
SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Exper. 2014; 00:1–26
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/spe

A Transformation-based Approach to Testing Concurrent
Programs using UML Activity Diagrams

Chang-ai Sun1∗, Yan Zhao1, Lin Pan1, Xiao He1, and Dave Towey2

1School of Computer and Communication Engineering, University of Science and Technology Beijing, China
2School of Computer Science, The University of Nottingham Ningbo China, China

SUMMARY

UML activity diagrams are widely used to model concurrent interaction among multiple objects. In
this paper, we propose a transformation-based approach to generating scenario-oriented test cases for
applications modeled by UML activity diagrams. Using a set of transformation rules, the proposed approach
first transforms a UML activity diagram specification into an intermediate representation, from which it then
constructs test scenarios with respect to the given concurrency coverage criteria. The approach then finally
derives a set of test cases for the constructed test scenarios. The approach resolves the difficulties associated
with fork and join concurrency in the UML activity diagram, and enables control over the number of the
resulting test cases. We further implemented a tool to automate the proposed approach, and studied its
feasibility and effectiveness using a case study. Experimental results show that the approach can generate
test cases on demand to satisfy a given concurrency coverage criterion, and can detect up to 76.5% of seeded
faults when a weak coverage criterion is used. With the approach, testers can not only schedule the software
test process earlier, but can also better allocate the testing resources for testing concurrent applications.
Copyright c⃝ 2014 John Wiley & Sons, Ltd.

Received . . .

KEY WORDS: Software Testing; Scenario-oriented Testing; Concurrent Programs; UML Activity
Diagrams

1. INTRODUCTION

The Unified Modeling Language (UML) [28] is the de-facto standard for modeling software
systems. UML captures different aspects of the system and provides different diagrams to specify,
construct, visualize and document artifacts of software-intensive systems. UML 2.0 [8] defines 13
diagrams types, which can be classified into structure, behavior and interaction categories. Based on
these, implementation of systems can be further automated using code generation. Since software
engineering economics indicates that software testing should be performed in earlier stages of the
software development process, it is important to design test cases as early as possible, leading
to an increasing demand for testing techniques which derive tests directly from UML diagram
specifications.

In recent years, much research has looked at test case generation from various UML
diagrams, such as Class Diagrams [5][32], State Diagrams [3][7][13][17][19][26][36][40],

∗Correspondence to: School of Computer and Communication Engineering, University of Science and Technology
Beijing, Beijing 100083, China. E-mail:casun@ustb.edu.cn
†A preliminary version of this paper was presented at the 32nd Annual IEEE International Computer Software and
Application Conference (COMPSAC 2008) [33].

Copyright c⃝ 2014 John Wiley & Sons, Ltd.
Prepared using speauth.cls [Version: 2010/05/13 v3.00]



2 C.-A. SUN ET AL.

Sequence/Collaboration Diagrams [27][38], Use Case Diagramss [14], Activity Diagrams [33][34],
and the combination of Use Cases and State charts [30].

UML Activity Diagrams (UADs) are widely used to model business workflow and the concurrent
behavior of large-scale complex systems, and therefore many domains and applications are most
easily rendered by such flow-based descriptions. They describe how multiple objects collaborate
to implement a set of specific operations or functional scenarios, and the scenarios described
correspond to the business workflow in the implemented systems. Because of this, we believe that
test cases generated from activity diagrams as the basis of functional testing, especially for testing
concurrent behavior, are both appropriate and well-suited for validating the correctness of the entire
system [33].

When generating tests from UADs, we first need to construct a set of test scenarios, which
represent a sequence of performed operations in a software system. When the system to be tested
is complex, the number of test scenarios may be huge, and therefore one challenging task is how to
derive a comprehensive test scenario suite from UADs. Clearly, automatic test scenario generation
would be particularly desirable, but automatic UAD-based test case generation faces the following
difficulties [33][34]:

(1) Some characteristics of the UADs may cause challenges for the generation of test scenarios.
In particular, the fork and join activities are commonly used to model concurrent applications,
but they have some special semantics which are different to the common branch structures,
including that only one branch will be executed when its corresponding condition holds, but
all parallel activities between a fork and its corresponding join must be executed.

(2) Exhaustive coverage of UAD concurrency and branch features could lead to a huge number
of test scenarios, not all of which could be tested, because some infeasible test scenarios
correspond to unreachable paths.

In our previous work [42], we developed a three-layer framework for generating test cases
based on specifications in the form of UADs. An important contribution of this work was a set of
transformation rules. Since UADs often contain elements associated with fork and join branches and
concurrent flows, the approach first converts the UAD into a set of Extended AND-OR Binary Trees
(EBTs) — a standardized intermediate structure. However, how to handle loops in UADs and how
to generate test scenarios from the transformed specification (i.e. EBTs) was not addressed. In [34],
we proposed a recursive algorithm to directly generate test scenarios from UADs with respect to a
basic path coverage criterion, and also developed a tool to automate the algorithm. Note that this
algorithm was not based on the transformed specification.

In this paper, we propose a transformation-based scenario-oriented approach to testing programs
whose behavior is described using UADs. All fork and join elements are eliminated during the
transformation, with concurrent structures represented as binary trees to avoid the path explosion
problem during test case generation. Next, the approach generates test scenarios from the EBTs
according to a coverage criterion for concurrent flows. In this paper, we present a transformation-
based scenario-oriented testing framework, develop a prototype tool to automate this framework,
and present a case study to examine the applicability and effectiveness of the proposed approach.
The main contributions of this paper, together with its preliminary version [33], are fourfold:

(i) We propose a transformation-based scenario-oriented testing framework and develop
transformation rules for converting a UAD to a standardized intermediate structure;

(ii) We propose concurrency coverage criteria for testing concurrent behavior, and develop a set
of algorithms for generating test scenarios with respect to a specific criterion;

(iii) We develop a tool to automate the proposed framework and to interact with UAD-supported
tools; and

(iv) We conduct a case study to validate the feasibility and effectiveness of the proposed approach.

The rest of the paper is organized as follows: Section 2 introduces some of the concepts of UADs,
model-driven testing, and mutation analysis; Section 3 explains the proposed transformation-based
testing approach; Section 4 presents the tool developed to implement the proposed approach; Section

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 3

5 describes a case study to validate the feasibility and effectiveness of the proposed approach;
Section 6 discusses some related work; and Section 7 presents the conclusion and some discussion
about future work.

2. BACKGROUND

In this section, we introduce some of the underlying concepts of UADs, model-driven testing, and
mutation analysis.

2.1. UML Activity Diagrams

The Unified Modeling Language (UML) provides a set of diagrams which enable developers to
specify a system from different views, one of which is the UML Activity Diagram (UAD), which is
widely used for behavior modeling. The UAD can be used to depict the control flows of a certain
operation in the system, or for the entire system, supporting all control structures, such as sequences,
loops, branches, and concurrency.

A UAD usually consists of activities, transitions, decision points, guards, parallel activities,
swimlane guidelines and action-object guidelines. Figure 1 shows an example of a UAD [1] which
models the workflow of a university enrollment system. A start point and an end point are modeled
as a filled circle and a filled circle with a border around it, respectively. A transition describes the
data-flow or control-flow between two activities. A decision point (modeled as a diamond) concerns
selection of the following activities based on those preceding the decision point. The decision point
is sometimes called a branch activity or merge activity. A guard (depicted using the format [· · · ]
on the transitions) is a condition that must be true in order to traverse a transition. For example,
the decision point in Figure 1 has three exiting transitions, each of which has a guard condition.
To traverse the direct transition from the decision point to the activity “Enroll in University”, the
guard condition [trivial problems] must be true. Parallel activities (depicted using two parallel bars)
are used to show that activities can occur in parallel. The first bar (e.g. the left one in Figure 1)
and the second one (e.g. the right one in Figure 1) are called fork and join activities, respectively.
In some situations, called loops, an activity repeats until a specific condition is satisfied — these
structures have two incoming and one outgoing transition. Each activity in a UAD, therefore, is
either an action, a start, an end, a fork, a join, a branch, a merge, or a loop type.

Figure 1. An example of a UAD

Parallel activities and decision points require more attention when deriving test scenarios from
UADs. On the one hand, fork and join activities represent concurrent behavior, and it is necessary
that all parallel activities be executed when testing the system. For instance, each test scenario
derived from the UAD in Figure 1 should contain the activities “Enroll in Seminar(s)”, “Make
Initial Tuition Payment”, and “Attend University Overview Presentation”. However, the order of
these activities may vary. On the other hand, branch and merge activities represent optional behavior,
requiring only that one of the optional activities be executed when testing the system. Due to the

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



4 C.-A. SUN ET AL.

semantics of parallel activities and decision points, automatic derivation of such test scenarios
from a UAD is a difficult task, and when the system under development is large and complex,
the combination or nesting of optional behavior and concurrent behavior may make test scenario
generation even more difficult.

2.2. Model-driven Testing

Modeling is an important and necessary step in the development of large-scale software-intensive
systems: it usually captures the important system aspects, and thus enables exploration and analysis
of key points and properties. MDT (Model-Driven Testing) [9] is a testing method based on the
modeling artifacts. As illustrated in Figure 2, MDT usually consists of the following steps: (i)
Modeling a system; (ii) Deriving abstract tests from the model; (iii) Implementing a system from
the model; (iv) Refining the abstract tests into executable tests; and (v) Running the executable
tests against the system and comparing the actual results and expected ones. MDT makes the
testing (steps ii and iv) and coding (step iii) of a system parallel jobs, thus enabling testers to start
designing tests at the modeling phase rather than waiting until the implementation phase, something
particularly useful when the schedule is tight and/or testing resources are limited.

Figure 2. The main steps of MDT

Given the widespread use of UML, an interesting question is that of how to test a system based
on its UML diagrams. In this paper, we investigate how to effectively and efficiently test a system
with concurrent behavior based on its UAD. A key issue is to generate test scenarios from the UAD,
and use these scenarios to help discover defects earlier.

2.3. Mutation Analysis

Mutation analysis is a fault-based testing technique which hypothesizes certain types of faults that
may be injected by programmers, and then designs test cases targeted at uncovering such faults [10].
Mutation analysis has also been widely employed to evaluate the effectiveness of various software
testing techniques [35]. It applies mutation operators (each describing a simple syntactic change
to the code) to seed faults into the program under test, thereby generating a set of faulty versions,
called mutants. After creating the mutants, a set of test cases is executed on them. When a test case
results in a mutant producing different (incorrect) output compared with the original program, then
we say that that mutant is “killed”. The mutation score (MS) measures the adequacy of a set of test
cases. It is defined as follows:

MS(p, t) =
Nk

Nm −Ne
(1)

where p refers to the program being mutated, t is the test suite, Nk is the number of killed mutants,
Nm is the total number of mutants, and Ne is the number of equivalent mutants. An equivalent
mutant is one whose behavior is the same as that of p, for all test cases. The automatically generated
mutants can be very similar to real-life faults [2], making MS a good indicator of the effectiveness
of a testing technique [35]. We therefore use the MS to evaluate our proposed approach.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 5

3. TRANSFORMATION-BASED SCENARIO-ORIENTED TEST CASE GENERATION

In this section, we present a transformation-based scenario-oriented test case generation method
based on UADs.

3.1. Overview

Generating test cases from UADs is a kind of model-driven testing technique which can be more
challenging than traditional black-box or white-box testing due to the fact that there are multi-
design aspects which are usually separate. We assume that sufficient information has been provided
in the UAD specification, and that it contains no inconsistencies. These two assumptions are
justifiable because UML-based software development emphasizes modeling the system’s structure
and behavior in order to support automatic code generation. This means that sufficiently detailed
information is provided in the design model, and inconsistency checking is performed before testing
begins.

To deal with the challenges in activity diagrams due to fork and join activities, we propose a
transformation-based approach to generating test cases, focusing mainly on the testing of concurrent
activities (illustrated in Figure 3). The approach includes the following four major steps:

1. Preprocessing: Parse the UAD specification (often represented in an XML Metadata
Interchange (XMI) file) to produce a UAD graph model, which not only contains a set of
activity and transition entries, but also has essential information for the test case generation.

2. Transformation: Based on a set of transformation rules, convert the UAD graph into an
intermediate representation called an Extended AND-OR Binary Tree (EBT). This results in
fork and join elements being eliminated, and other branches (including loops) and concurrent
flows all being represented as EBTs. Using such a standard representation, test scenario
generation algorithms can easily be developed.

3. Generating test scenarios: Traverse the derived EBTs to generate a set of test scenarios with
respect to the given concurrency coverage criteria. The EBTs are a general test specification
language based on which we can develop algorithms satisfying different concurrency
coverage criteria.

4. Test data generation: For each test scenario, derive test data by selecting the corresponding
decisions along the test scenario. To do this, we can first randomly generate a test data pool,
and then select the appropriate data as test cases. In our future work, we will use constraint
solver techniques to automatically generate the test data for each test scenario.

We next discuss in detail the main steps of the proposed approach.

3.2. Preprocessing

Most existing UML tools (such as IBM Rational Rose† and ArgoUML‡) support UAD modeling.
In order to facilitate the exchange of modeling artifacts, UML specifications are normally stored
as XMI (XML Metadata Interchange) files. To generate tests from the UAD specifications, we
need to extract the elements or properties that are essential for testing. Such preprocessing has
two implications: (1) We can skip those elements or properties unrelated to testing; and (2)
Transformation rules and test scenario generation algorithms can be developed without being
restricted to a specific input format — thus they are reusable.

For each activity a, we extract an entry <ID, resposeID, noOutTransitions, type, name>, where

- ID is the unique label of a. All activities are labeled as follows:

(1) Starting from zero and labeling in order the activities from start to end.

†http://www-03.ibm.com/software/products/en/ratirosefami/
‡http://argouml.tigris.org/

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



6 C.-A. SUN ET AL.

Figure 3. An illustration of the transformation-based framework

(2) When a branch or fork activity is encountered, labeling the activities in order along the
path until all activities have been processed.

(3) When an activity whose noOutTransitions is greater than two is encountered, if the ID
of the following activity has been assigned, then skipping over this path; otherwise,
switching to another following activity and repeating steps (1), (2), and (3).

- responseID is a specially designed label which is used to identify the hierarchy of the activity.
It is defined as follows:

- If the type is start, action, or loop, its responseID is the ID of next activity whose type
is not action;

- If the type is branch, its responseID is the ID of its corresponding merge activity;
- If the type is fork, its responseID is the ID of its corresponding join activity;
- If the type is merge or join, its responseID is equal to its ID plus 1.
- If the type is end, its responseID is its own ID.

- noOutTransitions is the number of transitions leading to activities from a.
- type is the type of a — either start, end, action, fork, join, branch, merge, or loop.
- name is the name of a.

For each transition t, we extract an entry <iID, oID>, where

- iID is the ID of the incoming activity of t.
- oID is the ID of the outgoing activity of t.

We store the extracted activities and transitions in a UAD graph structure, which is defined as
follows.

Definition 1 (UAD Graph): A UAD graph is a 4-tuple < A, T,C, L >, where T : A× C → A,
and where: A is the collection of activity entries; T is the set of transitions; C is the set of constraint
conditions that must be satisfied when transitions in T happen; and L is a label function which
assigns a unique label to each activity and transition.

3.3. Transformation

In the next step, our approach converts the UAD graph into an EBT using a set of transformation
rules. We next provide a formal definition of an EBT, and then present the transformation rules.

Definition 2 (EBT): An EBT is a tuple < N,E, ψ >, where N =
−→
A + {BOR, MOR, FAND,

JAND, CYCLE}, with
−→
A being the nodes mapped from activities A in the UAD; BOR and MOR

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 7

are extended OR nodes designed for branch and merge activities, respectively; FAND and JAND are
extended AND nodes designed for fork and join activities, respectively; CYCLE is designed for loop
activities; E is a set of two-tuples < n1, n2 > where n1 ∈ N and n2 ∈ N ; and ψ is a function which
assigns a unique label for each node and edge.

Rule 1 (Transformation rule for an action activity): A common UAD action activity does not
require special treatment, and is converted into a normal node, and stored as a left child of the EBT.
The start activity should be converted into a root node of the EBT, and the end activity should be
converted into a leaf node.

Rule 2 (Transformation rule for a branch or fork activity): For a UAD fork activity with two
outgoing transitions t1, t2 ∈ T , (where ti is (a, ci) → ai, 1 ≤ i ≤ 2, ci ∈ C, ai ∈ A) generate a node
n to replace a, and add a logical node FAND. Connect n and FAND with an edge labeled NULL,
and set the outgoing transition edges of FAND to FAND −→e1 n1 and FAND −→e2 n2, where
e1 and e2 are the mapped edges of transitions t1 and t2 in the UAD’s T ; and n1 and n2 are the
mapped nodes of activities a1 and a2 in the UAD’s A.

The transformation of a branch activity is similar to that for fork, but replacing FAND with BOR.

Figure 4. Transformation of a fork activity

With the above transformation rule, we can convert a fork activity into an EBT by first creating a
corresponding node and then adding a FAND node as its left child; we then treat the two following
parallel activities as the left and right child nodes of the FAND node. Figure 4 illustrates this
transformation of a fork activity. For a branch activity, we first create a corresponding node, add a
BOR node as its left child, then treat the two following branch activities as the left and right child
nodes of the BOR node.

Rule 3 (Transformation rule for a join or merge activity): For a UAD join activity a with
multiple incoming transitions t1, . . . , tm ∈ T (where m ≥ 2, ti is (ai, ci) → a, 1 ≤ i ≤ m, ci ∈ C,
and ai ∈ A), generate a node n to replace a and add a logical node JAND. Connect n and
JAND with an edge labeled NULL; and set the incoming transition edges of JAND to n1 −→e1

JAND, . . . , nm −→em JAND, where e1, . . . , em are the mapped edges of transitions t1, . . . , tm in
the UAD’s T ; and n1, . . . , nm are the mapped nodes of activities a1, . . . , am in the UAD’s A.

The transformation of a merge activity is similar to that for join, but replacing JAND withMOR.

Figure 5. The transformation of a join activity

With the above transformation rule, we can convert a join activity into a set of EBTs by first
creating a corresponding node, and then adding a JAND node as its parent, and then treating each

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



8 C.-A. SUN ET AL.

preceding parallel activity as a parent of the JAND node. Figure 5 illustrates this transformation
of a join activity. Similarly, for a merge activity, we first create a corresponding node, add a MOR
node as its parent, and then treat each preceding branch activity as a parent of the MOR node.

Rule 4 (Transformation rule for a multi-fork or multi-branch activity): For a multi-fork activity a
with more than two outgoing transitions t1, . . . , tm ∈ T , where m > 2, the transformation is done
as follows: (i) create a corresponding NULL node a′ to replace a, and add a logical FAND node
f as its left child; (ii) randomly select an unprocessed following parallel activity as the left child
of f (using Rule 2), and add a logical node FAND f ′ as the right child; (iii) if the number of
the following unprocessed parallel activities is more than one, go to step (ii); otherwise, set the
following unprocessed parallel activity as the right child of f ′.

Figure 6 illustrates the transformation of a multi-fork activity. The transformation of a multi-
branch activity is similar to that for multi-fork, but replacing FAND with BOR.

Figure 6. The transformation of a multi-fork activity

Unlike a common action activity, a loop activity has two incoming and one outgoing transition, as
illustrated in the left part of Figure 7. We identify loop activities using the concept of post-activities,
which is defined next. An activity a is a loop activity if and only if a is subsumed in its post-activities.

Definition 3 (Post-Activities of an activity): Given an activity a in the UAD,
the post-activities of a are defined as postActivities(a+) = a1 ∪ a2, ...,∪an, where
a1 = postActivities(outTransitions(a)), · · · , an = postActivities(outTransitions(an−1));
outTransitions(a) is a set of outgoing transitions of a; and postActivities(t) is a set of target
activities of transition t.

We convert a loop activity into the combination of one merge activity and the original activity,
as illustrated in the right part of Figure 7. After the transformation, one fake merge activity A′ and
one fake transition T ′ are introduced into the converted UAD. The transformation does not cause
additional elements from the point of view of testing, but it does have problems: the merge and
branch nodes do not match; and the merge node is ahead of the branch node, which will cause the
test scenario derivation algorithm (to be described later) to fail. Considering that each conditional
branch of the loops should be covered at least once from the point of view of testing, we next
propose a transformation rule for a loop activity.

Rule 5 (Transformation rule for a loop activity): For a UAD loop activity with two
incoming transitions t1, t2 ∈ T (where t1 is (ax, c1) → a; t2 is (ay, c2) → a; ax, ay ∈ A; and
ay ∈ postActivities(a+)), generate a cycle node n to replace a, and generate a sequence of nodes

Figure 7. An illustration of a loop activity

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 9

Figure 8. The transformation of a loop activity

ni to replace activities in postActivities(a+) \ ay(n and nodes ni are referred to as the loop body).
Add a logical node BOR and one logical node MOR, and connect them; add another logical node
MOR, connect BOR to the loop body, and connect the loop body to MOR.

With the above transformation rule, we can convert a loop activity into a set of EBTs. We first
create a sequence of nodes to represent the loop body, then create two branches as leaves of the
BOR node: one is the loop body (as the left child), and the other is empty (as its right child); both
of them end with a MOR node. Figure 8 shows this transformation of the loop activity illustrated in
Figure 7.

We developed the algorithm shown in Figure 9 to implement the automatic transformation. The
algorithm reads in a UAD graph model and outputs a set of EBTs. It traverses all activities in the
graph model and handles each activity according to its type. The conversions are conducted based
on the transformation rules above: (i) if the current activity is an action activity, convert it to a
NORMAL node and add it to the EBT; (ii) if the current activity is a fork or branch activity, create
a FAND or BOR node and add it to the EBT, then get the child activities of the current activity and
convert them recursively; (iii) if the current activity is a join or merge activity, create a JAND or
MOR node and add it to the EBT, then get the child activities of the current activity and convert
them recursively; (iv) if the current activity is a loop activity, create a CYCLE node and add it to the
EBT, and then recursively get the child activities and convert them.

Although a theoretical proof of the transformation’s correctness would be ideal, it is well known
that the UML is a visual formal modeling language with a limited formalism, and the semantics
of UADs is provided in UML standard manual. Given the difficulty in proving the transformation
correctness, we instead turn to testing to validate the transformations.

3.4. Generating Test Scenarios

A UAD describes the important business scenarios of a system being modeled, with a path leading
from a start activity to an end activity forming a test scenario. The question of generating test
scenarios from UADs, therefore, is reduced to one of deriving executable paths from a directed
graph. With the proposed transformation rules, we can now convert UADs containing fork and join
concurrency into extended binary trees (EBTs). Here, we discuss how to derive test scenarios from
the EBTs.

Definition 4 (Test scenario): A test scenario TS, derived from a UAD, is a sequence of activities
{a1, a2, · · · , an}, where ai (i = 1..n) ∈ A of the UAD (the type of each ai (i ̸= 1 ∧ i ̸= n) is one of
action, fork, join, branch, merge, or loop; and a1 and an are the start and end nodes of the UAD,
respectively). There must be a transition between any ai and ai+1 (i=1..n-1), or ai and ai+1 must
come from different parallel activities.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



10 C.-A. SUN ET AL.

Figure 9. Algorithm for converting a UAD graph to a set of EBTs

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 11

Generating test scenarios is a key step in the generation of test cases. Because it is usually
impossible or infeasible to test all possible paths (due to limited testing resources), three coverage
criteria [33] have been proposed:

1. Weak concurrency coverage. Test scenarios are derived to cover only one feasible sequence
of parallel processes, without considering the interleaving of activities between parallel
processes.

2. Moderate concurrency coverage. Test scenarios are derived to cover all feasible sequences
of parallel processes, without considering the interleaving of activities between parallel
processes.

3. Strong concurrency coverage. Test scenarios are derived to cover all feasible sequences of
activities and parallel processes.

Consider the parallel activities of the UAD example in Figure 1. For clarity, we denote the
activities “Attend University Overview Presentation”, “Enroll in Seminar(s)” and “Make Initial
Tuition Payment” as a1, a2, and a3, respectively. When the weak concurrency coverage is
used, either “a1 → a2 → a3” or “a2 → a3 → a1” should be tested; for the moderate concurrency
coverage, both “a1 → a2 → a3” and “a2 → a3 → a1” should be tested; and for the strong
concurrency coverage, “a1 → a2 → a3”, “a2 → a3 → a1”, and “a2 → a1 → a3” should all be
tested. Clearly, these concurrency coverage criteria require that the derived test scenarios cover each
parallel process at least once. Both weak and moderate concurrence coverage test the activities
and control flows within a parallel process in a sequential way. Strong concurrency coverage
considers the crossing of activities and control flows from parallel processes, which may result
in a huge number of test scenarios, and thus may be impractical. Our proposed approach has so far
implemented only the weak and moderate concurrency coverage.

We propose an algorithm (shown in Figure 10) to generate test scenarios from EBTs, with respect
to weak concurrency coverage. The algorithm generates test scenarios from a start node to an end
node recursively. The algorithm first traverses all the nodes of each EBT to generate test scenarios
according to their types, and then combines all partial test scenarios for each part to form complete
test scenarios. We next briefly explain this algorithm.

• If the start node is a NORMAL node, add it to the generated test scenario, and process the
next following node.

• If the start node is a FAND or BOR node, first create two scenarios: one from the start node
to the matching response node that is specified by its responseID, and the other from the
first node after the matching response node to the end node; then merge these two scenarios
together.

• If the start node is a JAND or MOR node, traverse all nodes starting from the start node of
another EBT.

• If the start node is a CYCLE node, first create two scenarios: one from the first node to the
last node in the loop, and another from the first node after the CYCLE to the last node; then
merge them together.

• If the start node is the END node, add it to the generated test scenario, and return the resulting
sequence.

Because the algorithm in Figure 10 traverses all nodes in the EBTs, its complexity is proportional
to the number of nodes n, namely O(n).

We also propose an algorithm to generate test scenarios satisfying the moderate coverage criteria,
as shown in Figure 11. The algorithm is similar that in Figure 10, except that additional processing
is required in relation to the FAND node (permutation between the node and its corresponding
responseID node).

• If the start node is a NORMAL node, add it to the generated test scenario.
• If the start node is a BOR node, first create two test scenarios: one from the start node to the

matching response node specified by its responseID, and the other from the first node after
the matching response node to the end node; then merge these two scenarios together.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



12 C.-A. SUN ET AL.

Figure 10. Algorithm for generating test scenarios with weak concurrency coverage

• If the start node is a FAND node, first create three partial test scenarios and store them
separately. Then combine the three partial test scenarios to get all possible scenarios.

• If the start node is an MOR or JAND node, then process all nodes in another EBT starting
from the start node.

• If the start node is a CYCLE node, first create two test scenarios: one from the first to the last
node in the loop, and the other from the first node after the loop to the end node; and then
merge these two scenarios together,

• If the start node is the END node, the add it to the generated test scenario, and return the
resulting sequence.

The algorithm generates partial test scenarios by only processing each node once in the EBTs. To
combine the concurrent nodes, the algorithm needs to repeatedly call a traversal function. Assuming
that the number of concurrent nodes is m, then the number of concurrent partial test scenarios is m!,
making the overall complexity of the algorithm O(m! + k(nm)), where n is the number of EBT
nodes, and k is a constant.

3.5. Test Data Generation

The Category Partition Method (CPM) [29] is used to create functional test suites from system
specifications. In CPM, a category is a major property or characteristic of a parameter or
environment, choices are distinct possible values within a category, and a test frame is a set of
choices. In the context of test scenarios, we revise these definitions: each complete and feasible test

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 13

Figure 11. Algorithm for generating test scenarios with moderate concurrency coverage

scenario is a complete test frame, and a test case with respect to a particular test scenario corresponds
to a set of choices whose values can be used to execute the test scenario. Our approach identifies
the categories and choices by processing conditions in the branch activities (decision guards), and
identifies the dependency relationships between different choices by judging whether these choices
occur in the same scenario paths. Finally, we generate test cases by filling in the values for those
guards and inputs required in each activity along the scenario path.

Recall the example in Figure 1 (in Section 2.1), the guard condition of the “Obtain Help to Fill Out
Forms” activity is “[help available]”, the guard condition of the branch activity is “[incorrect]”, and
there is a dependency between the choices “[help available]” and “[incorrect]” because the choice
“[help available]” holds depending on the choice “[incorrect]”. If a test frame does not satisfy this
dependency, it is infeasible; otherwise, it is feasible. For instance, “[incorrect]”→“[help available]”
is a feasible test frame, while “[correct]”→“[help available]” is an infeasible test frame.

To partially automate the test data generation, we randomly generate a set of potential test data,
and select as test cases those satisfying the choices. Specifically, we first analyze the input format
of the given implementation. For instance, the acceptable input of the student enrollment system
in the example could be a student record, potentially consisting of identity, name, age, gender, etc.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



14 C.-A. SUN ET AL.

Next, we randomly generate a large number of test cases without considering possible constraints
among the input variables. Finally, we select those test cases that satisfy the guard conditions within
a test frame to be part of the test suite. Techniques that can select test case for a program path, such
as constraint solver techniques [25], can also be used. In the current study, we give higher priority
to boundary valves in order to improve the fault detection capability of our approach, and thus the
selection of test cases has been done manually. Automatic test case generation for a specific scenario
path is left for our future work.

4. TOOL PROTOTYPE

In this section, we introduce a tool, ConcurTester, developed to automate the proposed approach.

4.1. Features

When UADs are used to model complex business processes or workflow systems, the result may
often contain a large number of activities and transitions. Because generating test scenarios from
such a UAD is time-consuming and error prone, a tool which could automate the proposed approach
is highly desirable.

ConcurTester was developed using Java. It consists of 1966 lines of code, and has the following
functionality:

1. Preprocessing: It imports the UAD specification file (in XMI format), and parses it to extract
the relevant elements, including activity and transition entries, then stores them as a graph
structure.

2. Transformation: It converts the graph structure into EBTs based on the transformation rules.
3. Generating test scenarios: It generates test scenarios from the EBTs with respect to different

concurrency coverage criteria, and presents the generated scenarios for further analysis.

4.2. Pilot test

We use the UAD shown in Figure 12 to illustrate usage of ConcurTester. First, we import the UAD
specification of the system to be tested by clicking the Import File button on the tool. We assume
the specification is a standard XMI file generated by ArgoUML§.

After the specification is imported, we click the Convert File button to parse the XMI file and
convert it into a graph structure containing the activity and transition entries. When the conversion
is finished, a text file is created to store the graph structure.

After generating the graph structure, we click the Generate Tree button to transform it into EBTs
using the transformation rules. The transformation result is presented in the Generated AND-OR
Tree tab, as shown in Figure 13.

After generating the EBTs, we click the Generate Path button to create a set of test scenarios.
The “Weak Coverage Path” tab presents the generated test scenarios satisfying the weak coverage
criterion (as shown in Figure 14), and the “Moderate Coverage Path” tab shows the generated test
scenarios satisfying the moderate coverage criterion (as shown in Figure 15).

5. CASE STUDY

In this section, we report on a case study conducted to examine the proposed approach and evaluate
its effectiveness. In the study, we employed ConcurTester to automatically generate test scenarios,
using a product ordering system as subject program. Mutation analysis was used to evaluate the
effectiveness of the proposed approach.

§ArgoUML is a widely recognized, open source UML modeling tool, available from the following website:
http://argouml.tigris.org/.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 15

Figure 12. The ordering products process modelled by UAD

Figure 13. Generated intermediate AND-OR tree sequence of the UAD

5.1. Research Questions

Through this case study, we attempt to answer the following questions:

1. Is the proposed approach able to generate test cases for a program whose behavior is modeled
by UAD?

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



16 C.-A. SUN ET AL.

Figure 14. Generated test paths for weak coverage criterion

Figure 15. Generated test paths for moderate coverage criterion

2. What is the fault detection capability of the test suite generated using the proposed approach?

5.2. Experimental Design

We next describe the experimental settings, including the subject program, metrics, mutation, and
procedure.

5.2.1. Subject Program An order processing (product ordering) system, the workflow for which is
shown in Figure 12, was selected as subject program in the case study. It is small but representative,
with most characteristics of a workflow system, and has been previously used to illustrate the

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 17

UAD [11]. Until now, however, there has not been an implementation available, so we implemented
it using Java in a total of 281 lines of code. In our implementation, the program receives five input
parameters, namely morePro, proNum, proPrice, totalPrice, and shipInfo: morePro indicates if there
are remaining order items to be processed; proNum denotes the number of products; proPrice is the
price of each product; totalPrice is the total price of all products; and shipInfo is the transport
information.

The UAD in Figure 12 involves various types of activities, including start, end, action
(Getting Shipping Information, Validating Billint Information, Provide Receipt, Assemble Order,
and Ship Order), branch, merge, fork, join, and loop activities (Order Prodcuts and
Getting Billing Information). Getting Billing Information involves calculation of cost, comparison
of the prices of each product, and comparison of the total price with that of the calculated amount for
the number of products; and Validating Billint Information verifies the cost. Among these activities,
the billing information processing (Getting Billing Information and Validating Billint Information)
and shipping information processing (i.e. Getting Shipping Information) are treated as parallel
activities, which are accordingly implemented using concurrent threads.

5.2.2. Metrics The effectiveness of the proposed approach was measured using the mutation score
(MS), which indicates the adequacy of a test suite for the program under test.

5.3. Experimental Procedure

1. Preprocessing, transformation, and generating test scenarios using ConcurTester: We used
ConcurTester to parse the UAD specification (in an XMI file) for product ordering, as
illustrated in Figure 12. After this, we extracted the collection of activity and transition entries
and stored them as a graph structure. Then, ConcurTester was used to transform the graph
structure into the intermediate representation (EBTs). During the transformation, all branches
and concurrent flows were represented as EBTs. Each loop body was either executed once, or
not at all. Finally, ConcurTester generated a set of test scenarios from the EBTs based on a
given coverage criterion.

2. Test case generation: We generated a large amount of random test data, from which we
selected only those satisfying the generated test scenarios to be in the test suite. As a result,
we selected 15 test cases for each test scenario — when the weak coverage criterion was used,
four test scenarios were generated in our experiments.

3. Seeding faults: In the study, an open-source mutation system, muJava [22], was used to
randomly seed faults into the Java program for product ordering. The muJava system supports
16 types of method-level (traditional) and 29 types of class-level mutation operators¶ of
which 7 method-level and 5 class-level operators were applicable for our study. Using these
applicable operators, a total of 170 method-level and 47 class-level mutants were generated,
among which 30 method-level and 17 class-level mutants were equivalent, and therefore
excluded.

4. Executing tests and collecting the results: We next applied each test in the test suite to both
the original program and the mutants, comparing the output. If the output was the same, then
the current test passed; otherwise, a fault was detected (and the mutant “killed”). If none of
tests could kill the mutant, the test suite failed.

5.4. Results and Analysis

5.4.1. Feasibility For the product ordering system, we extracted the collection of activity and
transition entries through preprocessing, as shown in Tables I and II, respectively. We then used
ConcurTester to generate test scenarios. Table III shows four test scenarios generated according to
the weak coverage criterion. Finally, we generated test data for each scenario.

¶Their detailed descriptions are available on the website: http://cs.gmu.edu/˜offutt/mujava/

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



18 C.-A. SUN ET AL.

Table I. The collection of activity entries

ID responseID noOutTransitions type name
0 1 1 start noname
1 2 1 loop Order Product
2 2 2 branch noname
3 8 2 fork noname
4 6 1 loop Getting Billing Information
5 6 1 action Validating Billing Information
6 6 2 branch noname
7 8 1 action Getting Shipping Information
8 9 1 join noname
9 12 1 action Provide Receipt

10 12 1 action Assemble Order
11 12 1 action Ship Order
12 12 0 end noname

Table II. The collection of transition entries

iID oID
0 1
1 2
2 1
2 3
3 4
3 7
4 5
5 6
6 4
7 8
6 8
8 9
9 10

10 11
11 12

Table III. Generated Test scenarios using weak coverage criterion

No. Test Scenario
1 noname -> Order Product -> Getting Billing Information ->

Validating Billing Information -> Getting Shipping Information ->
Provide Receipt -> Assemble Order -> Ship Order

2 noname -> Order Product -> Order Product -> Getting Billing Information ->
Validating Billing Information -> Getting Shipping Information ->
Provide Receipt -> Assemble Order -> Ship Order

3 noname -> Order Product -> Getting Billing Information ->
Validating Billing Information -> Getting Billing Information ->
Validating Billing Information -> Getting Shipping Information ->
Provide Receipt -> Assemble Order -> Ship Order

4 noname -> Order Product -> Order Product -> Getting Billing Information ->
Validating Billing Information -> Getting Billing Information ->
Validating Billing Information -> Getting Shipping Information ->
Provide Receipt -> Assemble Order -> Ship Order

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 19

5.4.2. Fault detection capability We next analyze the fault detection capability of the test suite
generated using the proposed approach. In order to study the impact of the test suite size on the
effectiveness of the proposed approach, we varied the size to be 4, 20, 40, and 60, which corresponds
to 1, 5, 10, and 15 test cases per scenario, respectively. We further compare the fault detection
effectiveness of our proposed approach with that of random testing, comparing their MS scores for
the same numbers of test cases.

Table IV presents the MS results for each test scenario, displayed according to “Method-level”
and “Class-level”. Note that when the evaluation results for different test suite sizes are the same,
we merge the evaluation results into one column in order to reduce the redundancies. For instance,
for method-level faults, test suites with a size of 20, 40, and 60 have the same mutation scores, we
show the evaluation results in the “size=20/40/60” row. This reduction rule was also applied to the
other tables in this section.

From the table, we can observe that: (i) for both method-level and class-level faults, the generated
test suite shows a good fault-detection effectiveness, i.e. the test cases generated using the weak
coverage criterion were able to detect more than 45.7% of the method-level faults, and were able to
detect more than 73.3% of the class-level faults; (ii) the test suites derived for different test scenarios
have a different fault detection capability; (iii) the detection rates of class-level faults appear higher
than those of method-level faults; and (iv) the generated test suite size appears to have a slight impact
on the fault detection rates of method-level faults. For class-level faults, test suites of different sizes
have the same mutation scores, while for method-level faults, test suites whose sizes are 20, 40, and
60 have the same mutation scores, and one test suite of size 4 (namely one test case per test scenario)
has slightly lower mutation scores. This further indicates that our approach does not need a large
number of test cases for each scenario.

Table IV. The MS results using the weak concurrency coverage criterion for each test scenario

Level Number of Test
Cases

Test
Scenario 1

Test
Scenario 2

Test
Scenario 3

Test
Scenario 4

Method-level size=4 51.4% 45.7% 56.4% 54.3%
size=20/40/60 56.4% 54.3% 63.6% 61.4%

Class-level size=4/20/40/60 73.3% 73.3% 86.7% 86.7%

Table V presents the MS results of both our approach and the random approach, according to
“Method-level” and “Class-level”, and also overall (“Total”). From the table, we can observe that:
(i) the test suites generated by our approach using the weak coverage criterion can detect 100%
of non-equivalent class-level faults, regardless of suite size. One test suite of size 4 generated by
the random approach can detect only 73.3% of non-equivalent class-level faults, while it can detect
100% class-level faults when suite sizes are 20, 40, and 60; (ii) the test suite whose size is 4 generated
by our approach can detect 75.7% of non-equivalent method-level faults, giving an overall detection
rate of 80% for all seeded faults, whereas the test suite of size 4 generated by the random approach
can detect only 34.3% of non-equivalent method-level faults, giving an overall detection rate of
41.2% for all seeded faults; (iii) test suites whose sizes are 20, 40, and 60 generated by our approach
can detect 80% of non-equivalent method-level faults, giving an overall fault detection rate of 83.5%
for all seeded faults, indicating that increasing the size of test suits composed of randomly generated
test cases for each test scenario does not always improve the fault detection rates. Test suites whose
sizes are 20, 40, and 60 generated by the random approach can detect 69.3% of non-equivalent
method-level faults, giving an overall fault detection rate of 74.7% for all seeded faults; and (iv)
for the same sizes, test suits generated by our approach achieve higher mutation scores than those
achieved by the random approach, with the differences being more prominent when the size is small
(with a size of 4, their mutation scores are 80% and 41.2%, respectively).

Tables VI and VII report the mutation scores for the method-level and class-level mutation
operators, respectively. Accordingly, we have the following observations:

• For AORB (replace basic binary arithmetic operators with other binary arithmetic operators),
AOIU (replace basic unary arithmetic operators with other unary arithmetic operators), and

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



20 C.-A. SUN ET AL.

Table V. The mutation score MS results of our approach and the random approach

Our Approach Random Approach
Number of Level Number

of
Number

of
Mutation

Score
Number

of
Mutation

Score
Test Cases Total

Mutants
Killed

Mutants
(MS) Killed

Mutants
(MS)

Size=4
Method-level 140 106 75.7% 48 34.3%
Class-level 30 30 100% 22 73.3%
Total 170 136 80% 70 41.2%

Size=20/40/60
Method-level 140 112 80% 97 69.3%
Class-level 30 30 100% 30 100%
Total 170 142 83.5% 127 74.7%

COI (insert unary conditional operators) method-level mutants, the mutation scores (MS)
were 100% when our approach was used, which means that the test suite generated using
the proposed approach can detect all of these types of faults.

• For ROR (replace relational operators with other relational operators, and replace the entire
predicate with true and false) and LOI (insert unary logical operator) method-level mutants,
although the MS was less than 100%, it was relatively high, indicating that these faults were
relatively easily detected using the proposed approach.

• For AOIS (insert short-cut arithmetic operators) and COR (replace binary conditional
operators with other binary conditional operators) method-level mutants, the MS was low,
which suggests that these types of faults were harder to detect, and the test suite generated by
the proposed approach cannot detect all such faults. In addition, there were more equivalent
mutants in the AOIS type, which further indicates that this type of fault should be treated
carefully when designing test cases and doing test specifications.

• For PRV (replace reference assignment with other comparable variable), JTI (this keyword
insertion), JTD (this keyword deletion), JSI (static modifier insertion), and JID (member
variable initialization deletion) class-level mutants, the mutation scores were 100%, which
indicates that these types of faults were relatively easy to detect. In particular, the detection
rates for all class-level mutants were 100%, which suggests that the proposed approach is very
effective for such mutants.

• In the same settings, our approach outperforms random testing. For method-level mutants, the
mutation scores of our approach are much greater than those for random testing when the size
is 4; and slightly greater than or equal when the size is 20, 40, and 60. For class-level mutants,
test suites whose size is 4 generated by random testing cannot guarantee 100% detection of
JTI and JTD mutants, while test suites generated by our approach can detect 100% of all these
kinds of mutants, regardless of suite size.

We have reported the fault detection capability of the test suite generated using the weak
concurrency coverage criterion. When the moderate concurrency coverage criterion is used, more
test scenarios are generated for product ordering, but the current version of muJava does not
have concurrency-specific mutation operators. Furthermore, test suites generated with the moderate
concurrency coverage criterion and the weak concurrency coverage criterion should have similar
fault detection capability because: (i) test suites generated using these two coverage criteria cover
the same basic paths; (ii) although the moderate concurrency coverage criterion requires coverage
of more combinations of parallel processes, which is beneficial to detect concurrency-specific faults
such as data races, such faults are not included in those generated using muJava. For these reasons,
in this paper we only evaluate the fault detection capability of the test suite generated using the
weak concurrency coverage criterion. Although deadlock is a risk, and an important issue for
concurrent systems, because the faults in our experiments were simulated by MuJava-generated
mutation operators, and MuJava is not designed for deadlock faults, no deadlocks were included for
evaluation.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 21

Table VI. The mutation scores MS for the method-level mutants using our approach and the random approach

Our Approach Random Approach
Number of Mutation Number

of
Number

of
Number

of
Mutation

Score
Number

of
Mutation

Score
Test Cases Operators Total

Mutants
Equivalent
Mutants

Killed
Mutants

(MS) Killed
Mutants

(MS)

Size=4

AOIS 80 27 30 56.6% 2 0.04%
COR 4 0 2 50% 2 50%
ROR 33 3 23 76.7% 19 63.3%
LOI 24 0 22 91.7% 10 41.6%
AORB 4 0 4 100% 0 0%
AOIU 16 0 16 100% 8 50%
COI 9 0 9 100% 9 100%

Size=20/40/60

AOIS 80 27 35 66% 21 39.6%
COR 4 0 2 50% 2 50%
ROR 33 3 24 80% 23 76.7%
LOI 24 0 22 91.7% 22 91.7%
AORB 4 0 4 100% 4 100%
AOIU 16 0 16 100% 16 100%
COI 9 0 9 100% 9 100%

Table VII. The mutation scores MS for the class-level mutants using our approach and the random approach

Our Approach Random Approach
Number of Mutation Number

of
Number

of
Number

of
Mutation

Score
Number

of
Mutation

Score
Test Cases Operators Total

Mutants
Equivalent
Mutants

Killed
Mutants

(MS) Killed
Mutants

(MS)

Size=4

PRV 8 0 8 100% 8 100%
JTI 12 1 11 100% 7 63.6%
JTD 12 1 11 100% 7 63.6%
JSI 14 14 0 100% 0 100%
JID 1 1 0 100% 0 100%

Size=20/40/60

PRV 8 0 8 100% 8 100%
JTI 12 1 11 100% 11 100%
JTD 12 1 11 100% 11 100%
JSI 14 14 0 100% 0 100%
JID 1 1 0 100% 0 100%

5.5. Threats to Validity

Through this case study, we have validated the feasibility and effectiveness of the proposed
approach. The experimental results show that, even using the weak concurrency coverage criterion,
the test suite generated using our approach can detect more than 80% of seeded faults with a very
small size of test suite (one test case per scenario). Furthermore, more than 75.7% of method-
level faults and 100% of class-level faults can be detected by the generated test cases. For the same
situations, our approach achieved a higher mutation score than random testing. These results indicate
that the proposed approach is both effective and efficient.

Our study may face the following threats to validity. One threat is related to the subject program:
although it would be good to have a large number of benchmarks for the experiments, to the
best of our knowledge, there are currently none available. Developing such benchmarks would
be very expensive in both time and labor, and is thus infeasible. In our study, we developed a
subject program which is relatively small in size, but which covered most major UAD features.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



22 C.-A. SUN ET AL.

Another possible threat to validity is related to how the experiments were designed: In our study,
mutation operators were used to simulate possible faults. Although mutation analysis has been
widely used to evaluate the effectiveness of various testing techniques [2], the mimicked faults
(mutants) are possibly different from the real-life faults. Finally, we have so far only evaluated
the fault detection effectiveness of the weak concurrency coverage criterion, which may affect the
conclusive effectiveness of the analysis. In future work, we will look at other concurrency coverage
criteria.

6. RELATED WORK

The UML has becomes a standard visual modelling language, providing three categories of
diagrams for modeling different aspects of a system. Research has been conducted into how to test
systems under development based on different UML diagram specifications, and into how to develop
various test techniques [8], including generating test cases from Class Diagrams [5][32], State
Diagrams [3][7][13][17][19][26][36][40], Sequence/Collaboration Diagrams [27][38], Use Case
Diagrams [14], Activity Diagrams [33][34], and combinations of Use Cases and State Charts [30].
There has also been interest in generating test cases from UML state machine diagrams [23], and
from activity diagrams [12].

An important issue in testing based on UADs relates to generating test scenarios, which is usually
a manual and time-consuming task. Much effort has been put into developing various methods for
automatically generating test scenarios from UADs. In our previous work [42], we developed a
three-layer framework for automated test case generation from UAD specifications, according to
which a UAD is first transformed into a test outline model, from which a set of test outlines are
generated. Then, based on input data and the generated test outlines, a test case model is developed,
leading to a set of test cases being generated. An important contribution of this work was to propose
a set of transformation rules for each type of activity, providing a sound and convenient basis
for the development of test cases generation algorithms [33]. We developed a tool, TCaseUML,
which extracts the UAD specifications from Rational Rose, and generates test cases in terms of each
activity. However, it was not clear how test cases could be effectively generated for test scenarios
from the transformed test outline model.

Liu et al. [21] proposed a set of structural coverage criteria for scenario-oriented testing of UAD
specifications. The proposed coverage criteria require that the test scenarios generated from UADs
should cover activities, transitions, paths, and typical values of branch activities. Although these
criteria are useful when generating tests from UADs, their actual implementation has not been
discussed. In our previous work [34], we developed a recursive algorithm to generate test scenarios
which are able to satisfy basic path coverage criteria, and a tool, TSGen, to automate the algorithm.
The presented algorithm and tool were illustrated with two case studies, but no experiments reported
on the fault-detection effectiveness of the coverage criterion.

Li and Lam [20] proposed using so-called anti-ant-like agents to automatically generate test
threads from UADs, an approach suggesting the potential to automate test scenario generation.
However, this approach has some shortcomings, such as redundant exploration of UADs (hence
reducing the efficiency of the generation process), and limited treatment of complex UAD structures,
such as fork and join activities. To overcome such limitations, Xu et al. [39] proposed an automated
approach to directly generate test scenarios from UADs using adaptive agents. Their approach
is capable of dealing with UADs containing more complicated structures, and an algorithm and
supporting tool were described. Unfortunately, however, no experiments into the effectiveness of
the approach have been reported.

Wang et al. [37][41] proposed a gray box-based approach to generating test scenarios from UADs,
and generating test cases by extracting the information from such test scenarios. The test scenarios
are generated in terms of basic paths, and the test scenario generation algorithm is based on the
Petri net model [31]. Since there are many parallel and conditional behavior items in UADs, it can
be difficult to directly define the basic path from the original UAD. The presented algorithm does
not address the concurrency issue, an essential component in UADs.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 23

Chen et al. [4] proposed an automatic method to generate test cases when UADs are used as
design specifications. Their approach first randomly generates a large number of test cases, and
then obtains program execution traces by running the program with those test cases. Finally, some
redundant test cases are pruned by comparing these traces with the UAD according to a specific
coverage criterion, resulting in a reduced, but adequate, test case set. The test adequacy criteria
include activity coverage, transition coverage and simple path coverage. In order to generate tests
to meet a specific coverage criterion, their approach needs to execute the program and retrieve
the execution traces by means of instrumentation. Their approach is very expensive (i.e. multiple
executions), and has difficulty when there are inconsistencies between the implementation and the
design specification. Furthermore, it is not clear how test cases are selected for concurrent threads
in a program under test.

Kim et al. [16] proposed a transformation-based method to generate test cases from UADs. Their
method first builds an I/O explicit activity diagram from an ordinary UAD, and then transforms it
into a directed graph, from which test cases for the initial activity diagram are derived. The work
is similar to our approach in that both methods employ transformation, but they differ in that our
transformation rules were developed based on activity types instead of I/O flows. Furthermore, our
approach generates controllable test scenarios satisfying the specific concurrence coverage criterion,
while their approach is based on the single stimulus principle [15], which is used to deduce the
number of test cases.

Kundu and Samanta [18] proposed a conversion-based approach to generating test cases using
UADs. In their approach, a set of conversion rules were proposed to map UAD elements to nodes
in a graph model. These rules are quite similar to the transformation rules that we previously
proposed [42]. They proposed an algorithm to generate test scenarios satisfying the activity coverage
criterion, but how fork and join activities were handled was not discussed. It was claimed [18]
that the generated test suite based on the activity path coverage criterion was able to uncover
more synchronization and loop faults than existing work, however no evaluation experiments were
reported.

Khandai et al. [24] proposed generating test cases from the combination of UADs and Sequence
Diagrams. Their approach assumes that UADs and Sequence Diagrams (SDs) are used to model
a system. It converts UADs into Activity Graphs (AGs) and SDs into Sequence Graphs (SGs),
and then combine two to form Activity Sequence Graphs (ASGs). Finally, an algorithm can be
developed to traverse the ASG to generate test cases. Their approach requires that both SDs and
UADs be used for modeling a system, while our approach eases this constraint. Furthermore, the
issue of how to combine the AG and SG into an ASG, especially when there are inconsistencies or
mismatches between SDs and UADs, is not clearly discussed, nor is an algorithm presented for how
to generate test cases from the resulting ASG. Lastly, no supporting tools or evaluation experiments
were reported.

An important issue relates to handling concurrency when generating test scenarios from UADs,
something ignored in some existing approaches, which usually focus on presenting some coverage
criteria or algorithms for generating test scenarios to satisfy a given coverage criterion. In this paper,
we propose a transformation-based scenario-oriented approach to generating test cases from UADs.
Our approach provides a comprehensive treatment of concurrent and loop activities. Our approach
is built on transformation rules developed in our previous work [42], which we have extended to
enable loop processing. We further developed algorithms and a tool to support the automation of
the proposed approach, and validated the effectiveness of the proposed approach in a case study,
which, to the best of our knowledge, is the first attempt to test a real-life application with test cases
generated from UADs. Finally, we briefly compare our work with other related work, as shown in
Table VIII. From the table, we can observe that our approach provides a comprehensive treatment
for dealing with concurrency elements, has tooling support, and its fault-detection effectiveness is
validated in a case study.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



24 C.-A. SUN ET AL.

Table VIII. A brief comparison of our approach with related work

Approach Deals with concurrency Tooling support Fault-detection
effectiveness evaluation

[42] Yes Yes No
[21] No No No
[20] Yes No No
[39] Yes Yes No

[37][41] No Yes No
[4] No Yes No
[16] Yes No No
[18] No No No
[24] No No No

Our approach Yes Yes Yes

7. CONCLUSIONS AND FUTURE WORK

We have presented a transformation-based approach to generate scenario-oriented test cases
from UAD specifications, focusing mainly on the testing of concurrent activities. The approach
employs and extends a set of transformation rules to convert a UAD specification into a well-
formed intermediate representation, and thereby helps address challenges caused by fork and join
concurrency in the UAD, and helps reduce invalid test scenarios. Algorithms have been developed
to generate test scenarios from the intermediate representation. The approach supports different
coverage criteria, and can therefore test concurrent processes quite effectively. Finally, we have
implemented a tool to automate the proposed approach, and conducted a case study to validate its
feasibility and effectiveness.

The presented approach is a kind of model-driven testing technique which allows testers to not
only schedule the software test process earlier, but also better allocate the testing resources. With
the proposed approach, testers can start test design in the design stage instead of having to wait until
the coding stage. Furthermore, testing resources are often limited, requiring that the complexity
and number of tests should be controllable, something that the proposed approach supports by
automatically generating different sets of test scenarios to satisfy different concurrency coverage
criteria. Therefore, the proposed approach is particularly useful for enhancing the testing efficiency
of concurrent applications.

In our future work, we plan to extend the developed tool and integrate it as a plug-in for UML
supporting tools, such as ArgoUML. We are interested in evaluating the proposed approach using
more real-life, concurrent applications, such as multi-threaded Java programs. We would also like
to further investigate and evaluate the fault detection effectiveness, and costs, of the proposed
concurrency coverage criteria, including for deadlock faults.

ACKNOWLEDGEMENT

This research is supported by the National Natural Science Foundation of China (Grant Nos.: 61370061,
60903003), the Beijing Natural Science Foundation of China (Grant No. 4112037), the Fundamental
Research Funds for the Central Universities (Grant No. FRF-SD-12-015A), and the Beijing Municipal
Training Program for Excellent Talents (Grant No. 2012D009006000002).

REFERENCES

1. Ambysoft Inc. UML activity diagramming guidelines. http://www.agilemodeling.com/style/activityDiagram.htm,
2007.

2. J. H. Andrews, L. C. Briand, Y. Labiche. Is mutation an appropriate tool for testing experiments? Proceedings of the
27th International Conference on Software Engineering (ICSE 2005), IEEE Computer Society, 2005, pp.402-411.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



A TRANSFORMATION-BASED APPROACH TO TESTING CONCURRENT PROGRAMS VIA UADS 25

3. L. C. Briand, J. Cui, Y. Laboche. Towards automated support for deriving test data from UML statecharts.
Proceedings of 6th International Conference on the Unified Modeling Language, Modeling Languages and
Applications (UML 2003), Lecture Notes in Computer Science 2863, pp.249-264.

4. M. S. Chen, X. K. Qiu, X. D. Li. Automatic test case generation from UML activity diagram. Proceedings of the
2006 International Workshop on Automation of Software Test. pp.2-8.

5. H. Y. Chen. An approach for OO cluster-level tests based on UML. Proceedings of IEEE International Conference
on the Systems, Man and Cybernetics (SMC 2003), IEEE Computer Society, 2003, pp.1064-1068.

6. T. Y. Chen, P. L. Poon, T. H. Tse. A choice relation framework for supporting category-partition test case generation.
IEEE Transactions on Software Engineering, 2003, 29(7):577-593.

7. P. Chevalley, P. T. Fosse. Automated generation of statistical test cases from UML state diagrams. Proceedings of
25th Annual International Computer Software and Applications Conference(COMPSAC 2001), IEEE Computer
Society, 2001, pp.205-214.

8. Z. R. Dai. Model-Driven Testing with UML 2.0. Technical Report, Computer Science at Kent, 2004, pp.179-187.
9. S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott, G. C. Patton, B. M. Horowitz. Model-based Testing in

Practice. Proceedings of International Conference on Software Engineering (ICSE 1999), IEEE Computer Society,
1999, pp.285-294.

10. R. A. DeMillo, R. J. Lipton, F. G. Sayward. Hints on test data selection: Help for the practicing programmer. IEEE
Computer, 1978, 1(4):31-41.

11. M. Fowler, K. Scott. Activity Diagrams. http://www.sts.tu-harburg.de/projects/UML/Activity Diagrams.pdf,
pp.151-164.

12. H. M. Gao, D. Xu, Z. T. Liu. Test study of UML activity diagram. Journal of Computer Science, 2008, 35(2):263-
281.

13. J. Hartmann, C. Imoberdof, M. Meisenger. UML-Based Integration Testing. Proceedings of the 2000 ACM
SIGSOFT international symposium on Software testing and analysis (ISSTA 2000), 2000, pp.60-70.

14. IBM Center for Software Engineering. Use Case Based Testing. http://www.research.ibm.com/softeng/testing/ucbt.htm
15. S. Kang, J. Shin, M. Kim. Interoperability test suite derivation for communication protocols. Computer Networks,

2000, 32(3):347-364.
16. H. Kim, S. Kang, J. Baik, I. Ko. Test cases generation from UML activity diagrams. Proceedings of Eighth ACIS

International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing(SNPD 2007), Volumn 3, 2007, pp.556-561.

17. Y. G. Kim, H. S. Hong, S. M. Cho, D. H. Bae, S. D. Cha. Test cases generation from UML state diagrams. IEEE
Software, 1999, 46(4):187-192.

18. D. Kundu, D. Samanta. A novel approach to generate test cases from UML activity diagrams. Journal of Object
Technology, 2009, 8(3):65-83.

19. L. Y. Li, Z. C. Qi. Test selection from UML statecharts. Proceedings of the 31st International Conference on
Technology of Object-Oriented Language and Systems (TOOLS’99), IEEE Computer Society, 1999, pp.273-281.

20. H. Li, C. P. Lam. Using anti-ant-like agents to generate test threads from the UML diagrams. Proceedings of the
17th IFIP TC6/WG 6.1 International Conference on Testing of Communicating Systems (TESTCOM 2005), LNCS
3502, 2005, pp.69-80.

21. M. Liu, M. Z. Jin, C. Liu. Automated test scenarios generation based on UML activity diagram model. Journal of
Computer Engineering and Applications, 2002, 28(12):122-124.

22. Y. S. Ma, J. Offutt, Y. R. Kwon. MuJava: an automated class mutation system. Software Testing, Verification and
Reliability, 2005, 15(2):97-133.

23. M. Aggarwal, S. Sabharwal. Test case generation from UML state machine diagram: A survey. Proceedings of Third
International Conference on Computer and Communication Technology (ICCCT 2012), IEEE Computer Society,
2012, pp.133-140.

24. M. Khandai, A. A. Acharya, D. P. Mohapatra. Test Case Generation for Concurrent System using UML
Combinational Diagram. International Journal of Computer Science and Information Technologies, 2011,
2(3):1172-1181.

25. L. de Moura, N. Bjørner. Z3: An Efficient SMT Solver. Proceedings of International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2008), Lecture Notes in Computer Science
Volume 4963, 2008, pp.337-340.

26. J. Offutt, A. Abdurazik. Generating tests from UML specifications. Proceedings of 2nd International Conference
on the Unified Modeling Language, Modeling Languages and Applications (UML’99), 1999, pp.416-429.

27. J. Offutt, A. Abdurazik. Using UML collaboration diagrams for static checking and test generation. Proceedings of
3rd International Conference on the Unified Modeling Language, Modeling Languages and Applications (UML’00),
2000, pp.383-395.

28. Object Management Group. UML Specification (v1.5). http://www.omg.org/uml, March 2003.
29. T. J. Ostrand, M. J. Blacer. The category-partition method for specifying and generating functional tests.

Communications of the ACM, 1988, 31(6):676-686.
30. M. Riebisch, I. Philippow, M. Gätze. UML-Based Statistical Test Case Generation. Proceedings of International

Conference NetObjectDays on Objects, Components, Architectures, Services, and Applications for a Networked
World (NODe 2002), Lecture Notes in Computer Science 2591, pp.394-411.

31. G. Rozenburg, J. Engelfriet. Elementary Net Systems Lectures on Petri Nets I: Basic Models - Advances in Petri
Nets. Lecture Notes in Computer Science 1491, Springer, 1998, pp.12-121.

32. M. Scheetz, A. Mayrhauser, R. France, E. Dahlman, A. E. Howe. Generating test cases from an OO model with an
AI planning system. Proceedings of 10th International Symposium on Software Reliability Engineering (ISSRE99),
IEEE Computer Society, 1999, pp.250-259.

33. C.-A. Sun. A transformation-based approach to generating scenario-oriented test cases from UML activity diagrams
for concurrent applications. Proceedings of 32nd Annual IEEE International Computer Software and Application
Conference (COMPSAC 2008), IEEE Computer Society, 2008, pp.160-167.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe



26 C.-A. SUN ET AL.

34. C.-A. Sun, B. Zhang, J. Li. TSGen:A UML activity diagram-based test scenario generation tool. Proceedings of
2009 IEEE/IFIP International Symposium on Trusted Computing and Communications (TrustCom 2009), IEEE
Computer Society, 2009, pp.853-858.

35. C.-A. Sun, G. Wang, K.-Y. Cai, T. Y. Chen. Distribution-aware mutation analysis. Proceedings of 9th IEEE
International Workshop on Software Cybernetics (IWSC 2012), IEEE Computer Society, 2012, pp.170-175.

36. M. Vieira, D. J. Richardson. Object-Oriented Specification-Based Testing Using UML Statechart Diagrams.
Proceedings of First Workshop on Automated Program Analysis, Testing, and Verification held in conjunction
with the 22nd International Conference on Software Engineering (ICSE 2000), IEEE Computer Society, 2000,
pp.101-105.

37. L. Wang, J. Yuan, X. Yu, J. Hu, X. D. Li, G. L. Zheng. Generating test cases from UML activity diagram based
on gray-box method. Proceedings of 11th Asia-Pacific Software Engineering Conference (APSEC 2004), IEEE
Computer Society, 2004, pp.284-291.

38. Y. Wu, M. H. Chen, J. Offutt. UML-based integration testing for component-based software. Proceedings of Second
International Conference on COTS-Based Software Systems (ICCBSS 2003), Lecture Notes in Computer Science
2580, 2003, pp.251-260.

39. D. Xu, H. Li, C. P. Lam. Using adaptive agents to automatically generate test scenarios from the UML activity
diagrams. Proceedings of 12th Asia-Pacific Software Engineering Conference (APSEC 2005), IEEE Computer
Society, 2005, pp.385-392.

40. J. Yan, J. Wang, H. W. Chen. Deriving software statistical testing model from UML model. Proceedings of Third
International Conference on Quality Software (QSIC 2003), IEEE Computer Society, 2003, pp.343-351.

41. J. S. Yuan, L. Z. Wang, X. D. Li, G. L. Zheng. UMLTGF: A tool for generating test cases from UML activity
diagrams based on grey-box method. Journal of Computer Research and Development, 2006, 43(1):46-53.

42. M. Zhang, C. Liu, C.-A. Sun. Automated test case generation based on UML activity diagram model. Journal of
Beijing University of Aeronautics and Astronautics, 2001, 27(4):433-437.

Copyright c⃝ 2014 John Wiley & Sons, Ltd. Softw. Pract. Exper. (2014)
Prepared using speauth.cls DOI: 10.1002/spe


