, market participants will choose not to trade, resulting in a zero return. The

measure is easy to implement since it only requires a time series on transaction data. In this

paper, the proportion of zero returns in a trading day is defined as follows:

Zeros ¼ ð# of intraday time intervals with zero returns Þ=N; ð16Þ

where N is the total number of time intervals in a trading day (n ¼ 1; 2; . . .;N). Intuitively,

the lower is the proportion of zero returns, the better is the liquidity of the asset.

Amihud illiquidity measure

The illiquidity measure of Amihud (2002) is another popular estimator in the literature

(see, among others, Baker and Stein 2004; Amihud et al. 2012). It is a price impact

measure that captures the price response associated with one unit currency of trading

volume. Hence, the lower is the illiquidity measure, the better is the asset liquidity. More

precisely, it is defined as the ratio given by

Amihud ¼ Average
jrnj

Volume n

� �
; ð17Þ

where rn is the asset return in log over the nth time interval and Volume n is the US dollar

(in our case, Renminbi) trading volume over the same interval.
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