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Alternating-Offer Bargaining with Endogenous

Commitment

Zhixian Yu∗

University of Nottingham Ningbo China, Business School, 199 Taikang East Road,
Ningbo, 315100, China

Abstract

We revisit the classical alternating-offer bargaining model, further as-
suming that players cannot reduce their proposals during the game. In
equilibrium, players have history-dependent strategies and do not neces-
sarily reach an agreement immediately in the first stage.

JEL classification: C78
Keywords: Bargaining, Endogenous commitment, alternating-offer bargaining
game, History-dependence

1 Introduction

The commitment whereby once an individual has made an offer they cannot later
make worse offers is proposed by Fershtman and Seidmann (1993). They term
this endogenous commitment, and apply it in a finite horizon, randomizing-offer
bargaining model to explain the deadline effect in negotiation: Players don’t
reach an agreement until the deadline when the discount factor is large enough.
In this paper, we adopt their assumption and apply it in an alternating-offer
environment. We also find a (possible) delay in the agreement, but only for one
stage.

Endogenous commitment has been discussed in various papers and inter-
preted from different perspectives. Fershtman and Seidmann (1993) mainly fo-
cus on the negotiator’s prestige: Negotiators suffer from a reputation loss when
they accept worse offers after rejecting better ones. Schwartz and Wen (2007)
value good faith in bargaining: Given the signal a worse offer sends, an arbitra-
tor may even refuse to take it to the other side. Compte and Jehiel (2003) and

∗The author wishes to thank Chen Qu, Kang Rong and Jack Fanning, the editor and the
anonymous referee for their helpful recommendations. Special thanks to his Ph.D. supervisor,
Daniel Seidmann and Silvia Sonderegger. Telephone: +86(0)57488188630. Email address:
Zhixian.Yu@nottingham.edu.cn
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Li (2007) use reference point theory to support their endogenous commitment-
like assumptions: Anything below the best offer they have rejected would be
valued negatively.1

2 Model

The basic structure of our model is as follows. Two players i = 1, 2 split $1.2

The set of all feasible agreements is Z = {(z, 1 − z) : z ∈ [0, 1]}, in which z
refers to 1’s share of the $1 and 1 − z refers to 2’s. The game continues for at
most T < +∞ stages, at which point the negotiation ends with both players
earning 0 payoff. The players have a common discount factor δ ∈ (0, 1), so each
player’s payoff is U1 = δtz and U2 = δt(1 − z), respectively, if an agreement is
reached by stage t ∈ [1, 2, 3...T ]. The two players alternate in making proposals:
1 offers xt ∈ [0, 1] to 2 (the agreement is (1−xt, xt) if xt is accepted) or 2 offers
yt ∈ [0, 1] to 1 (the agreement is (yt, 1− yt) if yt is accepted).

Until now, we have defined a classical finite horizon alternating-offer bargain-
ing model Γ as in Stahl (1972). We now formally define endogenous commitment
in this paper3:

Assumption 1. A proposer is not allowed to propose a share that is lower than
their previous proposal, i.e., ∀t ∈ [3, T ], xt ∈ [xt−2, 1] and yt ∈ [yt−2, 1].

With Assumption 1 applied in Γ, we have an extended bargaining model
Γ
′
.4 We will analyze Γ

′
by characterizing its subgame perfect equilibrium, or

“equilibrium” for short. Without loss of generality, we suppose that 2 is the
final proposer in Γ and Γ

′
, so 1 (2) is the first proposer if T is even (odd).

3 Equilibrium

In Γ, in equilibrium, 1 offers xt = δ 1−(−δ)T−t

1+δ and accepts if and only if yt ≥
δ 1−(−δ)T−t

1+δ . 2’s equilibrium strategy is similar. It’s easy to see that 2’s proposals

1Compte and Jehiel (2003) study a bargaining protocol with different phases. The updating
of the reference point happens only when the game enters a new phase, which occurs with
a probability after each rejection. Li (2007) takes players’ discounted values of the rejected
offers—rather than the rejected offers—to be the reference points.

2For convenience, we refer to 1 as male and 2 as female.
3For comparison, Fershtman and Seidmann (1993) define endogenous commitment from

the respondent’s perspective. However, the two definitions are equivalent.
4If we consider T = +∞ instead, we will be extending Rubinstein’s (1982) infinite

horizon alternating-offer bargaining model. In this case, in equilibrium, 1 offers xt =
max(xt−2,min( δ

1+δ
, δ(1 − yt−1))) and accepts if and only if yt ≥ min( δ

1+δ
, δ(1 − xt−1)).

2’s equilibrium strategy is similar. The equilibrium strategies differ slightly from those in Ru-
binstein’s model, while the equilibrium outcome is the same. This extended model coincides
with (1) the subscription game in Admati and Perry (1991), when the total cost K is equal
to each individual player’s revenue V ; (2) the bargaining game in Driesen et al. (2012), when
the coefficient of risk aversion goes to infinity; and (3) the wage-negotiation game in Schwartz
and Wen (2007), when the outside option is δ

1+δ
.
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decrease with time—hence violate endogenous commitment—so it is conceivable
that Γ and Γ

′
have quite different equilibria.

Before we discuss the equilibrium of Γ
′
, we will define several terms. Let

y#t = min( δ
1+δ , δ(1 − xt−1)) denote 1’s minimal acceptable offers. Let x#t =

min( δ
1+δ , δ(1 − yt−1)) and x##

t = min(max(δT−t(1 − yt−1), δ
1+δ ), δ(1 − yt−1))

denote 2’s minimal acceptable offers under different conditions. Let δ∗t denote
the threshold discount factors when t ≤ T − 2. δ∗t solves (1 + δ)δT−t−1 = 1
when T − t is odd, and (1 + δ)δT−t = 1 when T − t is even.5 Finally, let

y∗t−2 = min(1− 1
(1+δ)δT−t , 1− 1−δ(1−xt−1)

δT−t ) denote 2’s threshold previous offers,

indicating that 2 chooses different strategies in t when her proposal in t−2 goes
across y∗t−2.

Let (f, g) be a pair of strategies for 1 and 2, respectively. The following is a
detailed description of (f, g).

f : player 1

t ≤ T − 2 offers xt = max(xt−2, x
#
t ) when δ ≤ δ∗t ,

offers xt = max(xt−2, x
##
t ) when δ > δ∗t ,

accepts if and only if yt ≥ y#t .
t = T − 1 offers xT−1 = max(xT−3, δ(1− yT−2)).
t = T accepts if and only if yT ≥ 0.
g : player 2

t ≤ T − 2 offers yt = max(yt−2, y
#
t ) when δ ≤ δ∗t , or when δ > δ∗t and yt−2 ≥ y∗t−2,

offers yt = yt−2 when δ > δ∗t and yt−2 < y∗t−2,

accepts if and only if xt ≥ x#t when δ ≤ δ∗t ,

accepts if and only if xt ≥ x##
t when δ > δ∗t .

t = T − 1 accepts if and only if xT−1 ≥ δ(1− yT−2).
t = T offers yT = yT−2.

See Figure 1 for a better demonstration of (f, g). The horizontal line repre-
sents the value of δ; above the line is the proposer’s equilibrium strategy and
below is the respondent’s. Notice that δ∗t−1 > δ∗t = δ∗t+1 > δ∗t+2.

0 1

0 1

t+ 1

t

δ∗t+1

δ∗t

1: xt = max(xt−2, x
#
t )

2: xt T x#t

1: xt = max(xt−2, x
##
t )

2: xt T x##
t

2: yt+1 = max(yt−1, y
#
t+1)

1: yt+1 T y#t+1

2:
yt+1 = max(yt−1, y

#
t+1) if yt−1 ≥ y∗t−1

yt+1 = yt−1 if yt−1 < y∗t−1

1: yt+1 T y#t+1

Figure 1: Equilibrium strategies in two typical consecutive stages

Suppose we have the following tie-breaking rule: A proposer makes the ac-

5Note that δ∗t decreases with time every two stages. For example, δT−5
t = δT−4

t > δT−3
t =

δT−2
t .
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ceptable offer whenever he (she) is indifferent between making an acceptable
offer or an unacceptable offer, and a respondent accepts whenever he (she) is
indifferent between accepting or rejecting an offer. Then we have following
proposition.6

Proposition 1. (f, g) is the unique SPE of Γ
′
. In equilibrium, the agreement

is reached in the first or second stage of the game.

As the equilibrium strategies of Γ
′
, (f, g) has following properties:

1. When δ ≤ δ∗, (f, g) coincides with the equilibrium strategies in the
infinite horizon bargaining (see footnote 4). Intuitively, the deadline doesn’t
take effect when it is relatively far away.

2. When δ > δ∗, the deadline kicks in. x##
t , which is weakly greater,

replaces x#t when 1 proposes. Intuitively, if no agreement has been reached,
an agreement of (yT−2, 1 − yT−2) will be reached in T ; hence 2 won’t accept
anything less than δT−t(1− yt−1) in t.

3. (Continue with case 2) Anticipating that, 2 may deliberately make an
unacceptable offer when she proposes and wait for 1’s counteroffer in the next
stage. She is less likely to do so in stage t if either xt−1 or yt−2 is higher,

as shown in the condition yt−2 T y∗t−2 in g. Intuitively, here 2 is comparing

her payoffs 1− y#t (from making an acceptable offer) and δT−t(1− yt−2) (from
making an unacceptable offer).7 A higher xt−1 means that 1 will accept a lower

y#t , and a higher yt−2 means that 2 earns less from delaying the agreement.
From (f, g), we can derive the equilibrium paths. When δ ≤ δ∗1 , the first

proposer offers δ
1+δ to the opponent in the first stage. When δ > δ∗1 , 1 makes the

first acceptable offer which makes 2 indifferent between accepting and waiting
to take the whole surplus at T : If T is even, 1 offers δT−1 to 2 in the first stage;
if T is odd, 2 offers nothing (and gets rejected, obviously) in the first stage, then
accepts the counteroffer of δT−2 in the second stage. See Table 1 as a summary.

T is odd T is even

δ ≤ δ∗1 ( δ
1+δ ,

1
1+δ ) ( 1

1+δ ,
δ

1+δ )

δ > δ∗1 (δ − δT−1, δT−1) (1− δT−1, δT−1)

Table 1: Equilibrium payoffs under different conditions

6The tie-breaking rule simplifies but doesn’t change the main result generically. We provide
a detailed proof of Proposition 1 in Appendix A and discuss the equilibrium without the tie-
breaking rule at the end of the proof.

7See case (K) of the proof in Appendix A for details.
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4 Concluding Remarks

Through the introduction of endogenous commitment, our model captures a
simple fact in bargaining: negotiation history matters. A bargainer faces the
following trade-off when making proposals: A higher offer is more likely to be
accepted, but it also limits one’s choices in the future and weakens one’s bar-
gaining power if it gets rejected. Our model, together with Fershtman and
Seidmann’s (1993), explains the delay in bargaining when information is com-
plete and is applicable to the environments in which the bargaining history is
easily traced and used.

The difference between our paper and Fershtman and Sedimann’s is as fol-
lows. In their model, each player has an equal chance to propose/respond in
each stage of the game, meaning that both players might benefit from being the
final proposer. They have equal incentives to delay to the deadline, and they
do so when the discount factor is large enough. In our paper, only one player
benefits from being the last proposer. Thus delay may happen, but only for one
stage.

In our model, both first- and last-proposer advantage exist, see Figure 2 for
a demonstration. Notice that 2 is always the final proposer, and is also the first
proposer only in the right graph. Clearly, when δ ≤ δ∗1 , there is first-proposer
advantage, as in Rubinstein (1982). When δ > δ∗1 , the last-proposer advantage
starts to overwhelm (but doesn’t eliminate) the first-proposer advantage.

δ∗1 1 δ
0

1

T is even

1’s payoff

2’s payoff

1’s payoff

2’s payoff

δ∗1 1 δ
0

1

T is odd

Figure 2: Equilibrium payoffs as function of the discount factor

A Proof of Proposition 1

Proof. We use backward induction to show that (f, g) constitutes a sub-game
perfect equilibrium. Given the tie-breaking rule, the uniqueness of equilibrium
is an immediate application of Zermelo’s theorem.

In T , 1 accepts any offer yT ≥ 0, so 2 makes the minimal offer she is bound
to make, which is yT = yT−2.

In T −1, 2 accepts if and only if xT−1 ≥ δ(1−yT−2). If xT−3 ≥ δ(1−yT−2),
then 1 can only make an acceptable offer xT−1 = xT−3. If xT−3 < δ(1− yT−2),
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then he can either make an acceptable or an unacceptable offer. When 1 offers
xT−1 ≥ δ(1− yT−2), the offer is accepted immediately and he earns a payoff of
1 − xT−1; otherwise, the offer is rejected and he accepts 2’s counteroffer in T ,
earning a payoff of δyT−2. Therefore, 1 offers xT−1 = δ(1 − yT−2) if and only
if 1 − δ(1 − yT−2) ≥ δyT−2, which is clearly always valid. To sum up, 1 offers
xT−1 = max(xT−3, δ(1− yT−2)).

In T − 2, 1 accepts if and only if yT−2 ≥ δ(1 − max(xT−3, δ(1 − yT−2))),

namely, yT−2 ≥ y#T−2. If yT−4 ≥ y#T−2, then 2 can only make an acceptable offer

yT−2 = yT−4. If yT−4 < y#T−2, then she can either make an acceptable or an

unacceptable offer. When 2 offers yT−2 ≥ y#T−2, the offer is accepted immedi-
ately and she earns a payoff of 1− yT−2; otherwise, the offer is rejected and she
accepts 1’s counteroffer in T − 1, earning a payoff of δmax(xt−3, δ(1 − yT−2)).

Therefore, 2 offers yT−2 = y#T−2 if 1 − y#T−2 ≥ δmax(xT−3, δ(1 − yT−4)) and

yT−2 = yT−4 otherwise.8 1 − y#T−2 ≥ δmax(xT−3, δ(1 − yT−4)) is equiva-

lent to yT−4 ≥ y∗T−4 = min(1 − 1
(1+δ)δ2 , 1 −

1−δ(1−xT−3)
δ2 ). Notice that (a)

when δ ≤ δ∗T−2, δ2 + δ3 ≤ 1, so y∗T−4 ≤ 0 and the inequality must be valid;

and (b) when δ > δ∗T−2 and yT−4 < y∗T−4, yT−4 < 1 − 1−δ(1−xT−3)
δ2 . Hence

xT−3 < 1− 1−δ2(1−yT−4)
δ < δ(1−yT−4), so 2’s payoff when making an unaccept-

able offer becomes δ2(1−yT−4) and she offers yT−2 = yT−4. To sum up, 2 offers

yT−2 = max(yT−4, y
#
T−2) when δ ≤ δ∗T−2, or when δ > δ∗T−2 and yT−4 ≥ y∗T−4;

she offers yT−2 = yT−4 otherwise.

Now we show that (f, g) specifies best responses in t if it does so in every
t
′
> t.
Suppose that 1 proposes in t. In t

′
> t: When δ ≤ δ∗t+1, or when δ > δ∗t+1

and yt−1 ≥ y∗t−1, 1 accepts yt+1 = y#t+1 in t + 1 and the bargaining outcome

is (max(yt−1, y
#
t+1), 1 −max(yt−1, y

#
t+1)). When δ > δ∗t+1 and yt−1 < y∗t−1, 2

accepts xt+2 = x##
t+2 in t+ 2 (1 rejects yt+1 = yt−1 in t+ 1) and the bargaining

outcome is (1−max(xt, x
##
t+2),max(xt, x

##
t+2)). We first study 2’s best responses

in t.
(A) When δ ≤ δ∗t , 2 accepts if and only if xt ≥ δ(1 − max(yt−1, y

#
t+1));

namely, xt ≥ x#t = min( δ
1+δ , δ(1− yt−1)).

(B) When δ > δ∗t , if 1 offers xt such that yt−1 ≥ y∗t−1, then 2 accepts

if and only if xt ≥ δ(1 −max(yt−1, y
#
t+1)); namely, xt ≥ x#t . Combining with

yt−1 ≥ y∗t−1, 2 accepts if (a) xt ≥ 1− 1−δT−t−1(1−yt−1)
δ and yt−1 ≤ 1− 1

(1+δ)δT−t−1 ,

or (b) xt ≥ δ
1+δ and 1− 1

(1+δ)δT−t−1 < yt−1 ≤ δ
1+δ , or (c) xt ≥ δ(1− yt−1) and

yt−1 >
δ

1+δ . 2 rejects if (a) xt <
δ

1+δ and 1− 1
(1+δ)δT−t−1 ≤ yt−1 ≤ δ

1+δ , or (b)

xt < δ(1− yt−1) and yt−1 >
δ

1+δ .

8Notice that 2’s payoff when making an unacceptable offer, δmax(xt−3, δ(1 − yT−2)), is
weakly decreasing in yT−2. 2 earns weakly lower payoffs when he offers yT−2 > yT−4. This
applies to all similar cases in the following analysis, i.e., inequality 1 to inequality 6.
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(C) When δ > δ∗t , if 1 offers xt such that yt−1 < y∗t−1, then 2 accepts

if and only if xt ≥ δ2max(xt, x
##
t+2); namely, xt ≥ δ2min(max(δT−t−2(1 −

yt−1), δ
1+δ ), δ(1 − yt−1))). Combining with yt−1 < y∗t−1, 2 accepts if δT−t(1 −

yt−1) ≤ xt < 1 − 1−δT−t−1(1−yt−1)
δ and yt−1 < 1 − 1

(1+δ)δT−t−1 . 2 rejects if

xt < δT−t(1− yt−1) and yt−1 < 1− 1
(1+δ)δT−t−1 .

xt

1

yt−11

xt = δT−t(1− yt−1)

xt = min( δ
1+δ , δ(1− yt−1)))

y∗t−1 = min(1− 1
(1+δ)δT−(t+1) , 1− 1−δ(1−xt)

δT−(t+1) ))

Figure 3: 2’s response to xt given yt−1

Figure 3 depicts cases (B) and (C). At the right-hand side of the dashed curve
(yt−1 > y∗t−1), the minimal acceptable offer is xt = min( δ

1+δ , δ(1− yt−1))). At
the left-hand side of the dashed curve (yt−1 < y∗t−1), the minimal acceptable
offer is xt = δT−t(1 − yt−1). The dark gray area means that the offer will be
accepted, and the light gray area means otherwise. The boundary between them
is x##

t .
Combining cases (A) to (C), 2’s best response is accepting if and only if

xt ≥ x#t when δ ≤ δ∗t , and accepting if and only if xt ≥ x##
t when δ > δ∗t .

We next study 1’s best responses in t. Notice that if 1 makes an unacceptable
offer in t, then 1 accepts 2’s proposal in t+ 1 in cases (D) to (F), and 2 accepts
1’s proposal in t+ 2 in case (G).

(D) When δ ≤ δ∗t , 2 accepts if and only if xt ≥ x#t . When xt−2 ≥ x#t , 1

is bound to make acceptable offers, so he offers xt = xt−2. When xt−2 < x#t ,

1 earns 1 − xt if he offers xt ≥ x#t and δmax(yt−1, y
#
t+1) if he offers xt < x#t .

Therefore, 1 offers xt = x#t if and only if

1− x#t ≥ δmax(yt−1, y
#
t+1). (1)
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Notice that 1− x#t = 1−min( δ
1+δ , δ(1− yt−1)) > max( δ

1+δ , 1− δ(1− yt−1)) ≥
max(δyt−1,

δ
1+δ ) ≥ δmax(yt−1,min( δ

1+δ , δ(1 − xt))); inequality 1 is valid. 1

offers xt = max(xt−2, x
#
t ).

(E) When δ > δ∗t and yt−1 >
δ

1+δ , the analysis is similar to case (D), except
that now inequality 1 becomes

1− δ(1− yt−1) ≥ δmax(yt−1, y
#
t+1). (2)

As 1− δ(1− yt−1) ≥ δyt−1 and 1− δ(1− yt−1) > 1− (1− yt−1) = yt−1 >
δ

1+δ >
δ2

1+δ ≥ δy
#
t+1, inequality 2 is valid. 1 offers xt = max(xt−2, δ(1− yt−1)).

(F) When δ > δ∗t and 1 − 1
(1+δ)δT−t−1 < yt−1 ≤ δ

1+δ , the analysis is similar

to case (D), except that now inequality 1 becomes

1− δ

1 + δ
≥ δmax(yt−1, y

#
t+1). (3)

As 1− δ
1+δ = 1

1+δ >
δ2

1+δ ≥ δyt−1 and 1− δ
1+δ = 1

1+δ >
δ2

1+δ ≥ δy
#
t+1, inequality

3 is valid. 1 offers xt = max(xt−2,
δ

1+δ ).

(G) When δ > δ∗t and yt−1 ≤ 1− 1
(1+δ)δT−t−1 , the analysis is similar to case

(D), except that now inequality 1 becomes

1− δT−t(1− yt−1) ≥ δ2(1−max(xt, x
##
t+2)). (4)

yt−1 ≤ 1− 1
(1+δ)δT−t−1 ⇒ δT−t−2(1− yt−1) > 1

δ(1+δ) >
δ

1+δ ⇒ max(δT−t−2(1−
yt−1), δ

1+δ ) = δT−t−2(1 − yt−1), so the right-hand side of inequality 4 becomes

δ2(1−max(xt, δ
T−t−2(1− yt−1))) (notice that 2 offers yt+1 ≥ yt−1 in t+ 1). As

1− δT−t(1− yt−1) > δ2− δT−t(1− yt−1) > δ2(1− δT−t−2(1− yt−1)), inequality
4 is valid. Therefore, 1 offers xt = max(xt−2, δ

T−t(1− yt−1)).

Combining cases (D) to (G), 1’s best response is offering xt = max(xt−2, x
#
t )

when δ ≤ δ∗t , and offering xt = max(xt−2, x
##
t ) when δ > δ∗t . Both players’

best responses coincide with (f, g).

Now suppose that 2 proposes in t. In t
′
> t, when δ ≤ δ∗t+1, 2 accepts xt+1 =

x#t+1 in t+1 and the bargaining outcome is (1−max(xt−1, x
#
t+1)),max(xt−1, x

#
t+1)).

When δ > δ∗t+1, 2 accepts xt+1 = x##
t+1 in t + 1 and the bargaining outcome is

(1−max(xt−1, x
##
t+1),max(xt−1, x

##
t+1)). We first study 1’s best responses in t.

(H) When δ ≤ δ∗t+1, 1 accepts if and only if yt ≥ δ(1 − max(xt−1, x
#
t+1)),

namely, yt ≥ y#t = min( δ
1+δ , δ(1− xt−1)).

(I) When δ > δ∗t+1, 1 accepts if and only if yt ≥ δ(1 − max(xt−1, x
##
t+1)),

namely, yt ≥ y#t = min( δ
1+δ , δ(1− xt−1)).

Combining cases (H) and (I), 1’s best response is accepting if and only if

yt ≥ y#t .
We next study 2’s best responses in t.

8



(J) When δ ≤ δ∗t+1, the analysis is similar to case (D), except that now
inequality 1 becomes

1− y#t ≥ δmax(xt−1, x
#
t+1), (5)

which is equivalent to inequality 1. It’s easy to derive that 2 offers yt =
max(yt−2, y

#
t ).

(K) When δ > δ∗t+1, the analysis is similar to case (D), except that now
inequality 1 becomes

1− y#t ≥ δmax(xt−1, x
##
t+1). (6)

Take a look at x##
t+1 = min(max(δT−t−1(1−yt), δ

1+δ ), δ(1−yt)). Obviously, the

highest payoff reaches when yt = yt−2. When δT−t−1(1− yt−2) ≤ δ
1+δ , namely,

yt−2 ≥ 1− 1
(1+δ)δT−t−2 , inequality 6 becomes inequality 5 and is therefore valid.

When δT−t−1(1 − yt−2) > δ
1+δ , namely, yt−2 < 1 − 1

(1+δ)δT−t−2 , inequality 6

becomes 1−y#t ≥ δmax(xt−1, δ
T−t−1(1−yt−2)). As 1−min( δ

1+δ , δ(1−xt−1)) ≥
1 − δ(1 − xt−1) > δxt−1, it further becomes 1 − y#t ≥ δT−t(1 − yt−2), namely,

yt−2 ≥ y∗t−2 = min(1− 1
(1+δ)δT−t , 1− 1−δ(1−xt−1)

δT−t ). Notice that (a) when δ ≤ δ∗t ,

1− 1
(1+δ)δT−t ≤ 0, so inequality 6 must be valid; (b) when δ > δ∗t and yt−2 < y∗t−2,

xt−1 < 1 − 1−δT−t(1−yt−2)
δ < δT−t−1(1 − yt−2), so 2’s payoff when making an

unacceptable offer becomes δT−t(1 − yt−2); and (c) when 2 proposes, T − t is

even and δ∗t > δ∗t+1. Therefore, 2 offers yt = max(yt−2, y
#
t ) when δ∗t+1 < δ ≤ δ∗t

or when δ > δ∗t and yt−2 ≥ y∗t−2, offers yt = yt−2 when δ > δ∗t and yt−2 < y∗t−2.

Combining cases (J) and (K), 2’s best response is offering yt = max(yt−2, y
#
t )

when δ ≤ δ∗t or when δ > δ∗t and yt−2 ≥ y∗t−2, and offering yt = yt−2 when δ > δ∗t
and yt−2 < y∗t−2.

Clearly, both players’ best responses coincide with (f, g).
Now that (f, g) specifies the best responses when t = T, T −1, T −2, and are

the best responses in t if they are the best responses in t
′
> t, (f, g) constitutes

the unique sub-game perfect equilibrium.

Now we discuss the equilibrium without the tie-breaking rule.
For the respondent’s indifference choices: Suppose the respondent rejects

with a positive probability when indifferent. It is easy to imagine that the
proposer has an incentive to increase the proposal by ε > 0, ε→ 0 as the total
payoffs strictly decrease with time.

For the proposer’s indifference choices: The only time this happens is in case
(K), when δt > δ∗t and yt−2 = y∗t . However, from our analysis of cases (B) and
(C), we see that 2’s indifference as proposer is resolved and does not affect her
reservation value in the earlier period, where 1 makes an acceptable proposal
xt−1 = x##

t−1 anyway. Thus such indifference cannot affect on-path play unless
it occurs at t = 1, when T is odd and δ = δ∗1 .
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