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ABSTRACT. Over the past few decades, bioenergy production from heavy metal-13 

contaminated biomass (HMCB) has been drawing increasing attention from scientists in 14 

diverse disciplines and countries owing to their potential roles in addressing both energy 15 

crisis and environmental challenges. In this review, bioenergy recovery from HMCBs, i.e. 16 

contaminated plants and energy crops, using thermochemical processes (pyrolysis, 17 

gasification, combustion, and liquefaction) has been scrutinized. Furthermore, the necessity 18 

of the implementation of practical strategies towards sustainable phytoextraction and metal-19 

free biofuels production has been critically discussed. To meet this aim, the paper firstly 20 

delivers the fundamental concepts regarding phytoremediation approach, and then, reviews 21 
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recent literature on sustainable phytoextraction of heavy metals from polluted soils. 1 

Thereafter, to find out the possibility of the cost-effective production of metal-free biofuels 2 

from HMCBs using thermochemical methods, the impacts of various influential factors, such 3 

as the type of feedstock and metals, reactor type and operating conditions, and the role of 4 

probable pre-/post-treatment on the fate of heavy metals and the quality of products, have 5 

also been discussed. Finally, based on relevant empirical results and techno-economic 6 

assessment (TEA) studies, the present paper sheds light on pyrolysis as the most promising 7 

thermochemical technique for large-scale electricity and heat recovery from HMCBs. 8 

KEYWORDS: Biofuel production, Heavy metal-contaminated biomass, Phytoextraction, 9 

Thermochemical conversion, Techno-economic assessment 10 
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1. INTRODUCTION 1 

1.1 Rising bioenergy demands vs. available biofuel feedstocks 2 

The energy insecurity and rising environmental issues (i.e. air pollution and GHGs emission, 3 

etc.) resulted from fossil fuels are driving societies to look for sustainable, renewable, clean 4 

and cost-effective energy supply [1-4]. Eminent renewable energy portfolios comprise 5 

biomass, wind energy, solar energy and hydropower. Amongst these options, biomass, as a 6 

sufficiently “green” and carbon neutral energy source, has gained utmost attraction for 7 

biofuel production [3, 5, 6]. Four different feedstock categories can be applied to produce 8 

biofuels, including first generation feedstock (e.g. food crops); second generation feedstock 9 

(e.g. perennial herbaceous and woody plant species, co-called energy crops: willows, poplar, 10 

castor etc.); third and fourth generation feedstock (e.g. macro- and microalgae) [7-11]. Based 11 

on the type of conversion technologies and operating conditions, different biofuel products 12 

can be produced, such as liquid (biodiesel, bioethanol and biobutanol), gaseous (biohydrogen 13 

and biomethane) and solid fuels (pulverized biomass from torrefaction) [7-10, 12]. 14 

Generally, only 19% of the total energy consumption is supplied from renewable 15 

resources worldwide. However, biomass energy at present contributes up to 9.30% of the 16 

global energy supplies as electricity, heat and transportation fuels [13, 14], and up to 30–50% 17 

of the world’s present energy consumption could potentially be achieved via biomass in 2050 18 

[15]. For instance, the EU and the USA have planned to substitute 10 and 20% of road 19 

transportation fuels with biofuels by 2020 and 2022, respectively [16, 17]. And globally, 20 

current demand of biomass based renewable energy (i.e. 50 EJ y-1) is anticipated to become 21 

around double to triple in 2050 [18]. 22 

On the other hand, ever-growing demand of food with rising population at alarming rate 23 

would limit the availability of arable land for energy crops cultivation, and consequently 24 
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large-scale biofuel production [14]. Thus, biofuels from arable land based oleaginous or food 1 

crops are not socioeconomically beneficial due to concerns over competing land use, high 2 

food prices and global security [14]. Therefore, contaminated biomass have been widely 3 

investigated as another promising alternative for bioenergy production with a three-fold aim: 4 

(I) producing clean bioenergy and helping global energy demands; (II) mitigating 5 

environmental pollutions towards sustainable phytoextraction process; and (III) solving the 6 

dilemma in food crisis versus biofuel production [19, 20]. 7 

1.2 Contaminated biomass from phytoextraction processes 8 

Totally, woody biomass or lignocellulosic feedstock has been known as a widely used and 9 

abundantly available source of biomass for biofuel production with yearly supplies of ~200 10 

billion metric tons worldwide [21, 22]. Moreover, biofuels from lignocellulosic biomass 11 

bring various benefits compared to the first generation biomass, such as no competition with 12 

primary food production, higher biofuel yields and lower land requirements [23, 24]. 13 

Lignocellulosic biomass has been mostly undergone in thermochemical conversion due to 14 

its low ash content and high-quality bio-oil [25]. Yet, plants and crops could be contaminated 15 

owing to their uptake of various pollutants during natural and/or engineered 16 

phytoremediation of polluted environments resulted from diverse anthropogenic activities 17 

[26-29]. Statistically, it has been estimated that more than one-third of the world’s terrestrial 18 

resources are contaminated [30] (so-called brownfield sites [31]), however, the real rate of 19 

contaminated lands, plants and crops could be significantly higher even rather than whatever 20 

has been reported so far [32-35]. Recently, it has been reported that the brownfields area is 21 

around 239 M ha-1 of the world’s unexploited soils [36]. For example, heavy metals (HMs), 22 

mineral oils, and polyaromatic hydrocarbons (PAHs) respectively comprise ~35%, 24% and 23 

10% of the total amount of soil contaminants in Europe [37]. Some sources of HMs resulted 24 
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in contaminating soils are sewage sludge, urban composts, fertilizers, pesticides, car exhausts, 1 

and residues from metalliferous mining or smelting industries [38]. 2 

Emerging phytoremediation and biosorption techniques are two promising and cost-3 

effective bioremediation methods over conventional engineering approaches to remediate 4 

contaminated soil and water bodies [39-41]. Phytoremediation technique employs rapidly 5 

growing ligneous/herbaceous plants and energy crops with high HMs accumulation ability in 6 

short rotation coppice [42, 43], while, biosorption uses algae, fungi, etc., for treating 7 

industrial effluent containing high concentrations of HMs [40, 44]. 8 

So far, phytoremediation has been applied to transfer, degrade, immobilize, or stabilize 9 

different inorganic elements (HMs and alkali-earth-metals) [25, 45, 46], mineral oils, 10 

pathogens (coliforms, fecal coliform), nutrients (nitrogen, phosphorus, sulfur, inorganic 11 

carbon), and organic materials (POPs, PAHs, polychlorinated biphenyls, mineral oils) in both 12 

aqueous and terrestrial environments [47, 48]. Generally, HMs category, including Zn, Cu, 13 

Cd, Pb, Cr, Ni, Fe, etc., refers to naturally occurring or inorganic elements with a high atomic 14 

weight and a density of at least 5 times greater than that of water, plus metalloids bearing 15 

densities >5 g cm-3 [49, 50]. The HMs inside plants can possess various forms or molecular 16 

structures including impurities in cellulose, bonds with organic matter, ionic species, defects 17 

in salt or crystal structures, and impurities in sulfate, nitrate, etc. [51]. Inside plants, almost 18 

all HMs, except Fe, Cu, and Al, have been detected along with water-insoluble or cellulosic 19 

structure of biomass, which in turn verifies the accumulation of HMs [51]. 20 

Phytoextraction is a sub-classification of phytoremediation technique that is used for 21 

transferring inorganic and organic substances from contaminated soil or water body to plants 22 

and partially storing them in the roots and other parts of the plants with various distribution 23 

[42, 52-54]. However, depending on the type of plants and HMs, the distribution of metals 24 

varies significantly among root, shoot and leaves [36, 42, 54]. For willow, as a common 25 
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example of plant species used for phytoextraction process, Zn and Cd concentrations in 1 

leaves were respectively 5 and 2 times larger than those in stems, while leaves accounted for 2 

approximately 20% of the biomass produced after 3 years [55]. The phytoextraction 3 

processes, i.e. the uptake and accumulation of HMs in plants’ body, and bio-waste re-4 

utilization pathways are shown in Fig. S1. 5 

Reportedly, highly efficient phytoextraction can be performed by two types of plants such 6 

as hyperaccumulators [56-59] followed by fast-growing species [60]. Hyperaccumulators 7 

characterizes as plants with low biomass production but the high ability of HMs 8 

phytoextraction (1,000 times > typical plants) [61, 62]. Hyperaccumulators are chiefly 9 

herbaceous plants that can take up high amounts of HMs majorly in aboveground tissues 10 

without suffering any damage [56-59]. Some examples of their accumulation abilities are 11 

listed as below: Mn and Zn >10,000 mg kg-1 dry-wt. [63]; As, Co, Cu, Ni, Se and Pb >1000 12 

mg kg-1 dry-wt. [64]; and Cd >100 mg kg-1 dry-wt. [63]. Regarding fast-growing species, 13 

they have lower phytoextraction ability than hyperaccumulators, but their total biomass 14 

production is significantly higher [60]. However, despite the disparity of metal 15 

phytoextraction rate per unit of dry biomass, it has been stated that generally, the total 16 

quantities of metals extracted from soil by these two types of plants to their aboveground 17 

parts are considerably similar [65, 66].  18 

1.3 Biomass pretreatment 19 

Generally, lignocellulosic biomass consist of 25–35% lignin, 20–40% hemicellulose and 30–20 

50% cellulose (dry-wt.) depending on the species [67]. As shown in Fig. 1, lignocellulosic 21 

biomass contains three polymeric components, of which hemicellulose and cellulose are 22 

bound together by lignin with a non-biodegradable feature. Such a complex and rigid 23 

structure made cellulose difficult to readily expose to biological and thermochemical reaction 24 
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media [68, 69]. Besides, the lignin, i.e. the un-fermentable fraction of biomass, has been 1 

known as one of the main factors for its difficult thermal decomposition in a wide range of 2 

temperature (160–900 °C) [70]. On the other side, regarding HMCBs, it has been reported 3 

that cellulose has the potential of binding a wider spectrum of inorganic elements, whilst 4 

lignin bears the capacity of binding more Fe, Pb and Zn than cellulose (Fig. 1) [71-73]. Also, 5 

the transfer of the aforementioned pollutants, i.e. HMs, POPs, etc., from biomass into the 6 

products could pose operational, environmental and health risks [74-77]. In terms of 7 

threatening public health, As, Cd, Cr, Pb, and Hg rank among the priority HMs because of 8 

their extreme toxicity and carcinogenicity [78]. 9 

 10 

 11 

Fig. 1. Structure and location of the three key fractions of lignocellulosic biomass with an 12 
approximate speciation of heavy metals. (Based on the explanation of ref. [51, 68, 69, 71-73] 13 
and a re-arrangement of a figure adopted [79].) 14 

 15 

In order to address the challenges linked to the sophisticated structure of lignocellulosic 16 

biomass and/or the presence of various contaminants inside biomass, various pretreatment 17 

methods have been applied, including physical (crushing, milling, drying and torrefaction) 18 



8 
 

[21, 80-82] biological (white-rot fungi, hydrolysis) [83], advanced chemical (acid and 1 

alkaline methods) [84] and hydrochemical pretreatment [85-88]. Furthermore, the application 2 

of novel chemical pretreatment approaches, such as steam explosion, ionic liquids, 3 

eutectic/organic solvents, etc., to fractionate biomass structure (i.e. cellulose from lignin and 4 

hemicellulose) and consequently facilitate the saccharification and/or thermochemical 5 

processes [89-92]. 6 

The pretreatment techniques can also be implemented with the aim to reduce the transfer 7 

of contaminants (minerals, HMs, POPs, etc.) from feedstocks into the following processes 8 

and/or products, otherwise, the abovementioned contaminants could have poisoned the 9 

conversion/refinery catalysts or degraded the bio-products to some extent [93]. However, few 10 

studies have reported some positive effects of HMs on thermochemical processes, the yield 11 

and quality of biofuels in terms of the distribution of chemical components in the biofuels 12 

[94-98]. Therefore, to enhance the quality and quantity of desired biofuels, the biomass 13 

pretreatments are selected based on the biomass composition and its characteristics, the type 14 

of contaminants, and operating conditions [99, 100]. Advantages and drawbacks of diverse 15 

pretreatment techniques on the quality, yield, stability, and cost of the biofuels produced in 16 

thermochemical and biological processes have been discussed in previous literature [91-93, 17 

101, 102]. For example, Wigley et al. [101] have reported the positive impacts of 18 

pretreatment of a plant using an integrated acid leaching and torrefaction process on the 19 

quantity, quality, stability and total operation costs, respectively, by providing the leaching 20 

reagent, demineralization, and eliminating the further need for biomass rinsing and grinding 21 

costs. 22 
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2. BROWNFIELDS REMEDIATION TECHNOLOGIES 1 

2.1 Soil remediation and phytoextraction of HMs 2 

Various technologies are applied to remove and/or stabilize HMs from brownfields, including 3 

physical, chemical, biological, and ecological approaches. Physical technologies, such as soil 4 

replacement and thermal desorption approaches [103, 104], which each one has some 5 

limitations, including high workload, costly, and suitable for a small area contaminated soil. 6 

Chemical technologies, including chemical fixation [105, 106], chemical leaching [107], 7 

chemical adsorption [108], electrolytic remediation [108, 109], etc. Chemical technologies 8 

are faster than physical and biological methods (discussed later) in terms of shorter operating 9 

time; however high costs, alteration of soil structure and generation of a number of secondary 10 

pollution deem to be their disadvantages [42]. In contrast, biological technologies, including 11 

microbial remediation, phytoremediation, and integrated approaches, are more 12 

environmentally friendly and cost-effective processes [110-113] that exploit plants and 13 

microorganisms to remove or extract elemental pollutants in various environments including 14 

soils, sediments, wastewater, and sludge, etc. [114-117]. 15 

Amongst all above-mentioned technologies and approaches, phytoremediation has been 16 

recognized as a green, eco-friendly, safe, effective, and low-cost process for the removal of 17 

HMs with neither adverse effects on the soil structure nor interfering with the ecosystem [118, 18 

119]. As can be seen, Table 1 shows the removal of HMs from brownfields by 19 

phytoextraction using various plants and the contents of HMs in various matrices involved. 20 

The remediation of brownfields using phytoextraction faces some limitations, including the 21 

long-period cycle, limited use for large-scale applications, as well as instability in term of 22 

species tolerant and treatment efficiency, resulted from the inhibition of the plant growth by 23 

HMs [120, 121], which make it doubtful to be practically commercializable [110, 122]. To 24 

enhance the efficiency and practicability of phytoremediation techniques, more efforts have 25 
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been made to further develop and promote them as suitable options for the management of 1 

brownfields. For instance, the valorization of biomass produced in phytoremediation in the 2 

form of bioenergy [36, 123] and resource recovery [124, 125], as well as the integration of 3 

phytoextraction with phytostabilization can offer more sustainable and profitable processes 4 

[110, 126]. As an example for the resource recovery and reuse, a pioneering study on the 5 

phytomining of palladium (Pd), using mustard (Arabidopsis), Miscanthus, and 16 willow 6 

species, demonstrated the promising potential of Pd phytoextracted as nanoparticles and their 7 

comparable catalytic activity achieved to 3% Pd-on-carbon catalysts commercially available; 8 

a subsequent life cycle assessment indicated that such a coupled technology by extracting Pd 9 

for industrial applications got the potential to reduce the overall environmental impacts 10 

associated with the current Pd mining processes [125].  11 

As can be seen in Table 1, Brunetti et al. [127] have conducted a comparative study 12 

between the phytoremediation potential of frugal Helichrysum italicum and mycorrhized 13 

Helichrysum italicum by Septoglomus viscosum applied for remediation of a land 14 

contaminated by Cd, Cu, Zn, Pb, Cr, Ni, and Co, over a twelve-month period. Results showed 15 

that the non‐mycorrhized plant, i.e. Helichrysum italicum accumulated greater amounts of 16 

HMs, especially Cr, Cu, Pb, and Zn, in their root system. On the other hand, Septoglomus 17 

viscosum used in the mycorrhized H. italicum study resulted in a better growth of plant in 18 

contaminated soils −likely because of the better soil fertility parameters in the brownfields−, 19 

however, its use decreased the uptake of HMs by the roots, which was possibly resulted from 20 

an exclusion mechanism, thereby reducing the phytoremediation capability of H. italicum and 21 

less extraction of the HMs from the contaminated soil (see Table 1) [127]. Kocoń and Jurga 22 

[111] studied a three-year micro-plot experiment to investigate the growth possibility and 23 

phytoextraction potential of two energy crops, i.e. Sida hermaphrodita and Miscanthus x 24 

giganteus, cultivated on loamy and sandy soils polluted with Cd, Cu, Ni, Pb, and Zn. In term 25 
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of the growth possibility, Miscanthus demonstrated higher tolerance to concomitant exposure 1 

to HMs and produced around double biomass than Sida in all three tested years, irrespective 2 

of soil type. Results revealed that both plants can successfully be grown on moderately 3 

contaminated soil with HMs. Considering the HMs removal potential, Miscanthus showed 4 

greater amounts of HMs accumulation (except for Cd), compared to Sida (see Table 1). 5 

Moreover, both plants absorbed high levels of Zn, lower levels of Pb, Cu and Ni, and 6 

accumulated least Cd. Regarding the effect of the soil type, it was found out that, generally, 7 

in the sandy soil more HMs were taken up (Table 1), and plants also showed better yields 8 

[111]. 9 

 10 

 11 

 12 

 13 

 14 

 15 

 16 

 17 

 18 

 19 

 20 
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Table 1. Removal of HMs from brownfields by phytoextraction using various plants and the metal contents in different 1 

matrices (mg kg-1 dry wt.) 2 

Soil/sand HMs content   Biomass  HMs content   Biomass  HMs content   
Type Contaminated  Remediated  Type 1 Initial Accumulated  Type 2 Initial Accumulated  Ref. 
Clay-loam soil Cd 1.40 

Cu 706.50 
Zn 1,999.30 
Pb 459.70 
Cr 4,986 
Ni 88.30 
Co 18.30 
 

Cd 0.60 
Cu 247.80 
Zn 1,228.80 
Pb 251.70 
Cr 2,387.50 
Ni 38.50 
Co 10.60 

 Helichrysum 
italicum  
 

Cd 1.00 
Cu 12.20 
Zn 35.70 
Pb 3.60 
Cr 13.30 
Ni 10.2 
Co 2.80 

Cd 0.99 
Cu 60.10 
Zn 217.10 
Pb 32.70 
Cr 455.70 
Ni 8.50 
Co 1.90 

 Mycorrhized 
Helichrysum 
italicum 
 

Cd 1.80 
Cu 29.80 
Zn 48.50 
Pb 6.50 
Cr 7.80 
Ni 11.60 
Co 4.80 

Cd 0.50 
Cu 48.50 
Zn 129.20 
Pb 15.70 
Cr 109 
Ni 6.30 
Co 1.30 

 Brunetti et 
al. [127] 

Loam soil Cd 2.90 
Cu 65.70 
Zn 1,006.30 
Pb 592.50 
 

−  Miscanthus x 
giganteus 

− Cd 0.80 
Cu 8.90 
Zn 305 
Pb 38.50 

 Sida 
hermaphrodita

− Cd 0.50 
Cu 3.50 
Zn 228 
Pb 7.80 

 Kocoń and 
Jurga [111]

Sandy soil Cd 2.50 
Cu 62.30 
Zn 845 
Pb 427.30 
 

−  Miscanthus x 
giganteus 

− Cd 2.40 
Cu 12.20 
Zn 937.50 
Pb 83.60 
 

 Sida 
hermaphrodita

− Cd 2.40 
Cu 12.20 
Zn 937.50 
Pb 83.60 

 Kocoń and 
Jurga [111]

Soil Cd 15.40 
Cu 870 
Zn 1,700 
Pb 2,200 
Cr 410 
Ni 71 
 

−  Miscanthus x 
giganteus root

− Cd 1.88 
Cu 245.67 
Zn 247.33 
Pb 214.67 
Cr 44.37 
Ni 12.93 

 Miscanthus x 
giganteus 
aggregate 
stem and 
leaves 

− Cd 0.50 
Cu 20.81 
Zn 145.17 
Pb 13.59 
Cr 6.57 
Ni 4.91 

 Laval-
Gilly et al. 
[36]  

Sediment Cd 2.40 
Cu 33 
Zn 228 
Pb 88 
 

−  Willow stem − Cd 7.30 
Cu 3.00 
Zn 285 
Pb <QL 

 Willow leaves − Cd 11.80 
Cu 10.10 
Zn 412 
Pb <QL 

 Delplanque 
et al. [128] 

Sandy-loam 
soil + EDTA 

Cd 5.50 
Zn 800 
Pb 1,100 
 

−  Sinapis alba − Cd 7.93 
Zn 524.68 
Pb 479.71 
 

 Trifolium 
repens 

− Cd 3.27 
Zn 167.99 
Pb 434.32 
 

 Kos et al. 
[129] 

Sandy-loam 
soil + EDTA 

Cd 5.50 
Zn 800 
Pb 1,100 
 

−  Raphanus 
sativus 
oleiformis 

− Cd 5.70 
Zn 402.69 
Pb 197.19 
 

 Zea Mays cv. 
Matilda 

− Cd 2.61 
Zn 321.03 
Pb 72.80 
 

 Kos et al. 
[129] 

<QL: below quantification limit 3 

 4 
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Similarly, a study on the phytoremediation of Cr using young mangrove species, so-1 

called Rhizophora apiculata, revealed the effects of Cr loads, soil composition and presence 2 

of fertilizer on the remediation efficiency. The operation mode of such a complex system was 3 

determined by the following control parameters, including the load of Cr, number of plants, 4 

age of plants, volume of the water, saltiness of the water, nutrient level and the mass of the 5 

soil, as well as flow velocity (in the case of a flow reactor). According to empirical and 6 

simulation results, the phytoextraction of Cr using young mangrove trees was feasible, while 7 

the performance of the system was influenced due to 1) the inhabitation of plant growth at 8 

high Cr concentrations; 2) the soil type and their composition, i.e. depending on whether it 9 

was fresh or salty, etc.; and 3) the fertilizer or nutrient content, which increased the system 10 

performance by affecting the plant growth. According to the data, plants showed their 11 

maximum Cr uptake of 326.72 mg kg-1 Cr at a soil with Cr content of 500 mg L-1 in the third 12 

month. While for higher Cr loading, an adverse trend was observed for the uptake rate and 13 

plant growth owing to inhibitory effects of Cr on the plants’ growth. Besides, at high loads of 14 

Cr, the growth of plant was influenced more at high than at low nutrient levels. Furthermore, 15 

it was observed that the plants’ growth in freshwater, sterilized soil, and washed soil had 16 

close and similar curves, whereas, for the salty water and natural soil experiments, the growth 17 

curves demonstrated a more pronounced growth inhibition by Cr [113]. Regarding the impact 18 

of the age of plants, Kocoń and Jurga showed that the concentrations of HMs in plant tissues 19 

decreased annually, so that metal contents usually were the lowest in the oldest plants 20 

harvested at the end of the study [111]. 21 

Some other researches showed high efficiency of the HMs phytoextraction during seven 22 

years using four conventional energy crops with high biomass production yields, including 23 

Spartina pectinate (9.50 Mg ha-1), Sida hermaphrodita (11.70 Mg ha-1), Panicum virgatum 24 

(13.30 Mg ha-1), and Miscanthus x giganteus (15.00 Mg ha-1 biomass yield) [37, 111, 130-25 
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132]. Furthermore, phytoremediation results revealed that Miscanthus x giganteus is a more 1 

tolerant species to Zn while S. hermaphrodita to Pb [133]. However, in terms of HMs 2 

phytostabilization, S. pectinata and P. virgatum have been proved as suitable plants [134]. 3 

Furthermore, Laval-Gilly et al. [36] showed the capability of Miscanthus x giganteus for 4 

efficient phytoextraction of brownfields with considerable accumulation of HMs, like Cd, Cu, 5 

Zn, Pb, and Cr, in roots, compared to their stem and leaves (see Table 1). Moreover, willow 6 

(Salix) demonstrated a significant performance for the phytoremediation of Zn and Cd from 7 

contaminated sediment, while lower and negligible removals were observed for Cu and Pb, 8 

respectively (see Table 1) [128].  9 

Nevertheless, as HMs cannot be self-decomposed like organic compounds, hence recently, 10 

the modification of phytoextraction using some suitable methods, namely integrated 11 

phytoremediation, has been proposed to improve the efficiency of the HMs removal process. 12 

Integrated phytoremediation is a technique that applies chelating agents and phytohormones 13 

to intensify the amount of HMs phytoextraction. These novel modifications are some eco-14 

friendly, time saving and comparatively more effective approaches. To be exact, the 15 

formation of chelates, resulted from the association of HMs ions and chelating agents, 16 

increases the availability of HMs in the soil and enhance the translocation of them to plants. 17 

In fact, integrated phytoremediation is a way to overcome the disadvantages of conventional 18 

phytoremediation by exploiting of chelating agents and phytohormones and/or their 19 

combination, which also supplies nutrients for supporting vegetation growth [120, 126, 129, 20 

135, 136]. Additionally, some other researches have recommended the application of other 21 

methods, such as the addition of organic waste to soil [137, 138], co-planting of different 22 

plant species [139], use of genetically-modified plants [140], etc. However, in order to clarify 23 

and prove the actual potential of integrated phytoextraction methods, the implementation of 24 

large-scale and commercialization studies are required.  25 
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2.2 Linking phytoextraction and bioenergy recovery 1 

The best strategy for remediating a brownfield site via phytoextraction processes is 2 

determined by the extent of soil contamination and the abilities of various plant(s) [43, 54, 3 

141]. However, phytoextraction processes encounter serious issues such as long remediation 4 

periods to clean brownfield sites [43, 141, 142], and production of large amounts of metal 5 

contaminated biomass. The latter is a key challenge in the practice of such approaches, for 6 

which a few types of treatment/reuse processes has been investigated so far [52, 141, 143]. 7 

Therefore, to cope with used plants rich in accumulated metals, some processes like direct 8 

disposal, biofuel production, combustion, liquid extraction, composting, metals recovery, etc., 9 

are employed to reuse (metal/energy recovery), treat or dispose the residues originated from 10 

phytoremediation process (Fig. S1) [29, 43, 52, 54, 55, 96, 141, 144-148]. However, direct 11 

landfilling and composting of HMCBs have some inherent drawbacks, including the leaching 12 

and/or transfer of HMs into soil and water bodies, which limit their application [143, 149-13 

153]. Therefore, in terms of HMCBs disposal, combustion route has been recognized as the 14 

most environmentally effective compared to other technologies like composting, pyrolysis, 15 

etc. [52, 153]. On the other hand, bioenergy recovery from contaminated plants, as a versatile 16 

alternative of fossil fuels without competing for food security and environment, is globally 17 

more interesting than other phytoextraction-related products including wood, fiber, 18 

bioplastics, charcoal, alkaloids, etc. [141, 154, 155]. Thereby, the growth of energy crops 19 

possessing remarkable HMs phytoextraction ability, such as willow (Salix ssp.), switchgrass 20 

(Panicum virgatum), poplar (Populus ssp.), Jatropha Miscanthus, Dittrichia viscosa Silybum 21 

marianum, etc., appears to be the most progressive approach to reach both goals, i.e. 22 

bioremediation and bioenergy production [11, 43, 141]. The novel high-throughput 23 

biotechnological and chemical strategies have unfold a new track in phytoremediation field, 24 
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by the direct transfer of gene or application of HMs stabilized agents (i.e. algae, fungi, etc.), 1 

to manipulate the capability of bioenergy crops [156-159]. 2 

Some potential products extracted from HMCBs comprise sugar via enzymolysis, 3 

marketable chemicals and fuels, as well as the HMs recovery via thermochemical processes 4 

[21]. To do so, thermochemical conversion (pyrolysis [160-162], gasification [53, 163, 164], 5 

liquefaction [94, 165, 166], and combustion [128, 167-169]), and biochemical processes 6 

(anaerobic digestion [54, 170], and fermentation [147, 171]) have been investigated. In 7 

addition, some pretreatments, including dry and/or physical [172-174], wet and/or chemical 8 

[175-177], and physicochemical methods [148] have been examined prior to HMCBs 9 

conversion to biofuel or to other valuable products, such as char, activated carbons, etc. Fig. 10 

2 illustrates the detailed HMCBs conversion pathways into various biofuels. 11 

 12 

 13 

Fig. 2. The pathways of HMCBs conversion into various biofuels 14 

 15 
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All the aforementioned routes not only could convert contaminated biomass into metal-1 

free biofuels, but also reduce the waste biomass volume considerably; and the final residue(s) 2 

could undergo further treatment or metal extraction prior to the eventual safe disposal [96]. 3 

However, the scale-up of phytoextraction process and energetic valorization of HMCBs are 4 

still challenging on the account of obstacles summarized below: 5 

• Inorganic elements restrict the entire operation in large-scale cases, mainly owing to 6 

their negative effects such as fouling processing equipment, poisoning catalysts, 7 

contaminating products, etc. [45, 178]. 8 

• The transfer of pollutants into the products could seriously pose health risks [179, 9 

180]. 10 

• The complex involvement of six categories of stakeholders, including local 11 

landowners and farmers, consultants and technology providers, remediation experts, 12 

etc. as the main factors for the successful utilization of HM-contaminated lands 13 

towards scale-up of HMCB-to-bioenergy [141]. 14 

• Management and environmental issues resulted from the processes and final residues, 15 

i.e. the risks of HMs transfer into soil, air and water bodies [74, 75]. 16 

HMCBs are undoubtedly an inevitable nuisance in today’s era and their proper treatment, 17 

reuse, and disposal carry utmost significance. Therefore, more effective control measures and 18 

efficient sophisticated apparatuses are required to counter the aforementioned issues and to 19 

produce clean biofuels with minimum environmental risks. 20 

Thermochemical conversion pathways, including pyrolysis, gasification, combustion, and 21 

liquefaction, are viable approaches for biomass conversion to bioenergy generally at a high 22 

operating temperature (250–1000 °C). These methods due to significantly faster reaction time 23 

and higher conversion efficiency are much more favorable than biochemical conversion by 24 

microbes and enzymes [181]. Therefore, due to the complex structure of woody biomass, 25 
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presence of various contaminants and inorganic elements (e.g., HMs, nitrogen, phosphorus, 1 

sulfur, and chlorine) and their complicated behaviors, selecting an efficient thermochemical 2 

process operating with its optimum conditions is required for efficient bioenergy and resource 3 

recovery from HMCBs with less environmental pollution. 4 

The present review paper comprehensively encompasses the cutting-edge technologies 5 

closely related to thermochemical processes and the state-of-the-art breakthroughs with 6 

respect to their relevant operating conditions and high-quality/yield biofuels produced from 7 

HMCBs via phytoremediation. The present review has also summarized and discussed the 8 

recent observations and results about the impact of HMs on biomass feedstock conversion 9 

and possible pretreatment options for the betterment of biofuel yield, product distribution, 10 

quality of biofuel, and safe application of products. Finally, there is a brief discussion to 11 

analyze the output obtained from techno-economic assessments on thermochemical processes. 12 

3. PYROLYSIS 13 

Pyrolysis process occurs at ~350−700 °C in the absence of oxygen to produce vapors or 14 

pyrolytic gases. The vapors need to be condensed through cooling in order to separate the 15 

liquid or bio-oil, leaving behind a solid residue namely char [20, 79]. The bio-oil has a 16 

calorific value of nearly half of conventional fuels (40 MJ kg-1) [182, 183], and is applicable 17 

as fuel in diesel engines [182, 184] or chemical feedstock [21, 185]. Additionally, the char is 18 

used for materials recovery [20], pollutants removal [186], soil applications [187], etc. 19 

Pyrolysis is categorized as slow [188], intermediate [189], fast [96] and flash process [20] 20 

based on operational conditions, i.e. heating rate (HR), gas residence time (GRT) and 21 

temperature. 22 

Generally, for the conversion of lignocellulose feedstock, fast pyrolysis with high heating 23 

rate (20–300 °C s-1) and short GRT of few second (5–10 s) contributes to high bio-oil yields 24 
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(40–50 wt.%) [183, 190, 191]. Whilst slow pyrolysis with lower heating rate (4–10 °C min-1) 1 

and longer GRT ends up lower bio-oil yield [191]. After pyrolysis, the gaseous phase is 2 

separated from solid matter, and subsequently, that part of the pyrolytic gas is rapidly cooled 3 

down to form bio-oil and the rest as non-condensable gas [192]. 4 

The recent investigations on the pyrolytic conversion of HMCBs have mainly focused on 5 

the fate of HMs with three goals: (I) to produce metal-free bio-oil; (II) to avoid HMs 6 

emission via gaseous phase (in form of free ions or hydroxide and carbonates); and (III) to 7 

accumulate HMs in the char [45, 96, 173, 188, 193]. It has been reported that a number of 8 

factors (i.e. plants type, pretreatment methods [45, 194], operating conditions and post-9 

treatment stages [20, 45]) have impacts on the characteristics and quality of bio-oil and char. 10 

Table 2 shows the operating conditions, bio-oil yields and quality of HMCBs pyrolysis, etc. 11 

in different pyrolytic processes. 12 

 13 
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Table 2. Pyrolytic conversion of HMCBs and bio-oil production 1 

* PS: Particle size of feedstocks 2 
** NR: Not reported3 

Feedstock HMs Pyrolysis Temp., °C 
(Heating 

rate,oC min-1) 

Reactor Biomass feed rates Pretreatment Post-
treatment 

HMs 
content in 

bio-oil 

Remarks Ref. 

Broussonetia 
papyrifera 

Cd, Cu Slow 450 
(10) 

Lab-scale tube 
furnace 

15 g exp.-1 Crushed and 
preheated: 

PS*<10 mm 

− Low • The pyrolysis of HMCB was affected by the heating rate and alkaline additives, so that 
appreciably influenced the fate of Cd and Cu, which should be solved. 

 

Han et al. [123] 

Sedum 
plumbizincicola 

Cd, Zn, 
Pb 

Slow and 
fast 

450–750 
(10–50) 

Lab-scale horizontal 
quartz tube 

15 g exp.-1 − Cyclone High • Bio-oil is not practical for real applications, due to relative high concentration of Cd and Zn. 
• Pyrolysis at 650 °C followed by an efficient cyclone as a post-treatment was able to recover 

Zn and Cd from char and bio-oil, respectively. 

Zhong et al. 
[146] 

Mixed feedstock 
(pine and spruce) 

Zn, Fe, 
Al 

Fast 750 
(Rapid heating, 

NR**)  

Pilot-scale pyrolyzer 20 kg h-1 Crushed and 
preheated: 
PS**<1.00 mm 

− Low • Pilot scale reactor is useable and efficient to produce high quality and metal-free bio-oil 
providing introducing feedstock with PS of <0.50 mm.  

• The appropriate solid residue separation significantly reduce HMs transfer to bio-oil. 

Wiinikka et al. 
[173] 

Willow Cd Fast 350–650 
(NR) 

Full-scale reactor − − − NR** • Fast pyrolysis is promising in compared with gasification and combustion to convert Cd-
contaminated willow in heat and power (CHP) system (bio-oil yield 65% and LHV 17 GJ t-

1). However, the profit depends on the scale of operation. 
• In terms of the total net revenue, 250 °C is the optimal pyrolysis temperature. 

Kuppens et al. 
[182] 

Fir sawdust Cu Fast 450–600 
 (300 °C s-1) 

(Batch) vertical drop 
fixed bed reactor 

15 g exp.-1 Crushed and 
preheated: 
PS<0.12 mm 

− Negligible • 500 °C is optimum temperature to produce cleaner bio-oil with higher yield. 
• Under optimum operating conditions, only ~0.027% of total Cu (i.e. 1.0 wt.% of feedstock) 

transferred into the bio-oil and ~95% accumulated in the char. 

Liu et al. [96] 

Willow Cd, Cu, 
Zn, Pb 

Flash 350–550 
(Rapid 

exposure) 

Lab-scale, semi-
continuous stirred 

fluidized bed reactor

2.40 kg h-1 Crushed and 
preheated: 
PS<0.20 mm 

hot-gas 
filter 

Negligible • Using a hot-gas filter at 350 °C, the transfer of particles to bio-oil extremely declines, and 
consequently a cleaner bio-oil with same bio-oil yield (41%). 

• Unlike combustion, flash pyrolysis is an eligible processing method to convert HMCB to 
metal-free bio-oil with high quality, so that the results were comparable to the pyrolysis of 
uncontaminated willow presented by Cornelissen et al. [195]. 

Stals et al. [20] 

Agricultural 
residues and 
manure 

Cd, Cu, 
Zn, Pb, 
Cr, Ni, 

Co, Mn, 
Fe, Al 

Fast 400–700 
(NR) 

Fluidized bed reactor Pilot scale (200 kg h-

1) 

Bench scale (5 kg h-1)

Screw (0.50 kg h-1) 

− − Negligible • At 400–600 °C, more than 95 wt.% of total inorganic elements is separated from the bio-oil. 
• Completely metal-free bio-oil production seems unlikely owing to the wide variety and forms 

of inorganic elements present in various feedstocks. 
• Using adequate solid-gas separation technologies before condensation could significantly 

obstruct the main transferring route of HMs into the bio-oil, resulted from particles. 

Leijenhorst et 
al. [45] 

Switchgrass and 
Timothy grass 

Pb Fast 500 
(20 °C ms-1) 

Micropyrolyzer − Crushed, 
preheated and 
hydrolyzed 
using mild acid 
and enzymes  

− NR • Both acidic hydrolysis (4% H3SO4) and enzymatic hydrolysis pretreatment negligibly affect 
the chemical distribution of the bio-oi. 

• Switchgrass species with modest levels of Pb uptake is a promising option for both 
phytoextraction and feedstocks for bio-oil production. 

• Switchgrass showed higher Pb uptake than Timothy grass. 

Balsamo et al. 
[21] 

Switchgrass Cu, Fe Fast and 
Catalytic 

450–500 
(NR) 

Fluidized bed reactor 1.50 kg h-1 

 

Crushed and 
preheated: 
PS=2.00 mm 

− NR • Bio-oil yield decreased (up to 35 wt.%), in compare with non-catalytic process, due to 
HZSM−5 catalyst poisoning resulting from accumulation of ~42% of Fe and 11% of Cu 
initial contents on its active surface.  

• Catalyst lead to bio-oil production with lower oxygenates. 

Mullen and 
Boateng [178] 

Willow Cd, Cu, 
Zn, Pb 

Fast 350 
(35)  

Quartz horizontal 
tube reactor 

3 g exp.-1 Air-dried and 
crushed: 
PS=2.00 mm 

− Metal-free • Bio-oil is almost metal-free, with small differences in types and amounts of organic 
compounds. 

• Condensable pyrolysis fraction has only small amount of Zn (5 mg kg-1 or <1% of total Zn 
amount), but without any detection of Cd, Cu and Pb. 

• Fast pyrolysis at low temperature (~350 °C) is recommended to produce metal-free bio-oil. 

Lievens 
et al. [183] 

Birch wood and 
sunflower 

Cd, Cu, 
Zn, Pb 

Fast 400–600 
(35)  

Quartz horizontal 
tube reactor 

3 g exp.-1 Air-dried and 
crushed: 
PS=1.00 mm 

− Metal-free • Metal-free bio-oil is obtained only at temperature of ~350 °C, at which volatilization of 
highly volatile HMs, like Cd and Zn. 

Lievens et al. 
[196] 

Willow and 
Thlaspi 
caerulescens  

Cd, Zn Slow 
 

25–900 
(4)  

Lab-scale tube 
furnace 

5−10 g exp.-1 Crushed and 
preheated: 
PS=1.00 mm 

− NR • Pyrolysis is a promising technique in compare to incineration to increase the valorization of 
HMCBs, i.e. for the recovery of Cd and Zn. 

Keller et al. 
[55] 
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Zhong et al. [146] studied slow and fast pyrolysis of a hyperaccumulator (S. 1 

plumbizincicola) with high concentrations of HMs, including Zn (9,838), Cd (560), Pb 2 

(62.50), Cu (77.60), Cr (45.40), Fe (642) and Al (13,976 mg kg-1 of HMCB), in operating 3 

conditions described in Table 2. The higher temperatures and heating rates increased the 4 

HMs emission rate into bio-oil with different trends for each element. For example, at 450–5 

650 °C at least 66.30% of Zn remained in the char while 87.60% of Cd and 73.60% of Pb 6 

transferred into the bio-oil, but no HMs were detected in the gaseous phase. It was concluded 7 

that fast HMCB pyrolysis at 650 °C could produce bio-oil with highest yield and quality (in 8 

terms of more alkenes with low levels of oxygenated compounds); and it was also suggested 9 

to adopt HMs cleaning technologies (i.e. cyclone and spray tower ) as post-treatment 10 

measures to recover Zn and Cd from char and bio-oil, respectively. However, the bio-oil 11 

produced by such a process may not be suitable for real applications yet due to its high Cd 12 

and Zn content [146]. 13 

Furthermore, Stals et al. [20] investigated the flash pyrolysis of contaminated willow (a 14 

mixture of stem and leaves based on naturally weight ratio of plant organs) under operating 15 

conditions listed in Table 2. The results revealed that by increasing temperature from 350 to 16 

550 °C, a lot more quantity of Cd volatilized to gaseous phase while Zn majorly transferred 17 

into bio-oil. However, negligible level of Pb in bio-oil was detected even at highest testing 18 

temperature. Based on the yields, properties and content of target metals in pyrolysis oil in 19 

this study, 350−450 °C deemed as preferable pyrolysis temperature range at which generally 20 

high yields of bio-oil were achieved and lower amounts of HMs were found in the bio-oil: Zn 21 

<7.80 mg kg-1, 1%; Cd <0.80 mg kg-1; 13% and Pb <0.60 mg kg-1, 7% of initial concentration. 22 

Even though, at the lowest temperature HMs majorly concentrated in the char, the bio-oil did 23 

not meet other optimal indexes, i.e. bio-oil yield (41%), gas yield (38%), char yield (21%), 24 

water content (49%), and high heating value (HHV 21.90 MJ kg-1) [20]. 25 
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Likewise, according to Leijenhorst et al. [45] (Table 2), using fast pyrolysis process for 1 

agricultural residues in the temperature range of 400–600 °C, over 95 wt.% of total inorganic 2 

elements present in contaminated biomass were separated from the produced bio-oil, and 3 

HMs largely remained in the char. Generally, the easy transfer of HMs to gaseous phase in 4 

thermochemical decomposition of HMCB is affected by (I) their high volatilization at higher 5 

temperatures (Table S1) [20, 146], and (II) the bonding of HMs with initial biomass structure 6 

[71-73] and produced organic vapor [45]. 7 

Dilks et al. [19] have presented an overall scheme for pyrolysis of HMCBs (Fig. S2) 8 

possessing a cyclone as the post-treatment for phase separation to produce cleaner bio-oil, 9 

whilst, no wet-chemical pretreatment was considered to eliminate the HMs directly from the 10 

feedstock prior to conducting pyrolytic conversion. According some studies, the produced 11 

char obtained from pyrolyzing HMCBs is mostly not suitable neither for free disposal into the 12 

environment nor for metal extraction/recovery [19, 20]. 13 

Generally, biomass type, feedstock particle size/distribution, pyrolysis operating 14 

conditions as well as pre- and post-treatments can affect the yield, HHV, and quality of bio-15 

oil, HMs and solids transfer rate. The effects of aforementioned factors on pyrolytic 16 

conversion of HMCBs are discussed in the following sections. 17 

3.1 Effect of HMCB type 18 

Generally, the lignocellulosic composition of biomass is one of the factors affecting the 19 

chemical composition of and its distribution in the bio-oil product [21]. Similarly, Lievens et 20 

al. [196] have shown different HMCBs (i.e. birch and sunflower) end up to pyrolysis 21 

fractions, i.e. bio-oil, char, etc., with different yields, characteristics, and calorific values. The 22 

main reasons can be inferred from the ultimate analysis of birch and sunflower that showed, 23 

in comparison to sunflower, birch wood with a different structure formula (lower H:C (~0.14) 24 
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and O:C (~0.90) ratios) causes higher bio-oil yield throughout the operation condition. 1 

Therefore, by pyrolysis of birch wood at the optimum temperature of 500 °C, a bio-oil 2 

possessing chemicals with lower H:C (1.41) and O:C (0.51) ratios with higher HHV of 3 

~21.20 MJ kg-1 was obtained [196]. Furthermore, the comparison of fast pyrolysis of HM-4 

contaminated willow and fir sawdust in two different studies under roughly identical 5 

operating conditions reveals the same behavior. In other words, willow with lower H:C and 6 

O:C ratios has resulted in bio-oil yields of 50−80 wt.% per dry feed basis, which was 7 

significantly more than what was obtained from fir sawdust [96, 182]. 8 

On the other side, it has been reported that different parts of HMCBs, i.e. stems, branches, 9 

and leaves, possess various concentrations of structural organic compounds [71, 183] and 10 

bioaccumulation degrees of inorganic pollutants [72, 73]. Consequently, the difference in 11 

physical structure and composition of HMCB’s organs may lead to different yields of bio-oil 12 

products with various HHVs, reactivity, and compositions [183]. For instance, the dominant 13 

bioaccumulation of HMs, such as Cd, Pb, Cu, and Zn, was observed in willow’s leaves, 14 

however, the fast pyrolysis of willow’s organ at 350 °C showed a higher bio-oil yield of 15 

13.70 MJ kg-1 and 7% increase of HHV [183]. The same trend was observed by the flash 16 

pyrolysis of willow’s branch and leave at 450 °C, from which higher bio-oil yield (49%) and 17 

HHV (15.80 MJ kg-1) was obtained. On the contrary, for the flash pyrolysis of the mixture of 18 

leaves and branches under same operating conditions, both bio-oil yield and HHV decreased 19 

to 41% and 13.90 MJ kg-1, respectively, which might be attributed to the negative effect of 20 

leaves. However, from practical perspective, the simultaneous pyrolysis of mixed feedstock, 21 

i.e. branches and leaves of HMCBs, was suggested, because mostly nuance differences were 22 

observed between the bio-oils produced from the above two parts in terms of (1) reactivity, (2) 23 

bio-oil yield and composition and (3) heating values [20, 183]. Furthermore, as illustrated in 24 

Section 1.2, HMCBs possess various ratios of branch-to-leave with different distributions of 25 
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HMs due to the different ratios of cellulose to hemicellulose to lignin in various parts of a 1 

plant (Fig. 1). Therefore, the pyrolysis of the mixture of HM-contaminated branches and 2 

leave is generally recommended towards easier technical operation (i.e. not to separate leaves 3 

and branches) and safer environmental aspect (i.e. addressing the entire parts of HMCBs). 4 

Based on the literature reviewed in this report (Table 2), willow and switchgrass have 5 

been predominant plant species used for twofold aims such as phytoremediation and bio-oil 6 

production. Meanwhile, Cd, Cu, Zn and Pb have been the most phytoextracted HMs from 7 

brownfields [20, 21, 178, 183]. Regardless of the effect of pyrolysis operating conditions, 8 

more research on different HMCBs for bioaccumulation of the same group of contaminants 9 

are required to compare and correlate the structural type of various HMCBs –in terms of 10 

cellulose, hemicellulose and lignin fractions– with (I) their phytoextraction ability and (II) 11 

bioenergy recovery potential in terms of metal-free and high yield and quality bio-oil 12 

production. 13 

3.2 Effect of HMCBs pretreatment 14 

The effect of dry pretreatment (i.e. crushing, preheating and torrefaction) and wet 15 

pretreatment (using various acids, solvents, etc.) on HMCBs have been investigated to 16 

explore their effects on bio-oil yield and HMs content. As seen in Table 2, mostly crushed 17 

feedstock with the particle size (PS) of <2.00 mm was introduced to different reactors [96, 18 

173, 183]. For example, Wiinikka et al. [173] demonstrated that feedstock with PS <0.25 mm 19 

had a higher conversion, whilst the product converted from feedstock with PS of 0.50−1.00 20 

mm had a lower conversion rate with a high amount of volatiles that was almost comparable 21 

to the raw material. However, according to Park et al., the bio-oil yield reduced with 22 

decreasing feedstock particle size due to overheating resulted during fast pyrolysis of 23 

Japanese larch using a bubbling fluidized bed reactor [197]. Therefore, PS <0.50 mm was 24 
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suggested as optimum size for suitable operation with a reasonable accumulation of 1 

refractory and volatiles in the char resulting in metal-free bio-oil production [173]. 2 

On the other hand, Balsamo et al. [21] investigated the effect of wet pretreatment 3 

(hydrolyzing with 4% H3PO4 solution) and biological pretreatment (hydrolyzing by three 4 

cellulose-producing fungi) on fast pyrolysis conversion of switchgrass with a higher 5 

capability of Pb uptake (compared to Timothy grass) (Table 2). According to the results, 6 

neither enzymatic nor acid hydrolysis pretreatment of examined HMCB affected the products 7 

yield, i.e. bio-oil and sugar. However, both acid and enzymatic hydrolysis treatments 8 

influenced the distribution of chemical products in the bio-oil obtained from both clean and 9 

Pb-contaminated switchgrass. They concluded that switchgrass species with modest levels of 10 

Pb content can serve as both promising phytoextraction agent and biofuel feedstock [21]. 11 

Furthermore, Raveendran et al. [198] showed that using a two-stage demineralization 12 

pretreatment of thirteen types of woody biomass, the bio-oil yield mostly elevated with 13 

higher heating values at 500 °C in a packed bed reactor. In the first stage, biomass samples 14 

(PS of 100-250 mm) were treated with 10% HC1 at 60 °C for 48 h with constant stirring. In 15 

the second stage, biomass containing higher silica content was further treated with aqueous 16 

5% NaOH for 1 h at 90 °C, and finally, samples were washed with distilled water, filtered, 17 

dried and stored. In fact, demineralization intensifies the devolatilization rate and the initial 18 

decomposition temperature. However, a decrease of volatiles yield after the removal of the 19 

mineral matters was observed for some biomass, such as coir pith, groundnut shell and rice 20 

husk, which was attributed to their high lignin content; in fact, lignin gives a higher char yield 21 

than cellulose and hemicellulose [198]. Therefore, demineralization of HMCBs is anticipated 22 

to cause the increase of bio-oil yield and quality, however, it is been reported that the 23 

presence of HMs, like Zn, Cu, etc. in biomass could also perform as an efficient catalyst to 24 

promote the gas yield and char formation while reducing the liquid production [73, 198, 199]. 25 
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Moreover, according to Wigley et al., an integrated acid leaching and torrefaction 1 

pretreatment led to a demineralized and stabilized biomass, which consequently limited the 2 

catalysis of pyrolysis vapors using water, organic acids and inorganics present in the biomass 3 

[101]. In fact, demineralization and dewatering lead to controlling secondary reactions in 4 

pyrolysis that reduces reactions towards the production of oxygenated compounds, high 5 

molecular weight compounds, pyrolytic water, and coke [200]. Therefore, the reduction of 6 

catalytic secondary reactions of pyrolysis vapors results in the production of bio-oils with 7 

higher quantity, quality and stability [101]. 8 

Moreover, Lievens et al. [196] showed that, unlike sand, the presence of fumed silica as 9 

heat harrier in HMCBs fast pyrolysis at operating temperature of 400 °C (Table 2) decreased 10 

evaporation and/or transfer of Cu and Pb into total pyrolysis products by 17% and 12%, 11 

respectively, through increasing the retention of HM compounds. This observation could not 12 

be explained clearly by the original study; it was indicated that the surface functionality or 13 

molecular build-up might be the reasons for the difference in retention behavior of HMs. In 14 

other words, the reason might be because the SiO2 promoted binding of HMs onto silica 15 

towards the formation of HMs silicate, which is more thermodynamically favored compared 16 

to the formation of simple oxides, and consequently, minimized the probability of HMs 17 

transfer into the liquid, and gas fractions [196]. 18 

Recently it has been reported that, compared to direct pyrolysis, the phosphate-assisted 19 

pyrolysis of Pb-contaminated water hyacinth at low temperatures (300 and 400 °C) led to the 20 

decrease of the bioavailability and leaching potential of Pb to <5% and 7%, respectively. The 21 

reported conditions enhanced the recovery and stability of Pb in the char, resulting from the 22 

formation of Pb phosphate minerals such as pyromorphite and lead-substituted 23 

hydroxyapatite [201]. However, it has also been demonstrated that the catalytic pyrolysis of 24 

wood using phosphate could dramatically lower the yield of bio-oil [202]. In other words, 25 
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after direct pyrolysis or application of phosphate-assisted approach, HMs may reduce their 1 

harm to the environment by probable transferring from the toxic state of ions into some 2 

amorphous state in the char [203, 204], in the form of phosphate minerals [201, 205], or 3 

being stabilized with external materials including Al2O3, FeCl3, CaCO3 and NaOH [206]. 4 

Therefore, it can be inferred that pyrolysis assisted by phosphate and/or other materials can 5 

be mainly recommended for the safe disposal of HMCBs rather than bio-oil recovery. 6 

3.3 Optimum pyrolysis temperature and HMs behavior 7 

Generally for lignocellulosic biomass structure [67], the decomposition temperature of 8 

cellulose, which has the potential of binding a wider spectrum of inorganic elements, is 9 

around 300−430 °C; whilst the decomposition temperature for lignin is in the range of 10 

300−550 °C, which possesses the capacity of binding more Fe, Pb, and Zn than cellulose [71-11 

73]. Given the above-mentioned properties and characteristics, an approximate correlation 12 

can be anticipated between the operating temperature for the further decomposition of 13 

biomass fractions, and the rising risk of HMs release attached to each part, i.e. cellulose, 14 

hemicellulose, and lignin. Furthermore, it has been reported that the bio-oil yield, HHV, HM 15 

contents, and quality in terms of chemical composition and distribution in bio-oil vary 16 

depending on the lignocellulosic composition of biomass, the impact of minerals, operating 17 

temperature, gas residence time, and reactor configuration [21]. Therefore, to find optimum 18 

operating conditions for the pyrolysis of HMBC, all aspects and facts should be considered 19 

towards higher yield and cleaner bio-oil production. 20 

In terms of yield, the bio-oil yield was higher by fast pyrolysis of HMCB at 650 °C than 21 

those at both 450 °C and 750 °C, because at the former more biomass to char conversion 22 

occurred and at the latter more cracking of bio-oil was converted to gas products [146]. 23 

According to Wiinikka et al. [173] fast pyrolysis of HMCBs (75 wt.% pine and 25 wt.% 24 
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spruce) in a cyclone pyrolyzer at 500 °C with the feedstock particles size of <0.50 mm 1 

resulted in high yield (54.60 wt.%) and relatively metal-free bio-oil product (Zn = 0.99, Fe = 2 

2.43 and Al = 0.36 mg kg-1 bio-oil). In addition, the quality of bio-oil was good with respect 3 

to the homogeneous oil phase, HHV (21.10 MJ kg-1), LHV (17.50 MJ kg-1), and low water 4 

content. Similarly, Liu et al. [96] have reported fast pyrolytic conversion of sawdust at 5 

500 °C (Table 2) as optimum conditions for higher bio-oil yield and HHV with negligible 6 

transfer of Cu to the bio-oil (~4.60–7.60 mg kg-1, i.e. 0.03% of initial Cu content) because the 7 

Cu was predominantly enriched in the char (~95%). Interestingly, Cu played a catalytic role 8 

in promoting bio-oil yield (to ~54%) and HHV (to ~14 MJ kg-1) at 500 °C. Furthermore, 9 

using fast pyrolysis process at 400–600 °C, more than 95 wt.% of total inorganic elements 10 

present in biomass was separated from the bio-oil and accumulated in the solid phase [45]. In 11 

addition, Liu et al. [96] have demonstrated 500 °C would be the optimum temperature for fast 12 

pyrolysis of Cu-contaminated biomass (Cu 1.00 wt.% of feedstock) in a fixed bed reactor. 13 

Furthermore, Koppolu et al. [145] showed that the fluidized bed reactors allow the 14 

utilization of higher pyrolysis temperatures up to 600 °C without compromising the 15 

sequestration of the HMs in the char. On the contrary, Stals et al. [20] have suggested a lower 16 

temperature, i.e. ~350 °C, for flash pyrolysis of HMCB in a fluidized bed reactor equipped 17 

with a hot-gas filter. Additionally, based on the type, melting/boiling points and content of 18 

HMs in the HMCB, the appropriate operating temperature could be determined according to 19 

Table S1 and following classification: 1) Hg, As, Cd and Pb as highly volatile metals 20 

partitioning into the gas phase [207], 2) Cu, Mo, Ni and Zn as semi-volatile elements [208], 21 

and 3) Co, Cr, Mn, and V as non-volatile elements [209]. For example, the temperature of 22 

350 °C was favorable to avoid volatilization of highly volatile elements, like Cd and Zn, 23 

while Cu and Pb could even remain immobilized at 350−600 °C (Table S1) [196]. 24 
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On one hand, the higher temperatures of pyrolysis process by 700 °C lead to further tar 1 

cracking and higher oxygen content resulted from increased oxygen functionality of bio-oil 2 

structure [79, 196], and consequently, resulting in lower heating values (LHV) of bio-oil 3 

(~16.80 – 19 MJ kg-1) that is less than desired HHV of conventional fossil fuels (40 – 45 MJ 4 

kg-1) [196, 210, 211]. A promising way to deoxygenate the bio-oil is the application of 5 

catalytic pyrolysis, through which the catalyst depresses the operating temperature, thereby 6 

decreases oxygen functionalities of the bio-oil structures by dehydration, decarbonylation and 7 

decarboxylation reactions [212]. On the other hand, pyrolysis at lower temperatures produces 8 

cleaner bio-oil [20, 96], but leads to more char formation [146, 189]. Meanwhile, as operating 9 

temperature can influence the contingency of HMs leaching from a contaminated char, 10 

350−450 °C has been stated as optimum operating temperature to produce a char with 11 

maximum metal retention capacity from HMCBs particularly containing high contents of Cd 12 

and Pb [20, 213]. Briefly, fast pyrolysis at 350 °C is suggested towards economical 13 

valorization of HMCBs [183]. However, according to a techno-economic assessment study, 14 

250 °C has been determined as the optimal pyrolysis temperature in terms of the total net 15 

revenue [182]. Considering all aforementioned factors, optimum operating temperature for 16 

HMCBs pyrolysis is 350−450 °C in terms of maximum HMs removal and acceptable bio-oil 17 

yield, which can be extended by 150−250 °C (i.e. threshold up to 600 °C), mainly depending 18 

on the type and concentration of HMs inside plants’ organs, reactor configuration and 19 

pre/post-treatment techniques. On the other hand, Sun et al. [214] showed that operating 20 

conditions, including temperature, processing method, and feedstock type, influence the 21 

physicochemical and biological properties of bio-chars and hydro-chars obtained from 22 

pyrolysis of biomass. Results indicated that if the target is the production of bio-char for land 23 

use, different properties can be acquired depending on the operating conditions, for example, 24 

higher pyrolysis temperatures (>250 °C) led to the decrease of bio-char production rate but 25 
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increased its carbon content and thermal stability; dry-pyrolysis bio-chars had lower pH 1 

values and higher carbon contents; in addition, the type of biomass also affects the quality of 2 

bio-chars. Therefore, bio-chars with different properties can be produced by manipulating 3 

production conditions to better satisfy their environmental applications [214]. Considering 4 

the likely leakage of HMs from bio-char, the selection of optimum operating temperatures 5 

would be more critical if the quality of both bio-oil and bio-char needs to be considered.  6 

Overall, for pyrolytic decomposition of HMCBs, fast pyrolysis appears to be promising in 7 

terms of low metals content, high yield and HHV of the resultant bio-oil. Contrarily, slow 8 

pyrolysis of HMCBs has shown lower bio-oil yield, less diversity and lower content of 9 

organic components, as well as higher transfer rate of HMs to bio-oil [189, 215]. 10 

3.4 Usability of bio-oil and the necessity of post-treatment 11 

Generally, the bio-oils are unstable due to possessing chemically dissolved oxygen and HMs, 12 

thus they require upgrading and likely the removal of water and contaminants such as HMs, 13 

etc. [192, 216-218]. Even though, typical concentrations of total metal content in bio-oil even 14 

for non-contaminated biomass can reach up to 500 mg kg-1 [219]. To the date, no general 15 

benchmark values has been set for the maximum acceptable level of inorganic content, 16 

including HMs in biofuels neither bio-oil [45, 97, 173]. 17 

To minimize environmental and operational issues resulting from particles and HMs in 18 

bio-oils, the concentration of <0.10 wt.% for particles and that for HMs as low as possible 19 

have been recommended [220]. Some issues related to solid particles and metals in bio-oil are 20 

particle emissions, particle deposits on surfaces of heating equipment, high temperature 21 

corrosion [220], as well as increment of bio-oil instability and contamination [217] and high 22 

heating value [96]. Noticeably, in some pyrolytic operations, the high, scattered, or inaccurate 23 

amounts of HMs (like Cu, Ni, Zn, Cr, Al, Mn) in the bio-oil or other phase have been 24 
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attributed to biomass harvesting systems [45], reactor construction materials [20, 45], heating 1 

carrier material [20] or bio-oil collecting system [173]. 2 

Some studies reported the feasibility of bio-oil production with negligible amounts of 3 

HMs using fast pyrolysis of various HMCBs even though without implementing any wet 4 

pretreatment and/or post-treatment [96, 183, 196]. For example, using fast pyrolysis of an 5 

HMCB under optimum operating conditions (500 °C) only resulted in ~0.03% of total Cu 6 

transferred into the bio-oil [96]. In addition, without running any post-treatment process, 7 

Lievens et al. reported only small amounts of Zn (5 mg kg-1, i.e. equal to <1.00 wt.% of 8 

initial Zn) were found in the condensable pyrolysis fraction, and even without any detection 9 

of Cd, Cu and Pb [183]. Moreover, results of the slow pyrolysis of HMs-impregnated and real 10 

HMCBs, containing Cd, Cu and Pb, also showed the accumulation of more than 67.76% of 11 

the HMs in the solid phase, and their uniform distribution in the pore structure, indicating the 12 

interesting role of pyrolysis to process HMCBs [123, 160]. Furthermore, Wiinikka et al. 13 

showed the feasibility of fast pyrolysis for the production of almost metal-free bio-oil in a 14 

pilot-scale reactor, while HMs majorly concentrated in the solid residue [173].  15 

However, some other studies do not recommend the real applications of the bio-oil 16 

produced from the pyrolytic conversion of HMCBs, due to its high metals content, including 17 

Cd and Zn [146]. To cope with this issue, they have emphasized the necessity of post-18 

treatment to avoid, separate, or remove HMs from bio-oil towards cleaner product. For 19 

example, in pyrolysis process, the transfer of HMs from solid phase to condensable phase has 20 

been introduced as the main migration route [45, 173]. Therefore, using adequate 21 

technologies for solid-gas/liquid separation before condensation has been recommended for 22 

the effective obstruction of the HMs migration from char into bio-oil [45, 173]. For instance, 23 

the effective and successful application of cyclone as the post-treatment of pyrolytic 24 

conversion of HMCBs at 650 °C for both metal-free bio-oil production and metals recovery 25 
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[146]. For example, Stals et al. showed the negligible transfer of metals in the produced bio-1 

oil (Cu and Zn <5 mg kg-1; Cd and Pb <1 mg kg-1) in the case of using hot-gas filter at 350 °C 2 

[20]; The HMs content of bio-oil was even comparable to what was obtained from pyrolysis 3 

of uncontaminated willow [195]. Although for an uncontaminated plant, Park et al., reported 4 

that using a two-staged bio-char removal system, high-quality bio-oil could be produced, 5 

which consists of low concentrations of alkali and alkaline earth metals, <0.005 wt% solid, 6 

and no ash [197]. 7 

Nevertheless, bio-oils derived from the pyrolysis of lignocellulosic biomass consist of a 8 

considerable amount of water and a heterogeneous mixtures of aromatics and aliphatics 9 

oxygenated compounds [221], including phenolics and alkylated (poly-) phenols, relatively 10 

small amounts of phenol, eugenol, cresols and xylenols [222], carbohydrates, alcohol, 11 

aldehydes, ketones and carboxylic acids [223]. The oxygenated compounds orchestrate low 12 

H/C and high O/C ratios that make the bio-oil to have lower heating value compared to 13 

petroleum fuels [224]. Correspondingly, the bio-oil faces aging and instability during storage 14 

that is caused by the oxygenates [225, 226]. Therefore, regardless of the type of 15 

lignocellulosic biomass, i.e. HMCBs or uncontaminated woody biomass, it is required to 16 

upgrade the bio-oil produced using in-situ or ex-situ catalytic reactions [227-229]. Various 17 

zeolite, acid, base, and transition metals-based catalysts, like ZSM-5, HZSM-5, MgO, 18 

Na2CO3/Al2O3，Pt/Al2O3, Al-MCM-42, low-cost base catalysts (mineral clay), etc., have 19 

been examined to upgrade the bio-oil derived from woody biomass pyrolysis [228, 230-233]. 20 

For example, the hydro-pyrolysis of woody biomass at 500 °C and 1 atm in a dual bed system 21 

packed with Na2CO3/Al2O3 and Pt/Al2O3 catalysts in two consecutive beds showed a 22 

promising performance resulting in high quality bio-oil with oxygen content of 5.60 wt.% 23 

and HHV of 42 MJ kg−1, which was close to the characteristics of conventional fuels [230]. 24 

Generally, the bio-oil upgrade possesses reaction mechanisms that require C-C cleavage, 25 
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reforming, water-gas shift and methanation reactions [234], and the removal of oxygen 1 

molecules from the functionalities of the bio-oil [235, 236]. According to the literatures, 2 

using the catalytic pyrolysis of various woody biomass, the oxygenated compounds can be 3 

converted to an upgraded bio-oil with more stable structures, higher molecular weight 4 

compounds, increased phenols and aromatics compounds, thereby producing a bio-oil with 5 

higher calorific value and acidity, compared to non-catalytic pyrolysis oil [224, 227-230, 6 

237].  7 

3.5 Dual behavior of HMs and catalyst poisoning 8 

A number of studies have investigated and reported the catalytic roles of HMs 9 

(particularly Cu, Zn, Cr, etc.) present in contaminated biomass. Some studies indicated the 10 

positive roles of HMs towards improving activation energy and thermo-decomposition of 11 

biomass components, and consequently bio-oil yield and HHV [96, 98, 125, 238, 239]. Lin et 12 

al. [203] showed the catalytic function of chromium during the fast pyrolysis of Cr-13 

contaminated water hyacinth on the quantity and quality of bio-oil produced. Reportedly, the 14 

maximum bio-oil reached up to 63.10 wt.% at 500 °C, and the amount of nitrogenous 15 

compounds, alcohols and phenols increased, while the number of acids and esters reduced 16 

which revealed that Cr promoted bond rupture of lignin and switched the degradation process 17 

of protein [203]. The pyrolysis of Arundo donax and Broussonetia papyrifera impregnated 18 

with Cd, Cu and Pb also confirmed the complete pyrolysis of HMCBs. According to the 19 

results, more than 60% of the mass was lost after decomposition stage occurred from 200 to 20 

450 °C. In addition, due to catalytic effect of HMs, the activation energies of A. donax 21 

pyrolyzed and B. papyrifera were reduced by around 1.85–3.84 kJ mol-1 and 0.93–13.28 kJ 22 

mol-1, respectively [160]. Han et al. also reported that due to the presence of HMs in biomass 23 

the activation energy reduced by around 10% in the main decomposition stage during the 24 

slow pyrolysis of contaminated Broussonetia papyrifera (Table 2) [123]. 25 
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Conversely, Zhong et al. showed the adverse effect of HMs on activation energy (from 1 

150 to 186 kJ mol-1) [146], and justified this kinetic behavior based on previous studies 2 

indicating that it might be due to the function of the chemical composition of individual 3 

species or possibly be linked with the presence and absence of mineral content in various 4 

biomass [240, 241]. Moreover, Mullen and Boateng [178] revealed the considerable 5 

accumulation of Fe and Cu on HZSM−5 catalysts during catalytic pyrolysis of switchgrass 6 

(containing 604.40 and 17.19 mg kg-1 of Fe and Cu, respectively) in a fluidized bed reactor 7 

(Table 2). As a result, more exposure of catalyst to higher amount of switchgrass led to more 8 

HMs accumulation on HZSM−5, resulting in further catalyst deactivation. The bio-oil yield 9 

of catalytic process reached up to 35 wt.%, which was considerably lower than that of non-10 

catalytic process (49 wt.%) [178]. 11 

The catalytic upgradation of bio-oils derived from HMCBs pyrolysis −using commercial 12 

catalysts− faces some obstacles such as the deactivation and/or poisoning of catalysts by 13 

different factors, which considerably affects the yield and the efficiency of the process 14 

technically, environmentally and economically. To be exact, those affecting factors during 15 

the biomass pyrolysis generally include the high concentration of HMs, water content and 16 

coke formation that can reduce the catalytic activity significantly [45, 178, 223, 242]. Mullen 17 

and Boateng [178] have indicated the increased concentration of two metals, i.e. Fe and Cu, 18 

on the HZSM-5 catalyst while other metals with a high concentration in HMCBs also can 19 

poison the active sites in different catalysts. Therefore, it is expected that the catalytic 20 

pyrolysis of HMCBs might be economically feasible only after some post-treatment of 21 

products, like adsorption, filtration, etc., to remove HMs, then ex-situ catalytic upgradation of 22 

bio-oil can be conducted. Such a process will reduce the catalyst deactivation so as to avoid 23 

the reduction of bio-oil yield/quality during in-situ catalytic pyrolysis of HMCBs in presence 24 

of catalysts [178].  25 
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The coke formation during pyrolysis process and its accumulation on the catalyst surface 1 

poisons the active site(s), and varies the catalyst topology and textural characteristics, thereby 2 

reducing the total liquid and organic fraction yields, as well as inhibiting the production of 3 

aromatics [67, 243]. In other words, during pyrolysis conversion of biomass, coke deposits in 4 

the catalyst pores to limit the capillary and diffusion flow of reactants leading to low 5 

selectivity and yield of the desired products [244]. On the other side, some catalysts, like 6 

ZrO2, behave unusually in deoxygenating of pyrolysis oil because it inhibits the poisoning of 7 

its active site by carbon dioxide and water [245]. Furthermore, the Al-MCM-41 catalyst 8 

elucidated the capability of expelling water from the bio-oil, thereby displaying its innate 9 

dehydration potential owing to the presence of moderate acid sites. However, the alumina 10 

catalyst hardly demonstrated any catalytic function in improving the properties of the bio-oil 11 

[210]. 12 

4. GASIFICATION 13 

Gasification is a versatile and clean technology to produce environmentally sustainable 14 

biofuels compared with other conventional technologies such as landfilling, incineration, etc. 15 

In fact, gasification augments the value of waste biomass via transforming them into 16 

marketable bio-fuels and products [246]. It converts the biomass virtually into any organic 17 

material and/or syngas (H2, CO, CH4, etc.) at elevated temperatures (700–1000 °C) via partial 18 

oxidation of compounds using steam, air or oxygen. In addition, gasification process causes 19 

the decrease of adverse climate change via CO2 mitigation, however some unwanted products 20 

such as tar (mainly oxygenated hydrocarbons), ash, etc. are also formed [79, 246, 247]. 21 

The main process parameters relating to syngas, are gas yield, LHV, and composition 22 

[97]. The yield and characteristics of the desired product depend on the feedstock properties, 23 

reactor design, temperature, heating rate, pressure, gasifying medium, catalyst, and biomass 24 
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pretreatment stage(s) [248-250]. Ultimately, syngas can be upgraded by means of the 1 

Fischer−Tropsch process into methanol, dimethyl ether, etc., or combusted directly for power 2 

generation and gas engines [246, 247]. On the other hand, the occurrence of tar (sometimes 3 

containing HMs) in biomass gasification lead to serious problems such as piping or filter 4 

blockage, corrosion and engine failure [246, 251]. Recently, gasification of HMCBs has been 5 

investigated for energy recovery and/or bio-waste volume reduction with considering the 6 

impacts of various gasification conditions on transferring and distribution of metal (loid) 7 

compounds into particle and gas phase (Table 3) [97, 163, 252, 253]. 8 
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Table 3. Gasification conversion of HMCBs and syngas production 1 

Feedstock HMs Gasifier Temp. 
(°C) 

Pres. 
(atm) 

Gasification 
agent 

Biomass 
feed rates 

Pretreatment Post-treatment HMs 
content of 

syngas 

Remarks Ref. 

Willow Cd, Zn, 
Cu, Pb, 
Cr, Ni, 
Co, Al, 
Fe, Mg, 
Mn, Sn

Lab-scale 
fixed bed 
gasifier 

450−950 NR CO2 
5.40 L h-1 

5 g exp.-1 Dried and 
crushed: PS* 

0.50 –1.00 mm

− High • The thermochemical results are in a good agreement with the solid residue 
composition obtained in an experimental fixed-bed reactor (the open system 
methodology). 

• HMCB gasification at temperature of 750 °C in presence of CO2 leads to 
complete transfer of Cd, Pb and Zn into gas phase.  

Said et al. 
[254] 

Five HMCBs 
(wild plants) 

As, Cd, 
Zn, Cu, 
Pb, Cr, 
Ni, M, 
Co, Al, 
Fe, Mg

Gasifier 
modeling 

0−1800 1−40 Steam: oxygen 
(2:1) 

NR Crushed and 
air-dried: PS 
<0.50 mm 

− − • HMCBs gasification at temperature <1000 °C and higher pressure up to 30 atm 
is feasible to produce efficient and clean syngas.  

• Even at pressure of 1 atm and from temperature of >600 °C, As, Cd, Zn and Pb 
tend to volatize rapidly. 

Jiang et al. 
[53] 

Leucaena 
leucocephal and 
Saccharum 
officinarum 

Cd, Zn, 
Pb, Cu, 
Ni, Fe, 
Al, Co, 
Ti, Cr, 
Mo, V, 

Mn 

Bench-scale 
fluidized bed 

gasifier reactor 

800 NR Steam  
~2 kg h-1 

1 kg h-1 Dried and 
crushed: 
PS=3.00 mm 

Heated, silicon 
carbide(SiC) filter 

Low • Regardless of Al and Fe, other HMs, particularly Pb and Zn, majorly 
accumulate in the syngas. 

• ~70% of HMs content in the syngas samples is resulting from fuel, and ~25% 
from gasifier system. 

• Using the adequate hot-gas filtration, HMs transferring rate to the syngas 
decreases, however still some of volatile metallic elements (such as Pb, Zn, 
Cd and Mo) can pass through the filter. 

Cui et al. 
[164] 

Mixed feedstock 
(flax, oak and beech) 

Cd, Zn, 
Cu, Pb, 
Ni, Fe, 
Mn, Ti 

Atmospheric 
fluidized bed 

gasifier 

855 1 Steam 
 

1.01 kg kg-
biomass-1 

1.08 kg h-1 NR Cyclone High • HMs concentrations in the syngas (nitrogen free, dry gas) is in the range of 
0.37−4.20 mg m-3. 

• Efficient cleaning procedures must be applied to produce clean syngas with 
high quality. 

Šyn et al. 
[97] 

Commercially wood 
pellets 

Cd, Zn, 
Cu, Pb, 
Cr, Ni, 
Co, As, 
Hg, Fe, 
Al, Mn

Pilot scale 
(fixed bed) 
autothermal 
downdraft 

system 

900−1250 NR NR 122.50 kg 
h-1 

Preheated at 
85 °C and 
flash pyrolysis 
in the presence 
of preheated 
air at 620 °C 

Two cyclones, 
electrostatic filter, 

cartridge filter 

NR  • The produced syngas (N2-free, dry gas) contains 18.30% of H2, 28.30% of 
CH4, 27.50% of CO, 25% of CO2, with a LHV of ~9.21 MJ Nm-3. 

• Cd, Zn, Pb, Cr and Ni accumulates in the fly residue due to their high volatility 
at the operating temperature of the pyro-gasifier (>900 °C). 

Tafur-
Marinos 

et al. [247] 

Straw char and 
glycol 

As, Cd, 
Pb, Cr, 
Hg, Ni, 

V 

60 kW pilot-
scale 

atmospheric 
entrained flow 
gasifier REGA 

1700 1 enriched air 
(41.82 vol.% 

O2) 

10 kg h-1 NR Syngas cleaning 
devices 

Negligible • The HMs concentration in the syngas are in the order of Ni (53.20 μg Nm-

3) >Cr >Pb >As >V >Cd >Hg (2.40 μg Nm-3). 
• Increase in fly ash content in syngas causes increase of HMs emission into gas 

phase. 
• HMs tendency to volatilize is more in reducing gasification environment. 

Pudasainee et 
al. [163] 

Four energy-crops 
(M. x giganteus, S. 
hermaphrodita, S. 
pectinate, P. 
virgatum) 

Cd, Zn, 
Pb Lab-scale tube 

furnace  

1500 1 Nitrogen ~80 
ml min-1 

10 mg exp.-
1 

Crushed: PS<1 
mm 

Cooler gas cell NR • Using gasification at <800 °C, HMs almost concentrate in the ash fraction and 
mostly in the form of a carbonates, silicates and sulphates. 

• Miscanthus x giganteus, followed by S. pectinata appear most attractive 
species for phytoremediation coupled with thermal utilization of HMCBs. 

Werle et al. 
[37] 

Rice straw, wheat 
straw, corn stover, 
switchgrass, 
Miscanthus, Jose tall 
wheatgrass, and 
Douglas fir wood 

Cd, Cu, 
Zn, Pb, 
Cr, Ni, 

etc. 

furnace  950 
 

1 NR 15 g exp.-1 Crushed, 
preheated and 
undergone 
leaching 
pretreatment 

− − • Leaching pretreatment, due of possible changes in the composition of residual 
solids, contributes to products with more complex properties. 

• After leaching, the heating values of rice straw, wheat straw, switchgrass, and 
Miscanthus remain quite fix whilst ash concentrations declines 15−39%.  

• The produced leachates is safe for downstream application or disposal.  

Yu et al. 
[255] 

Willow Cd Full-scale 
reactor 

850 NR NR NR − − − • Fast pyrolysis is promising in compared with gasification and combustion to 
convert Cd-contaminated willow in heat and power (CHP) system (bio-oil 
yield 65% and LHV 17 GJ t-1). However, the profit depends on the scale of 
operation. 

Kuppens et 
al. [182] 

Willow and Thlaspi 
caerulescens  

Cd, Zn Lab-scale tube 
furnace  

25−900 1 NR 5−10 g 
exp.-1 

Crushed and 
preheated: 
PS=1.00 mm 

− NR • Gasification (reducing environment) is better than combustion (oxidizing 
environment) when striving for metal valorization, i.e. HMs recovery. 

Keller et al. 
[55] 

* PS: Particle size of feedstocks; ** NR: Not reported 2 
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Jiang et al. [53] conducted a thermodynamic modelling to demonstrate the solid-to-1 

gaseous phase transformation of 12 metal (loid) compounds during the gasification of 2 

HMCBs under the operating conditions presented in Table 3. Results showed that the 3 

temperature, pressure and initial HMs content to be the major parameters influencing the 4 

behavior of metals during gasification. For example, when the operational pressure was 1 atm: 5 

(1) As, Cd, Zn and Pb tended to rapidly volatize at temperature >600 °C, and (2) Ni, Cu, Mn 6 

and Co thoroughly transferred into gaseous phase in the temperature range of 1000–1200 °C; 7 

whilst (3) Cr, Al, Fe and Mg remained immobile in solid phase even at temperature >1200 °C. 8 

The gasification simulation revealed that increasing the pressure of gasification process from 9 

1 to 30 atm not only significantly enhances the product yield and reaction rate, but also 10 

elevates the phase transition temperature of HMs from solid to gas by 100–200 °C [53]. Such 11 

a trend had also been proven empirically by Liu et al. [256]. 12 

Cui et al. [164] sampled and analyzed several HMs in the filter char, bed material and 13 

product gas stream during the gasification of two different HMCBs under operating 14 

conditions listed in Table 3. According to their results, regardless of biomass type, Pb and Zn 15 

were mostly found in the gaseous stream. For Leucaena the Pb and Zn content in the gas 16 

were 1690.30 μg m-3 and 1151.90 μg m-3 in the dry N2-free gas, respectively; and for 17 

Saccharum they were 447.90 μg m-3 and 144.10 μg m-3 in the dry N2-free gas, respectively. 18 

Generally, except for the major elements, i.e. Al and Fe, most other HMs mainly volatilized 19 

into the gaseous phase rather remained in the solid residues. Noticeably, the application of 20 

hot-gas filtration, e.g. silicon carbide (SiC) filter could significantly reduce the high transition 21 

of HMs into the gaseous stream. 22 

Furthermore, Šyn et al. [97] studied the HMs distribution during co-gasification of a 23 

homogenized mixture of three HM-contaminated energy crops, including 40 wt.% of flax 24 

(Linum usitatissimum L.) and 60 wt.% of mixed hardwood (oak and beech) under operating 25 
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conditions listed in Table 3. The initial HMs concentrations in blended feedstock were 1 

approximately Cd = 0.33, Cu = 15.20, Ni = 8.03, Pb = 10.60, Zn = 44.90, Fe = 871, Mn = 2 

67.40 and Ti = 33.70 mg kg-1 feedstock. According to their observations over co-gasification, 3 

Cd, Zn, Pb, Ni, and Cu ended up in the different downstream sections, such as bed ash, 4 

cyclone ash, and downstream syngas. Moreover, the volatilities of HMs were as follows: Cd 5 

(90% in syngas) >Pb >Zn >Cu >Ni. Totally, HMs concentrations in the syngas (nitrogen free, 6 

dry gas) were in the range of 0.37−4.20 mg m-3. Meanwhile, due to the catalytic role of 7 

metals accumulated in ash material and on heat carrier of the fluidized bed (silica sand), the 8 

equilibrium of water gas reaction was shifted to the right, resulting in higher concentration of 9 

H2 and CO2 and lower concentration of CO [97]. 10 

In another work, Pudasainee et al. [163] investigated the emission and distribution of 11 

HMs in both particles and gas phase in syngas from gasification of a slurry (glycol + straw 12 

char 10 wt.%) in a 60 kW pilot-scale atmospheric entrained flow gasifier REGA (Research 13 

Entrained Flow Glasifer) (Table S2). It was found that HMs distributed among the different 14 

sections of gasifier (boiler, cooler, syngas cleaning devices) and the remaining entered the 15 

chemical synthesis process (in case of using bioliq®). On average, the fly ash particles and 16 

unburned carbon content in syngas were 1511.70 mg Nm-3 and 1950 to 2200 mg C Nm-3, 17 

respectively. Generally, increase in fly ash content increased HMs emission into gaseous 18 

phase. In other words, tendency of HMs to partitioning into particles enhanced owing to the 19 

increase of fly ash particle concentration and unburned carbon content in syngas. As shown 20 

in Table S2, for the gasification of the slurry, the total concentrations of HMs in the gas and 21 

particulate were in the order of Ni (53.20 μg Nm-3) >Cr >Pb >As >V >Cd >Hg (2.40 μg Nm-22 

3). Noticeably, from the distribution of HMs shown in Fig. S3, it can be seen that Cd, Hg, and 23 

Ni mostly transferred into the gas phase, however, there was not a constant trend for all 24 



40 
 

elements, which might be resulting from their evaporation characteristics and/or various 1 

chemical bonds within particulate [163]. 2 

Generally, the distribution of HMs and quality of syngas produced from HMCBs are 3 

influenced by several factors including 1) the chemical speciation of metals and dynamics of 4 

fluidization [97, 257], 2) operating conditions (temperature, pressure) [53, 97], 3) nature of 5 

HMCBs [37, 163, 247], 4) implementation of pre- and/or post-treatment processes [164, 247, 6 

255], 5) type of gasifier system (fluidized bed, fixed bed, entrained bed reactors, etc.) [97, 7 

163, 247, 258], 6) impact of fluidized bed materials [20, 252], and 7) the type of gasification 8 

agent [97, 253]. 9 

The impacts of the last three factors (5–7) could be evident from the following 10 

observations. It was reported that the emissions of HMs containing solid particles from a 11 

countercurrent downdraft fixed bed gasifier were almost one order of magnitude lower than 12 

those from a fluidized bed gasifier [97, 258]. This may explain why in the case of using 13 

fluidized bed gasifier, the emissions of solid particles are more significant which lead to 14 

higher distributions of Cu and Ni through more partitioning on particles of various sizes. 15 

Furthermore, as for gasification agent type, the volatilization of HMs over the steam fluidized 16 

bed gasification of blend feedstock [97] was not as high as had reported for the air fluidized 17 

bed gasification of woody biomass [253, 259]. The slight decrease of CH4 and higher 18 

concentrations of organic compounds in the syngas have been attributed to the catalytically 19 

enhanced steam reforming reaction in the gasification process [260, 261]. Therefore, 20 

compared to (enriched-) air as gasification agent, the application of steam is preferred due to 21 

the reduction of HMs emission, catalytic role, and production of syngas with higher LHV, 22 

with higher process cost though. However, according to Nzihou and Stanmore [262], the type 23 

of gasification agent (i.e. H2O, O2 or CO2) does not significantly affect the HMs transfer, so 24 

that the application of syngas, ash and tar produced may increase serious human and the 25 
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environmental risks due to the accumulation of HMs along with other inorganics. The 1 

negligible effects of gasification agents can be also concluded by the comparison of Keller et 2 

al. [55] and Said et al. [254] studies on the gasification of willow under same operating 3 

conditions, respectively with air and carbon dioxide as gasification agents, for which, the 4 

total evaporation of Cd and Zn happened at the same temperature range of <750 °C. The rest 5 

factors (1–4) are discussed in the following sub-sections. 6 

4.1 Effect of HMCB type 7 

Using thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR), 8 

Werle et al. [37] investigated the product distribution, yield and quality of the gas phase 9 

obtained from the gasification of four different types of HM-contaminated energy crops 10 

under operating conditions listed in Table 3. The TGA results demonstrated the highest peak 11 

for all four samples at ~350 °C, indicating all samples contained clusters of wooden structure 12 

like uncontaminated biomass with approximately equal amounts of cellulose reported in 13 

another literature [263]. In addition, over the gasification process in the temperature range 14 

<800 °C, most of HMs concentrated in the ash fraction in the forms of carbonates, silicates, 15 

and sulphates. It was concluded that among all four species, Miscanthus x giganteus, 16 

followed by S. pectinata appear to be most attractive species for phytoremediation coupled 17 

with thermal utilization of HMCBs; however, these two species have higher amounts of 18 

lignin compared to other two samples [37]. On the other hand, Cui et al. [164] specifically 19 

indicated the negligible impact of the type of two biomass, i.e. Leucaena leucocephal or 20 

Saccharum officinarum, so that regardless of biomass type, Pb and Zn were observed as two 21 

most abundant HMs in the gas samples. According to thermodynamic modeling, significant 22 

energy can be recovered from wild plants if appropriate conversion facilities could be 23 

provided [53]. 24 



42 
 

Regarding the effect of HMCB type on syngas characteristics, Šyn et al. [97] reported that 1 

relatively stable composition and yield of syngas could be achieved; it was found that the dry 2 

gas yield of the blended fuel gasification was 1.19 m3 kg-1 with the LHV of 14.60 MJ m-3, 3 

and around 90% of feedstock carbon converted to syngas. In addition, the average gas 4 

composition (N2-free, dry gas) was as follows: H2 = 39.30 vol%, CO = 27.70 vol%, CO2 = 5 

18.10 vol%, CH4 = 10.20 vol%, sum of the C2−C7 hydrocarbons = 4.70 vol%, and tar = 6 

11.40 g m-3 [97]. However, lower H2 concentration and LHV were reported by Tafur-Marinos 7 

et al. [247] in the syngas converted via gasification of commercially wood pellets (Table 3), 8 

which the N2-free, dry syngas was, in fact, a mixture of H2 (18.30%), CO (28.30%), CH4 9 

(27.50%) and CO2 (25%) with an LHV of 9.21 MJ Nm-3. The similar composition was also 10 

observed in the syngas produced from gasification of slurry (glycol + straw char 10 wt.%) 11 

containing H2 (18.80%) and CO (21.57%) [163].  12 

4.2 Effect of HMCBs pretreatment 13 

Dry pretreatments, including preheating and crushing (PS 0.50–3.00 mm), have been 14 

practiced on HMCBs feedstock in most previous studies, but none of them has reported their 15 

effects on the yield and syngas quality, as well as HMs distribution in solid-gaseous phases 16 

[37, 53, 55, 164, 247]. 17 

However, Yu et al. [255] examined the effect of wet pretreatment (leaching with distilled 18 

deionized water) on the thermochemical conversion of various woody biomass (Table 3). For 19 

each leaching pretreatment assay, 20 g of air-dried milled sample was batch-leached at room 20 

temperature (22 °C) with distilled deionized water in a sufficient amount to yield a 20 L kg-1 21 

dry matter-leaching ratio. Firstly, it was found that ash contents were significantly reduced in 22 

call cases though it does not mean it always accompanied by increasing heating value or 23 

improving initial ash melting temperatures; secondly, simultaneous extraction of both 24 
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inorganic and organic material led to the products possessing more complex properties 1 

because of possible changes in the composition of residual solids. As an example, after 2 

leaching rice straw, wheat straw, switchgrass, and Miscanthus, the heating value remained 3 

unchanged whilst ash concentrations declined 15−39%. Additionally, considering the HMs 4 

content of leaching effluent, it met the environmental safety criteria for downstream 5 

application or direct disposal [255]. 6 

Nonetheless, Li et al. [85] studied the treatment of Pteris vittata L., a hyperaccumulator 7 

contaminated with Cd, Zn, Pb and As, using supercritical water gasification (SCWG) method 8 

in a bench-scale batch reactor conducted under main operating parameters in the following 9 

ranges: reaction temperature of 395–445 °C, pressure of 21–27 MPa and residence time of 0–10 

40 min. The obtained results indicated that even although HMs, particularly Pb and Zn, 11 

tended to stock in solid residues with a maximal increment of around 50% in the aggregate 12 

content, they were mostly converted to more stable oxidizable and residual fractions, and thus 13 

the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct 14 

toxicity fractions. After treatments of contaminated biomass using SCWG method, it was 15 

concluded that each tested HM exposed no or low risk to the environments, meaning that 16 

SCWG has a remarkable ability for the stabilization of HMs after conversion [85]. 17 

4.3 Optimum gasification conditions and HMs behavior 18 

According to thermodynamic model presented by Jiang et al. [53] increasing pressure 19 

from 1 to 30 atm not only enhanced the product yield and reaction rate considerably, but also 20 

augmented the volatilization temperature of HMs emission to gaseous phase by 100–200 °C. 21 

As a result, temperature <1000 °C and higher pressure up to 30 atm were introduced as 22 

optimum gasification conditions to minimize the transfer of most volatile HMs, including Cd, 23 

Zn and Pd, towards cleaner syngas production [53]. Likewise, the empirical results on 24 
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optimum gasification temperature (855 °C) and HMs behavior [97] validated the theoretical 1 

outcomes predicted by models employed for different HMCBs [53, 208]; however under that 2 

operating conditions Cd and Pb were almost completely volatilized and transferred into the 3 

syngas. Yet, at the same time, only 20% of Zn was concentrated in the ash (20%), and ≥80% 4 

of Cu and Ni remained in the bed and cyclone ash [97], which were in the agreement with 5 

Verveake et al. [258]. Furthermore, Said et al. [254] investigated the thermodynamic and 6 

experimental gasification of willow under the operating conditions listed in Table 3 with 7 

adding a fixed amount of CO2 at each temperature step (every 10 °C from 350 to 1000 °C). 8 

Reportedly, both experimental results and thermodynamic calculations showed that the 9 

behavior of the some HMs (Cd, Sn, Sb, Pb) was remarkably well reproduced by an 10 

calculations open system, however, there was more divergence for Cu, Co and Fe. According 11 

to the results representing the open system methodology, complete evaporation of Cd into gas 12 

phase happened at the temperature of 550 °C and Pb and Zn at 750 °C.  13 

According to the previous theoretical and empirical studies on the gasification of HMCBs, 14 

the volatilization temperature of HMs varies significantly from one element to another. From 15 

that point of view they are classified as follows: (I) some HMs may be totally condensed in 16 

gasification gas under cleaning and emission conditions (like Mn); (II) some may get mainly 17 

enriched in the gas phase (e.g., Hg, Cd); (III) element like Co could be totally or partially in 18 

the gas phase at the temperature of hot-gas cleaning systems (500–800 °C), while (IV) other 19 

elements (e.g. As, Zn, Cd, Pb, Cr, Ni, Sb and V) would be present in the gas phase at 20 

temperature <500 °C (Table S1) [163, 264, 265]. 21 

Generally, in spite of operating temperature of thermochemical processes and the 22 

presence of other compounds or elements, to provide less volatility of Cu and Ni, reductive 23 

environment is preferred [257]; however, the environment should be oxidative for less 24 

volatility of Zn [97]. Equilibrium calculations predicted that at ~850 °C and under reducing 25 
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conditions, no significant volatilization of Cu and Ni occurred [208]. Noticeably, unlike Cd 1 

and Pb which have not been affected by the presence of other elements, the volatility of Zn is 2 

sensitive to sulfur and chlorine content, S/Cl ratio, and the content of alkali metals [257].  3 

To study the catalytic effect of HMs present in the HMCBs on the gasification process, 4 

some willow samples, containing 0.01 to 5 wt% Ni, were heated from 20 to 1000 °C (heating 5 

rate of 5 °C min-1) in a fixed bed reactor under atmospheric pressure in the presence of N2 (2 6 

L h-1) and CO2 (6 L h-1). The results demonstrated that a maximum efficiency and catalytic 7 

performance was observed during char gasification of willow samples containing 1.60 wt% 8 

Ni, between 450 and 600 °C. An increase in the syngas production and a decrease in the char 9 

gasification temperature by 100 °C confirmed the results obtained [95]. 10 

4.4 Usability of syngas and the necessity of post-treatment  11 

Based on the operating conditions and presence of other compounds/elements within 12 

feedstock or hot gas paths, HMs can react to form particles, or the vapor species can 13 

condense to form particles [163, 266, 267]. Consequently, the increasing rate of HMs 14 

emission into gas phase could result from carrying the role of fly ash [163]. From previous 15 

literature, it can be deduced that with the exception of Cd, all other HMs studied (Cu, Ni, Pb, 16 

and Zn) could be dominantly transferred to the solid phase in a gasifier equipped with 17 

cyclone working in the range of 500−600 °C. The average HMs contents in the syngas were, 18 

Zn (4.20), Cu (1.20), Pb (1.20), Ni (0.80) and Cd (0.37 mg m-3) [97]. However, sometimes 19 

unexpected high concentrations of some HMs (Cr, Ni, Cu, Fe, and Mo) were observed in 20 

syngas, which has been attributed to their release from gasifier system, including construction 21 

material of reactor [164], lubricants applied [247], cooling system or tubes, etc. [97, 258]. 22 

As mentioned in pyrolysis of HMCBs the main concern of bio-oil is mostly Cd [146], 23 

however, in gasification, Cd, Pb, and Zn have been found as the most abundant HMs in 24 
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gaseous stream [97]. Therefore, syngas obtained from HMCBs gasification requires 1 

conditioning and clean-up prior to further usage [97, 164] or catalytic syngas upgrading [163, 2 

246], although, because of its HMs content, there has not been any benchmark or decisive 3 

limits for such sort of syngas valorization yet [97]. Despite products, high emission of HMs 4 

contributes to corrosion, fouling, abrasion, and erosion of gasification facilities and catalyst 5 

deactivation in syngas upgrading facilities [53, 163, 178]. 6 

In previous investigations, there were some failures even in the case of using gasifier 7 

equipped with post-treatment systems, such as hot-gas filter, candle filter, cooler gas cell, etc. 8 

In fact, increasing operating temperature in gasification not only could affect rising 9 

volatilization rate of HMs but also significantly affects the capability of applied filters to 10 

capture elements associated with fine particulates in syngas [37, 164, 268]. Moreover, Tafur-11 

Marinos et al. [247] examined several post-treatment sections in their pilot-scale gasifier 12 

reactor (Fig. S4), but some of HMs (Cd, Zn, Pb, and Cu) could pass the first filtration phase 13 

(cyclones) due to their high volatilization and high temperature of the syngas in the cyclones. 14 

While, after the cyclone filters, the syngas was successfully purified, cooled, and sent to the 15 

engine [247]. The comparison of the results obtained by Cui et al. [164] and Syc et al. [97] 16 

studies –with same operating conditions (i.e. temperature, pressure, gasification agent, reactor 17 

type) and different HMCBs though– also confirms a better performance of the hot-gas filter 18 

to significantly reduce the transfer of HMs into the syngas, compared to the cyclone. 19 

However, due to using different post-treatment technologies, it was not possible to roughly 20 

compare the direct effect of the type of HMCBs on the emission rates of HMs. 21 

Furthermore, Poskas et al. [269] showed the high efficiency of widely-used electrostatic 22 

precipitators (ESPs) for the collection of solid particles from gaseous phase of a large-scale 23 

gasifier (100 kW) and a boiler (50 kW) used for wood pellet conversion to energy. According 24 

to results, EPS showed a collection efficiency of ~98-99% for the flue gas with solid particles 25 
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concentration of 13 mg.m-3 and diameters of 0.30−20 μm. On the other hand, EPS 1 

demonstrated a lower efficiency of ~75% for the syngas produced by the gasifier, which 2 

possessed different particle size of 4−400 μm, 1.80−390 μm and 3.90−375 μm in various part 3 

of the system, i.e. in cyclone downstream of the gasifier, in the cyclone upstream of the ESP 4 

and in the ESP, respectively. The data revealed that HMs, such as Cu, Zn, Cr, and Ni, did not 5 

accumulate in the cyclone downstream of the gasifier, whilst, they were detected in the 6 

cyclone upstream of the ESP and the ESP, which confirms the transfer of HMs by solid 7 

particles through the gas phase and their partial collection using EPS. The reason for the 8 

lower efficiency of EPS in gasifier was attributed to the challenging working conditions and a 9 

big difference in the concentrations of particles between syngas and flue gas. According to 10 

their observation, by voltage increase of EPS system, a slight but gradual decrease in particle 11 

quantity was obtained, however, still, the worst collection was for the particles with the 12 

smallest diameters [269]. 13 

Various condensation points of common HMs obtained from different thermodynamic 14 

models and experimental researches have been listed in Table S3 which is helpful for 15 

efficient running cyclone or other cooling gas cells as post-treatment stage of contaminated 16 

feedstock: among them Hg has been predicted to bear the lower condensation point of 17 

<200 °C [264, 270]. Noticeably, all databases presented for the thermodynamic model of 18 

HMs are limited and different due to the variety of dissimilar compounds and significant 19 

variation of thermodynamic data for some species, which greatly influences predictions for 20 

the speciation of the elements [271]. This fact discloses that limited or insufficient databases 21 

or equilibrium calculation software can contribute to a risk of misleading conclusions, due to 22 

which experimental validation of the modeling results and scale up the results will not be 23 

precise and valid as well [272]. Therefore, a fully consistent thermodynamic database is 24 

required to develop and tackle major limitation of thermodynamic equilibrium modeling.  25 
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Eventually, owing to the considerable concentration of HMs in the ash by factors of 10–1 

20, appropriate management and disposal of the ash resulted from gasification process has to 2 

be considered [53, 97]. In case of impossibility of using ashes remained from the gasification 3 

process, landfilling looks to be an undeniable disposal method after leachability tests as a 4 

decisive factor to designate the dump type [97].  5 

5. COMBUSTION 6 

Combustion is another thermochemical pathway for the thermal degradation of in presence of 7 

excess oxygen/air at elevated temperatures over 900 °C [273]. Recently, combustion has been 8 

also used for the conversion of HMCBs into wieldy amounts of metal-containing ash, and 9 

simultaneously energy harvesting [169, 274]. The combustion of HMCBs leads to diverse 10 

undesirable emissions of CO, NOx, fly ash, solid and gaseous metal compounds [275, 276]. 11 

Moreover, the study of aforementioned compounds through combustion of uncontaminated 12 

biomass fuels would be imperative, because some studies have also proven that, 13 

environmental drawbacks triggered via HM emission could arise even if the biomass comes 14 

from an unpolluted area [262, 277]. 15 

The main concerns about the combustion of HMCBs is not only the volatilization of HMs 16 

and other pollutants but also the management of produced residuals [52]. Fig. S5 elucidates 17 

the distribution of HMs over the combustion of HMCBs. As seen, HMs enter into the 18 

combustion zone and subsequently exit in three categories: (i) solid residue in the combustor 19 

(bed ash); (ii) solid particles in the fly ash; and (iii) the exhausted gas (flue gas) [278]. 20 

Typically, HMs are supplemented in the bottom ash after the combustion due to their 21 

solubility, which certainly restricts the ash disposal opportunities. The leached HMs could be 22 

one of the problems causing environmental damage at waste yards [279, 280]. Table S4 23 

shows the distribution of ashes during combustion reported by different studies. The ash 24 
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distributed into the cyclone ash, the bottom ash, the filter ash (where present), and the rest 1 

was within the flue gas. Most of the HMs signified are found either in the cyclone ash or in 2 

the bottom ash. 3 

Moreover, HM compounds depending on their boiling points are volatile at the certain 4 

combustion temperatures (Table S1) [52], and their partitioning also depends on the type of 5 

furnace [55, 97, 281]. As the flue gas travels through the stack, the gas stream temperature 6 

declines, and due to which the toxic compounds condensate on neighboring solid particles 7 

[52]. The HM compounds can be noticed as submicron ash and vapor form at the end of the 8 

chimney (depending on the temperature). 9 

Several studies have been conducted corresponding to the metals flow calculations [168], 10 

the fate of metals and process viability [128, 169], biosorption performance [282], HMs 11 

content of bottom and fly ash during biomass combustion [193, 262, 278, 283-287]. Table 4 12 

presents the experimental approaches applied for the combustion of HMCBs. 13 
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Table 4. Applied combustion processes for the conversion or disposal of HMCBs 1 

Feedstock HMs Reactor Temp. 
(°C) 

Time Air flow Biomass feed 
rates 

Pretreatment Post-
treatment 

Remarks Ref. 

S. plumbizincicola 
and sewage sludge 

Cd, Pb, 
Zn, Al 

Large-scale 
fluidized bed 

reactor 

500–1100 NR* Air 
 

14 m3 h-1 

NR 
 
 

Mixing ratio 
7:3  

Dried and crushed: 
PS**<5 mm 

− •  A standard level of Cd, Zn, and Pb concentrations are observed in 
flue gas. 

• The medium and low risk of Cd and Zn as well as Pb to 
environment resulted from fly ash and bottom ash indicates the 
possibility of co-combustion of S. plumbizincicola and sludge for 
the safe disposal in China. 

Guo and 
Zhong [288] 

S. plumbizincicola 
and coal 

Cd, Cu, 
Pb, Zn, 
Cr, Mg, 
Mn, Al, 

Fe 

Quartz glass 
tube furnace 

650–950 NR Air 
 

O2 content 
(0, 7, 14 and 

21%) 

2 gr 
 

Mixing ratio: 
9:1, 7:3, 5:5, 

3:7, 1:9 

Pre-washed by distilled 
water, then dried and 
crushed  

Gas 
absorption 

system 
 

• Mixing ratio of 1:9 can control the total amount of HMs, which is 
instructive for engineering application. 

•  Increasing temperature significantly increases the volatilization of 
Cd and Pb in the form of Cd (g) and PbO, and anaerobic 
conditions increases the volatilization of Zn in the form of Zn (g). 

Guo et al. 
[289] 

Willow (Salix viminalis 
and commercial S. Tora)
 

Cd, Zn, 
Cu, Cr, 
Co, Ni, 

Mn 

Industrial scale 
boiler (40 kW) 

900−1000 NR Excess air 54 kg exp.-1 Crushed and then 
digested by aqua regia 
and HNO3 solution 
(65%). 

− • The application of boilers equipped with an efficient filtration 
system could minimize air pollution resulted from highly volatile 
HMs, like Cd and Zn. 

• Obtained ashes are not appropriate as the soil fertilizer. 

Delplanque 
et al. [128] 

Poplar Cd, Zn, 
Cu, Pb, 
Cr, Ni 

Industrial scale 
boiler (200 

kW) 

509−940 4.70 h NR 172 kg exp.-1, 
i.e. ~36 kg h-1 

Crushed and air-dried: 
PS<40−60 mm 
 

Fabric filter • The application of incinerators equipped with sophisticated 
pollution-control devices such as cyclone, filter-fly and 
electrostatic precipitators are suggested to mitigated or eliminated 
the emission of highly volatile HMs.  

Chalot et al. 
[169] 

S. plumbizinciola and 
Sedum alfredii 

Cd, Zn, 
Cu, Pb 

Entrained flow 
tube furnace & 
Horizontal tube 

furnace 

650–950 15 min 1.40 m3 h-1 0.50 g exp.-1 Pre-washed by distilled 
water, then crushed and 
dried at 85 °C 

Stainless 
steel mesh 

• Unlike the horizontal tube furnace, incineration in the entrained 
flow tube furnace causes further fluctuation or accumulation of 
HMs like Cu and Cd. 

Lu et al. 
[281] 

Willow (Salix caprea) Cd, Zn, 
Cu, Pb 

Stainless steel 
fluidized bed 

reactor 

850 8 h Air 0.33 kg h-1 
 

Equivalence 
ration: 

1.30−1.60 

NR Cyclone and 
glass wool 

filter 

• Phytoextraction seems to be a suitable technique to eliminate some 
negative effects connected with increasing usage of food 
feedstock-to-bioenergy. 

• The incineration of HMCBs is the best disposal approach and no 
ash agglomeration is observed at operating temperature of 85 °C. 

• The ashes are not appropriate for land usage (soil fertilizer). 

Šyn et al. 
[274]  

Willow (Salix leaves)  Cd, Zn Quartz glass 
tube reactor 

25–90 
 

22 min Air 
 

1040 N L-1 

5−10 g exp.-1 NR − • Incineration is a feasible choice for treating and safe disposal of 
HMCBs. 

• Pyrolysis is a better method than incineration for valorization of 
HMCBs, i.e. Cd and Zn recovery. 

• Gasification (reducing environment) is better than combustion 
(oxidizing environment) when striving for metal volatilization. 

Keller et al. 
[55] 

Biomass char (willow) Cd, Zn, 
Cu, Fe 

TGA−MS/DSC 25–900 45 min 50 cm3 min-1 5 g exp.-1 Crushed and pre-dried: 
PS<1 mm with mesh 
size of 80–20 

− Added metals support char combustion and enhance the ignition 
capability of char. 
 

Mayer et al. 
[73] 

* NR: Not reported  2 
 ** PS: Particle size of feedstocks3 
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Delplanque et al. [128] analyzed the combustion of contaminated willow species in an 1 

industrial scale boiler (40 kW) at operating conditions listed in Table 4. According to the 2 

observations, the high temperature inside the boiler (900−1000 °C) led to the high 3 

volatilization of target HMs particularly Cd. Bottom ash included only 0.80% of Cd and 4 

5.30% of Zn of the initial willow stems content, and the rest were mostly found in the flue 5 

gas. Yet, bottom ashes were enriched in Cu, Cr, Co, Ni and Mn because of their lower 6 

volatilization rate resulted from their high boiling points (Table S1). Also, Chalot et al. [169] 7 

tested another industrial scale boiler (200 KW) equipped with a fabric filter for the 8 

combustion of contaminated poplar obtained from a polluted agricultural field (Table 4). 9 

According to the results, HMs such as Cr, Ni, and Cu were distributed across furnace ash, 10 

followed by heat exchanger ash, and bottom ash. On the contrary, Cd, Zn, and Pb were 11 

mainly present in the particulate and gas fractions that came out of the cyclone in the absence 12 

of the fabric filter. In average >99% of HMs have been accumulated in the ash, and <1% 13 

transfer to the particulate and gas phase [169]. 14 

Lu et al. [281] compared the suitability of pyrolysis and combustion processes of 15 

hyperaccumulator plants in the range of 450–650 °C, and 550–950 °C, respectively (Table 4). 16 

The results showed that incineration diminished the biomass matrix from 13 to 17% of the 17 

initial mass, whilst pyrolysis generated ash content of about three times higher (30–44% ash). 18 

Moreover, it was inferred that incineration in a horizontal tube furnace enhances the 19 

volatilization of Cu and Cd. The amounts of HMs retained in residues after incineration were 20 

lower than those after pyrolysis, particularly for Cd, Pb, and Zn [281], indicating that 21 

oxidizing atmosphere supports the transfer of aforementioned HMs to gaseous phase as 22 

noticed in MSW incineration [290]. Similarly, Keller et al. [55] revealed that the pyrolysis of 23 

HMCBs under a reducing environment is in favor of the stabilization of HMs, like Zn, Cd, 24 

and Cu in ash, as well as their subsequent valorization. Nevertheless, in an entrained tube 25 
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furnace, increase in furnace temperature enhanced Zn concentration in flue gas, however Cu 1 

and Cd concentrations were fluctuated depending upon experimental conditions [281]. 2 

Therefore, in terms of accumulating HMs in the residues, pyrolysis seems a better option in 3 

compare with gasification and combustion. 4 

Şyc et al. [274] conducted the combustion of HM-enriched Salix caprea in a fluidized bed 5 

reactor to study the distribution of HMs and the energetic utilization of solid residual as 6 

fertilizer (Table 4). Accordingly, most of the Cu and Zn (>90%) were found in the ashes 7 

(bottom ash and bed material) followed by Pb (~80%), whilst ~40% of Cd was found in 8 

cyclone and fly ashes and partly volatilized in flue gas either accumulated on submicron ash. 9 

On the other side, different trends were observed in the combustion experiment done by 10 

Keller et al. [55] in a quartz glass tube reactor on Cd and Zn enriched Salix leaves. According 11 

to the results, Zn was retained in the bottom ash, whilst Cd was volatized during combustion 12 

process. After comparison with legal thresholds, Keller et al. [55] and Syc et al. [274] 13 

inferred that obtained ashes are not appropriate to be employed as the soil fertilizer due to 14 

relatively high content of HMs. 15 

Furthermore, Mayer et al. [73] studied the combustion of biomass char, the solid co-16 

product of the metal enriched wood (willow) pyrolysis, to investigate the influence of various 17 

metals on char combustion and gaseous profile (Table 4). According to observations, the rate 18 

of mass loss and heat flow as a function of temperature and time were recorded and 19 

combustion properties of char were estimated by characterization methods introduced by 20 

Sahu et al. [291] and Smith et al. [292] The TGA combustion profile exhibited two 21 

consecutive combustion zones. The first zone (I) was related to release and combustion of 22 

volatiles within the temperature range of 25−270 ℃, and the second zone (II) was attributed 23 

to the combustion of fixed carbon within the temperature range of 270−637 °C with a total 24 

carbon conversion of 88–97%. The presence of inorganic compounds affected the first zone 25 
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combustion; however, marginally boosted combustion reactivity (rate of mass loss) during 1 

second zone combustion. Moreover, both ash and added metals supported char combustion 2 

and enhanced the ignition capability of char. In terms of evolved gas formation, the first zone 3 

of BC combustion was characterized by a slower reaction corresponding to release of 4 

hydrocarbons. Whilst, the second reaction represents the actual combustion of the carbon rich 5 

char, evidenced by the combustion of the released CO2, water formation and detected 6 

exothermic heat flow. 7 

5.1 Practicability of combustion of HMCBs 8 

The fate of HMs (i.e. Cr, Cu, Cd, Zn, Pb, and Ni) and the suitability for biofuel production 9 

was focused via various thermochemical pathways [169]. Considering such constraint, the 10 

usability of contaminated wood originated from phytoextraction process has to be endorsed 11 

prior to their application as feedstock for bioenergy production [169, 281]. In addition, 12 

according to the French regulations, the combustion of HMCBs produced during 13 

phytoextraction should be taken into account as waste, not as a legal commercial fuel or 14 

viable source for clean bioenergy recovery [128]. 15 

In the previous studies majorly contaminated Willow or Salix species have been 16 

combusted [73, 128, 274], but there is not enough data to compare either the effect of the type 17 

of HMCBs on HMs distribution, or the effect of pretreatment techniques on combustion of 18 

HMCBs. However, Leaval-Gilly et al. have recommended the application of bioenergy plants, 19 

such as Miscanthus x giganteus, for effective phytoextraction of the HMs, like Cd, Cu, Zn, Pb 20 

and Cr; and subsequently, the low accumulation of HMs in aboveground biomass, i.e. stem 21 

and leaves, can facilitate its application in combustion units [36]. Generally speaking, 22 

regardless of the wood source, the applications of industrial scale boilers equipped with 23 

efficient filtration systems was suggested to minimize air pollution resulted from volatile 24 
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HMs especially Cd [128]. In fact, the high vaporization of the elements contributes their 1 

enrichment in the fly ash, subsequently developing fine particles in the flue gases [293]. 2 

Therefore, the application of efficient filtration systems could be practical in order to 3 

minimize air pollution resulted from considerable emission of highly-volatile HMs, such as 4 

Cd, Zn, etc., through the gas phase [128, 169]. Nonetheless, effect of the incinerator type, 5 

horizontal tube furnace causes higher volatilization rate of HMs rather than entrained tube 6 

furnace [281]. 7 

Among thermochemical processes even though, pyrolysis has been introduced as the best 8 

option for clean bioenergy production [20, 195], according to Keller et al. [55] and Kovacs 9 

and Szemmelveisz [52] combustion has been claimed as the best HMCBs disposal pathway. 10 

Likewise, as previously reported by Lu et al. [281], incineration of HMCBs reduced the 11 

biomass amount from 13 to 17% of the initial mass, in a way that the ash content generated 12 

by combustion was around three times lower than that by pyrolysis, however, the oxidizing 13 

environment of combustion unfavorably led to more volatilization of HMs to the gaseous 14 

phase. On the other hand, Kuppens et al. [182] by implementation of a novel dynamic techno-15 

economic assessment demonstrated that, pyrolysis of HMCB was the best option in terms of 16 

heat and energy recovery, compared to gasification and combustion. Nevertheless, Laval-17 

Gilly et al. [36], regardless of HMs content, have emphasized the limiting concerns resulting 18 

from the increase of K content of HMCB in brownfield cultures owing to its critical problems 19 

of fouling and slagging in combustion units, which Ljung and Nordin [294] and Keller et al. 20 

[55] attributed that to the formation of inorganic carbon in an oxidative environment, like 21 

potassium carbonate. Therefore, in case of linking brownfield culture to standardize 22 

engineering practices for bioenergy recovery, the regulation of K associated to exclusion of 23 

metal by plant is required. 24 
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5.2 Necessity of post-treatment 1 

As mentioned, Lu et al. [281] explored the suitability of the combustion process for the 2 

disposal of hyperaccumulator plants contaminated with HMs via phytoextraction process. 3 

The higher volatilization of Cd, Zn, and Pb allowed the further enrichment of these elements 4 

in the fraction at downstream the cyclone. The application of efficient fabric filters, 5 

particularly for highly volatile HMs, will permit the amounts of these last three HMs in the 6 

ashes collected below the filter, therefore fulfilling with entire existing thresholds sanctioned 7 

by EU directive for large combustion plants [169]. 8 

The absence of fabric filter caused 10–30 times higher concentration of Cd and Zn than 9 

emissions limits. Thus, modern waste-to-energy incinerators equipped with sophisticated 10 

pollution-control devices such as cyclone, filter-fly and electrostatic precipitators as a sink for 11 

Cd, Zn, and Pb could eliminate considerable amounts of HMs and fly ashes from an 12 

incinerator’s air emission [169]. It is noteworthy that a recent research has reported the 13 

capability of natural and modified limestone for the capture of HMs, including Cu, Pb, Zn, 14 

and Cr, during the wood sawdust combustion in an atmosphere of 80% CO2 and 20% O2 15 

from 600 to 900 °C. Results revealed a considerable performance of natural limestone at 16 

temperatures >700 °C to capture Cu and Pb, but not for Cr and Zn. The limestone modified 17 

with Al2(SO4)3 enhanced the capture performance for all studied HMs (i.e. Cu, Pb, Zn, and Cr) 18 

[295]. The modifications removed impurities in inner pores of limestone, resulting in the 19 

increase of the pore size and specific surface area, and consequently the enhancement of 20 

dominant physical and chemical adsorption abilities at 700 and 900 °C, respectively [295]. 21 

The application of recent technique seems a potential method for in-situ control of HMs in 22 

thermochemical biomass conversion in presence of limestone modified by reasonable 23 

inorganic modification method based on specific targeted HMs. 24 
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The combustion of Sedum plumbizincicola containing high concentrations of Cd, Cu, and 1 

Pb with sewage sludge and coal were conducted in a large-scale fluidized bed and a tube 2 

furnace at different temperatures by Guo and Zhong [288], and Guo et al. [289], respectively 3 

(Table 4). According to Guo and Zhong [288], results showed that in the flue gas, the 4 

emission concentrations of Cd, Zn, and Pb were below the standard. The dominant phase in 5 

Zn and Pb is the residual fraction, and by increasing temperature from 700 to 1000 °C, the 6 

proportion of residual fraction in Cd for bottom ash also increased from 16.82 to 44.03%. Cd 7 

and Zn show medium risk to the environment in fly ash and bottom ash. Pb presents no risk 8 

to the ecosystem in fly ash and low risk in bottom ash, indicating that the co-combustion is a 9 

suitable pathway for the safe disposal of S. plumbizincicola and sludge in China. Moreover, 10 

according to Guo et al. [289], the results indicated that high temperature was beneficial to the 11 

volatilization of HMs with the order of Pb > Cd > Zn, in the form of Cd (g), PbO (g). In the 12 

oxygen atmosphere, Zn exists in the form of heavy metal oxides, not easy to volatilize. With 13 

increasing oxygen content, the distribution of Zn and Cd in bottom ash is more, while Pb 14 

concentration is initially increased and then decreases. Under anaerobic condition, Zn begins 15 

to volatilize as Zn (g) and oxygen which are not conducive to the volatilization of Zn. 16 

Therefore, the co-combustion in air condition appears to be beneficial to the disposal of HMs. 17 

6. LIQUEFACTION 18 

To the date, various types of biomass, such as plants, algae, etc., have been effectively 19 

converted to the liquid by means of liquefaction techniques, i.e. solvent- and hydrothermal 20 

liquefaction (HTL) [296-298]. In HTL, wet biomass slurries are heated (200–500 °C) under 21 

high pressure (5–20 Mpa) to produce a mixture of products (e.g. bio-oil, 15–75%; gaseous 22 

products, 10–20%; and a negligible amount of solids) [299, 300]. Liquefied products resulted 23 

from a process with high content of both nutrients and organics are suitable for various 24 

applications as biofuel, chemical industries feedstock, polyurethane, etc. [301-303]. The 25 
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chemical extraction and separation of bio-oil and HMs from HMCBs could be conducted by 1 

HTL process efficiently, and the possibility of both safe disposal and reuse of final solid 2 

residue as fertilizer [304]. 3 

The solvent liquefaction process is the combination of (1) the direct dissolving of low 4 

molecular content and hemicellulose, (2) the catalyzed degradation of polymer celluloses and 5 

lignose into smaller fragment and also (3) the degradation of the micellar-like resulted from 6 

hydrolysis, to smaller compounds by means of dehydration, dehydrogenation, deoxygenation 7 

or decarboxylation process [215]. Under solvent-based liquefaction, the type of solvent is the 8 

major parameter that affects the process rate and the yield and quality of products [305, 306]. 9 

The liquefaction of giant reed shoots, containing As (7.53), Cd (9.05), Zn (135.26) and Pb 10 

(17.16 mg kg-1 dried biomass), was examined in the presence of ethylene glycol system with 11 

sulfuric acid as the catalyst for the precursors of valuable products like polyurethane 12 

compounds [165]. The impacts of operational parameters including solvent/biomass ratio (1:1 13 

− 7:1), temperature (110–190 °C), liquefaction time (20–80 min) and sulfuric acid content 14 

(1−9%) were investigated. According to results, optimum biomass liquefaction rate of 15 

85.20% was achieved at a temperature of 170 °C, 60 min, 3% sulfuric acid, solvent/biomass 16 

ratio of 5:1, and proper pretreatment (i.e. preheating and crushing feedstock (<0.25 mm) in 17 

acidified ethylene glycol system). However, the results demonstrated the major transfer of 18 

HMs to liquefied products high amount of HMs content in the products: As 8.06, Cd 10.33, 19 

Pb 19.55 and Zn 151.16 mg kg-1 oil [165]. 20 

Qian et al. [94] investigated the recycling of a Zn-contaminated Sedum plumbizincicola 21 

via the subcritical HTL reaction into value-added products, such as bio-oil, hydro-char, 22 

carboxylic acids and other chemicals. To determine the influence of operating temperatures 23 

on Zn distribution and bio-oil products in each subcritical HTL experiment, 15 g of mixed 24 

biomass with and without 150 mL of diluted hydrogen chloride (HCl) solution introduced to 25 
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a 250 mL autoclave and heated to different temperature from 190 to 310 °C for 2 h. The 1 

results showed that the minimum transfer of Zn into bio-oil (~15%) happened in the presence 2 

of water (i.e. without HCl) at the temperature of 250 °C and the rest accumulated in the 3 

hydro-char. In addition, by increasing HTL temperature, the decomposition of biomass and 4 

the production of acetic acid increased, whereas furans dramatically decreased. More 5 

importantly, at temperatures >280 °C, the favorable depolymerization, deoxygenation and 6 

aromatization reactions of large molecules and the formation of compounds with lower 7 

molecular weight towards a more stable bio-oil were confirmed [94].  8 

Furthermore, Yang [304] developed a chemical extraction of HMs and crude bio-oil from 9 

Sedum plumbizincicola (contaminated by Zn, Pb and Cu), through hydrothermal upgrading 10 

process in an stainless iron type autoclave (500 mL). The influences of temperature (270–11 

421 °C), pressure (18.00–25.40 MPa), time (10–120 s) and PS (1.00–4.75 mm) on the 12 

separation efficiency and yield of bio-oil were investigated. For each assay 20 gr of crushed 13 

feedstock with PS of 1.00 mm was introduced to a stainless iron type autoclave (500 mL). 14 

The results showed that the bio-oil yield and gaseous products continuously augmented with 15 

intensifying temperature and pressure due to further decomposition of the feedstock. 16 

However, the efficiency of HMs removal and liquid roughly retained constant in higher 17 

temperature and pressure. Accordingly, maximum HMs removal efficiency of >99% and high 18 

bio-oil yield of >63% were obtained at optimal condition of 370 °C; 22.10 MPa; PS 1.00 mm; 19 

60 s and in the presence of 10 mg L-1 additives. It was incurred that the HTL is a feasible and 20 

efficient approach for both producing clean crude bio-oil and coping with HMs-polluted 21 

hyperaccumulators [304]. 22 

According to Guo et al. [165], the solvent liquefaction verified as a potential approach to 23 

dispose HMCBs, whilst further treatment of the liquefied products was strongly 24 

recommended to tackle the potential pollutions and thus further applications of products as 25 
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appropriate pioneer for polyurethane compounds [165]. It was also indicated that 1 

hemicellulose and lignin are liquefied prior to cellulose, and the final results from 2 

liquefaction of metal-contaminated biomass in optimized conditions was potential and similar 3 

to the bamboo liquefied products [307]. Conversely in Yang [304] study, not only all 4 

components, i.e. oil phase, water raffinate phase, gaseous phase and char-like solid phase, 5 

satisfied the criteria set by China biosolids disposal legislation but also the solid residue can 6 

be reused as fertilizer. Furthermore, according to Qian et al. [94], in the case of using a 7 

reaction containing 0.24 mol L-1 of HCl at temperature of 250 °C up to 72% of Zn transferred 8 

to the bio-oil. Therefore, it can be inferred for the safe disposal and/or use hydrochar product 9 

from HMCBs, the acidic environment (with 0.24 mol L-1 of HCl) is favorable with decreasing 10 

rate of Zn transferred into the bio-oil at higher temperature from 220 to 310 °C. Moreover, a 11 

catalytic effect of released Zn2+ was observed in favor of the bio-oil and acetic acid 12 

production via the oxidation of furfural and 5-(hydroxymethyl)-furfural [94]. 13 

7. TECHNO-ECONOMIC ASSESSMENT 14 

From a techno-economic point of view, the major barrier for the commercialization of the 15 

technology reviewed in this report appears to lie in 1) the long-time consumption for 16 

phytoextraction of contaminated soil; 2) experimentation and cost to obtain an optimum 17 

thermochemical process towards valorization of a mixture of specific type of HMCBs for 18 

clean production of biofuel and other valuable-end products. In other words, in these cases, to 19 

make phytoextraction of HM-contaminated soil economically viable for farmers, additional 20 

benefits should be provided by bioenergy production [308] or selling metals extracted [309]. 21 

A techno-economic assessment (TEA) is often linked to biomass and/or carried out on 22 

new technologies that are designed for environmental purposes. In addition, techno-economic 23 

modeling tools are more often required to assess the valorization potential of emerging 24 

technologies towards giving clear insights of key uncertainties to decision makers [310], and 25 
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funding prospective regional, national and transnational programs [311-314]. However, some 1 

of barriers towards TEA of pyrolysis and almost other thermochemical processes are: 1) 2 

thermochemical treatments of HMCBs are quite new technologies, therefore, there are not a 3 

lot of cost data available [315]; 2) there are significant variations of cost data for pyrolysis, 4 

etc., plants [316]; 3) no large datasets or historical data are available for the uncertainties 5 

[317]; 4) there is a considerable uncertainty for the capital cost of processes that have not 6 

been put into practice yet [318].  7 

Kuppens et al. [182] developed a dynamic TEA and cost recovery study on 8 

thermochemical conversions of Cd-contaminated willow harvested from Campine soil (Table 9 

2 and 3) with respect to positive net present value (NPV), which is an indicator of the 10 

technology's profitability. In their study [182], willow had been selected due to its formerly 11 

established efficiency [319] and economic [320, 321] for Cd removal from contaminated 12 

lands over a short rotation and realistic crop life cycle. According to the results, among 13 

thermochemical conversion processes, only fast pyrolysis for the combined production of 14 

heat and power (CHP) showed more profitability than gasification and combustion (Table 15 

S5). Whilst, none of three thermochemical conversion technologies showed a positive NPV 16 

for electricity production (Table S5).  17 

Additionally, it has been pointed out that the profit depends on the operation scale, the 18 

policy support (subsidies) and the oil yield. Regarding the reduction of the economic risk, 19 

following items have been suggested, (I) operation scale-up using complementing 20 

feedstock(s), and (II) valorization of the char byproduct by subsequent processing to 21 

activated carbon, fertilizer, etc. [182]. Meanwhile, companies can decrease risk by reducing 22 

operational risk through co-pyrolysis of various proper biomass [322], increasing the scale of 23 

operation [190], outputs optimization/upgrading [323], etc.  24 
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8. OUTLOOK 1 

The concept of linking phytoextraction process and thermochemical biofuel production is a 2 

potential and promising pathway towards sustainable phytoremediation process via metal-3 

free bioenergy production and HMs recovery from HMCBs. The life cycle analysis on 4 

bioenergy from various clean biomass and its lower environmental impact, compared with 5 

fossil fuels has been verified [324]. However, any life cycle analysis of bioenergy or resource 6 

recovery from HMCBs has not been explored yet to the best of our knowledge. However, 7 

according to previous studies, the economic reliability aspect (or TEA) of linking 8 

phytoextraction technique to bioenergy recovery mostly depends on vast areas and sufficient 9 

numbers of farmers, even although soils only moderately polluted with metals. 10 

To the date, among thermochemical approaches on HMCBs mostly over last decade, fast 11 

pyrolysis with the operating temperature of 300–450 ˚C has been determined as the most 12 

promising method, based on thermodynamic/empirical results and TEAs with respect to 13 

usable metal-free bio-oils production without secondary pollution. Generally, the optimum 14 

temperature and pyrolysis operating conditions depend on the inorganic content of HMCBs, 15 

type and content of HMs/metalloid pollutants, pre- and post-treatment technologies, 16 

pyrolyzer reactor, target quality and application of bio-oil, HMs recovery, etc. However, the 17 

effect of HMCBs ash and moisture content on process yield and operating conditions have 18 

been rarely explored. 19 

Although, the thermochemical conversions of HMCBs with the emphasize on fast 20 

pyrolysis has been verified a promising pathway to metal-free bio-oil production, still, they 21 

are in infancy stages, because many potential pretreatments, post-treatment or technical 22 

processes towards clean energy recovery and minimized HMs transfer to products has not 23 

been investigated yet. Further opportunities for future research: 24 
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1- Some potential sorbents, including zeolites, char, activated carbon, etc., or 1 

demineralization and leaching techniques due to their effective performance to 2 

immobilize or remover dissolved HMs from HMCBs, condensable and/or liquid 3 

phase, could be examined in processes or pre-/post-treatment stages to minimize the 4 

negative effects of HMs on the reaction performance and the final products. By doing 5 

so, more opportunities are anticipated to promulgate yield and quality of bio-oil plus 6 

HM recovery. 7 

2- Implementing appropriate post-treatment with respect to the type and risk of HMs 8 

discharged from the reactor or the biofuel produced, and finally precise measurement 9 

of HMs and other potential contaminants levels prior to re-utilization of products and 10 

by-products according to probable relevant national or international environmental 11 

regulations. 12 

3- Further TEA and technical uncertainties of HMCBs fast pyrolysis are required to be 13 

validated using experimental research, such as (I) checking the quality of bio-oil and 14 

char produced at different temperatures, (II) the moisture content of bio-oil at 15 

different temperatures, resulting in changes on heating values and economic 16 

profitability and (III) other impactful quality parameters, such as bio-oil viscosity, 17 

bio-char fixed carbon, etc.  18 

4- Further researches and TEAs on other potential biological, chemical and 19 

physicochemical HMCBs conversion routes or pretreatment techniques are required. 20 

Those technologies might be resulted in different net energy productions, cleaner 21 

biofuel production, and consequently better outcomes in terms of CO2-equivalents. 22 



63 
 

ACKNOWLEDGMENT 1 

This work was supported by Tsinghua University Initiative Scientific Research Program 2 

(grant number: 20161080094). The authors would like to acknowledge Mr. Farzin Jalali for 3 

drawing the frontispiece (Graphical Abstract).  4 

REFERENCES 5 

[1] T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel production and other 6 
applications: a review, Renewable and Sustainable Energy Reviews 14 (2010) 217-232. 7 
[2] M.M.K. Bhuiya, M.G. Rasul, M.M.K. Khan, N. Ashwath, A.K. Azad, M.A. Hazrat, Prospects of 2nd 8 
generation biodiesel as a sustainable fuel–Part 2: Properties, performance and emission 9 
characteristics, Renewable and Sustainable Energy Reviews 55 (2016) 1129-1146. 10 
[3] L.M. Fulton, L.R. Lynd, A. Körner, N. Greene, L.R. Tonachel, The need for biofuels as part of a low 11 
carbon energy future, Biofuels, Bioproducts and Biorefining 9 (2015) 476-483. 12 
[4] P. Azadi, O.R. Inderwildi, R. Farnood, D.A. King, Liquid fuels, hydrogen and chemicals from lignin: 13 
A critical review, Renewable and Sustainable Energy Reviews 21 (2013) 506-523. 14 
[5] C. Panoutsou, A. Bauen, J. Duffield, Policy regimes and funding schemes to support investment 15 
for next‐generation biofuels in the USA and the EU‐27, Biofuels, Bioproducts and Biorefining 7 16 
(2013) 685-701. 17 
[6] R.E.H. Sims, A. Hastings, B. Schlamadinger, G. Taylor, P. Smith, Energy crops: current status and 18 
future prospects, Global Change Biology 12 (2006) 2054-2076. 19 
[7] K. Dutta, A. Daverey, J.G. Lin, Evolution retrospective for alternative fuels: First to fourth 20 
generation, Renewable Energy 69 (2014) 114-122. 21 
[8] P. Azadi, S. Khan, F. Strobel, F. Azadi, R. Farnood, Hydrogen production from cellulose, lignin, bark 22 
and model carbohydrates in supercritical water using nickel and ruthenium catalysts, Applied 23 
Catalysis B: Environmental 117 (2012) 330-338. 24 
[9] L. da Costa Sousa, M. Jin, S.P.S. Chundawat, V. Bokade, X. Tang, A. Azarpira, F. Lu, U. Avci, J. 25 
Humpula, N. Uppugundla, Next-generation ammonia pretreatment enhances cellulosic biofuel 26 
production, Energy & Environmental Science 9 (2016) 1215-1223. 27 
[10] C. Xu, R.A.D. Arancon, J. Labidi, R. Luque, Lignin depolymerisation strategies: towards valuable 28 
chemicals and fuels, Chemical Society Reviews 43 (2014) 7485-7500. 29 
[11] M.T. Domínguez, P. Madejón, E. Madejón, M.J. Diaz, Novel energy crops for Mediterranean 30 
contaminated lands: Valorization of Dittrichia viscosa and Silybum marianum biomass by pyrolysis, 31 
Chemosphere 186 (2017) 968-976. 32 
[12] W.H. Chen, W.Y. Cheng, K.M. Lu, Y.P. Huang, An evaluation on improvement of pulverized 33 
biomass property for solid fuel through torrefaction, Applied Energy 88 (2011) 3636-3644. 34 
[13] S.A. Edrisi, P.C. Abhilash, Exploring marginal and degraded lands for biomass and bioenergy 35 
production: an Indian scenario, Renewable and Sustainable Energy Reviews 54 (2016) 1537-1551. 36 
[14] S. Del Grosso, P. Smith, M. Galdos, A. Hastings, W. Parton, Sustainable energy crop production, 37 
Current Opinion in Environmental Sustainability 9 (2014) 20-25. 38 
[15] S.V. Vassilev, D. Baxter, L.K. Andersen, C.G. Vassileva, An overview of the composition and 39 
application of biomass ash. Part 1. Phase–mineral and chemical composition and classification, Fuel 40 
105 (2013) 40-76. 41 
[16] F. Sissine, Energy Independence and Security Act of 2007: a summary of major provisions, DTIC 42 
Document, 2007. 43 



64 
 

[17] P. UNION, DIRECTIVE 2009/28/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 1 
April 2009 on the promotion of the use of energy from renewable sources and amending and 2 
subsequently repealing Directives 2001/77/EC and 2003/30/EC, EC, 2009. 3 
[18] T.B. Johansson, A.P. Patwardhan, N. Nakićenović, L. Gomez-Echeverri, Global energy assessment: 4 
toward a sustainable future, Cambridge University Press2012. 5 
[19] R.T. Dilks, F. Monette, M. Glaus, The major parameters on biomass pyrolysis for 6 
hyperaccumulative plants–A review, Chemosphere 146 (2016) 385-395. 7 
[20] M. Stals, E. Thijssen, J. Vangronsveld, R. Carleer, S. Schreurs, J. Yperman, Flash pyrolysis of heavy 8 
metal contaminated biomass from phytoremediation: influence of temperature, entrained flow and 9 
wood/leaves blended pyrolysis on the behaviour of heavy metals, Journal of Analytical and Applied 10 
Pyrolysis 87 (2010) 1-7. 11 
[21] R.A. Balsamo, W.J. Kelly, J.A. Satrio, M.N. Ruiz-Felix, M. Fetterman, R. Wynn, K. Hagel, Utilization 12 
of grasses for potential biofuel production and phytoremediation of heavy metal contaminated soils, 13 
International Journal of Phytoremediation 17 (2015) 448-455. 14 
[22] Y. Sun, J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: a review, 15 
Bioresource Technology 83 (2002) 1-11. 16 
[23] K. Azizi, M.K. Moraveji, H.A. Najafabadi, Characteristics and kinetics study of simultaneous 17 
pyrolysis of microalgae Chlorella vulgaris, wood and polypropylene through TGA, Bioresource 18 
Technology 243 (2017) 481-491. 19 
[24] M. Guo, W. Song, J. Buhain, Bioenergy and biofuels: History, status, and perspective, Renewable 20 
and Sustainable Energy Reviews 42 (2015) 712-725. 21 
[25] D. Carpenter, T.L. Westover, S. Czernik, W. Jablonski, Biomass feedstocks for renewable fuel 22 
production: a review of the impacts of feedstock and pretreatment on the yield and product 23 
distribution of fast pyrolysis bio-oils and vapors, Green Chemistry 16 (2014) 384-406. 24 
[26] X. Wan, M. Lei, T. Chen, Cost–benefit calculation of phytoremediation technology for heavy-25 
metal-contaminated soil, Science of The Total Environment 563 (2016) 796-802. 26 
[27] A.B. Cundy, R.P. Bardos, M. Puschenreiter, M. Mench, V. Bert, W. Friesl-Hanl, I. Müller, X.N. Li, N. 27 
Weyens, N. Witters, Brownfields to green fields: Realising wider benefits from practical contaminant 28 
phytomanagement strategies, Journal of Environmental Management 184 (2016) 67-77. 29 
[28] F. Courchesne, M.C. Turmel, B. Cloutier-Hurteau, S. Constantineau, L. Munro, M. Labrecque, 30 
Phytoextraction of soil trace elements by willow during a phytoremediation trial in southern Québec, 31 
Canada, International Journal of Phytoremediation 19 (2017) 545-554. 32 
[29] A. Enell, Y. Andersson-Sköld, J. Vestin, M. Wagelmans, Risk management and regeneration of 33 
brownfields using bioenergy crops, Journal of Soils and Sediments 16 (2016) 987-1000. 34 
[30] P.C. Abhilash, R.K. Dubey, V. Tripathi, P. Srivastava, J.P. Verma, H. Singh, Remediation and 35 
management of POPs-contaminated soils in a warming climate: challenges and perspectives, 36 
Environmental Science and Pollution Research 20 (2013) 5879-5885. 37 
[31] S. Alker, V. Joy, P. Roberts, N. Smith, The definition of brownfield, Journal of Environmental 38 
Planning and Management 43 (2000) 49-69. 39 
[32] U. Ferber, D. Grimski, K. Millar, P. Nathanail, Sustainable brownfield regeneration: CABERNET 40 
network report, University of Nottingham: L & Quality Management Group (2006). 41 
[33] W. Ren, B. Xue, Y. Geng, L. Sun, Z. Ma, Y. Zhang, B. Mitchell, L. Zhang, Inventorying heavy metal 42 
pollution in redeveloped brownfield and its policy contribution: Case study from Tiexi District, 43 
Shenyang, China, Land Use Policy 38 (2014) 138-146. 44 
[34] S.Y.D. Chiang, Q. Gu, Brownfield sites remediation technology overview, trends, and 45 
opportunities in China, Remediation Journal 25 (2015) 85-99. 46 
[35] P. Panagos, M. Van Liedekerke, Y. Yigini, L. Montanarella, Contaminated sites in Europe: review 47 
of the current situation based on data collected through a European network, Journal of 48 
Environmental and Public Health 2013 (2013). 49 



65 
 

[36] P. Laval-Gilly, S. Henry, M. Mazziotti, A. Bonnefoy, A. Comel, J. Falla, Miscanthus x Giganteus 1 
composition in metals and potassium after culture on polluted soil and its use as biofuel, BioEnergy 2 
Research 10 (2017) 846-852. 3 
[37] S. Werle, D. Bisorca, A. Katelbach-Woźniak, M. Pogrzeba, J. Krzyżak, I. Ratman-Kłosińska, D. 4 
Burnete, Phytoremediation as an effective method to remove heavy metals from contaminated 5 
area–TG/FT-IR analysis results of the gasification of heavy metal contaminated energy crops, Journal 6 
of the Energy Institute (2016). 7 
[38] K.C. Jones, Contaminant trends in soils and crops, Environmental Pollution 69 (1991) 311-325. 8 
[39] F.O. Agunbiade, B.I. Olu-Owolabi, K.O. Adebowale, Phytoremediation potential of Eichornia 9 
crassipes in metal-contaminated coastal water, Bioresource Technology 100 (2009) 4521-4526. 10 
[40] L.C. Hsu, S.L. Wang, Y.C. Lin, M.K. Wang, P.N. Chiang, J.C. Liu, W.H. Kuan, C.C. Chen, Y.M. Tzou, 11 
Cr (VI) removal on fungal biomass of Neurospora crassa: the importance of dissolved organic 12 
carbons derived from the biomass to Cr (VI) reduction, Environmental Science & Technology 44 13 
(2010) 6202-6208. 14 
[41] K.E. Gerhardt, X.D. Huang, B.R. Glick, B.M. Greenberg, Phytoremediation and rhizoremediation 15 
of organic soil contaminants: potential and challenges, Plant Science 176 (2009) 20-30. 16 
[42] Z. Yao, J. Li, H. Xie, C. Yu, Review on remediation technologies of soil contaminated by heavy 17 
metals, Procedia Environmental Sciences 16 (2012) 722-729. 18 
[43] V.C. Pandey, O. Bajpai, N. Singh, Energy crops in sustainable phytoremediation, Renewable and 19 
Sustainable Energy Reviews 54 (2016) 58-73. 20 
[44] M.A. Ashraf, I. Hussain, R. Rasheed, M. Iqbal, M. Riaz, M.S. Arif, Advances in microbe-assisted 21 
reclamation of heavy metal contaminated soils over the last decade: a review, Journal of 22 
Environmental Management 198 (2017) 132-143. 23 
[45] E.J. Leijenhorst, W. Wolters, L. van de Beld, W. Prins, Inorganic element transfer from biomass 24 
to fast pyrolysis oil: Review and experiments, Fuel Processing Technology 149 (2016) 96-111. 25 
[46] A. Aghaalikhani, E. Savuto, A. Di Carlo, D. Borello, Poplar from phytoremediation as a renewable 26 
energy source: gasification properties and pollution analysis, Energy Procedia 142 (2017) 924-931. 27 
[47] S.K. Gupta, F.A. Ansari, A. Shriwastav, N.K. Sahoo, I. Rawat, F. Bux, Dual role of Chlorella 28 
sorokiniana and Scenedesmus obliquus for comprehensive wastewater treatment and biomass 29 
production for bio-fuels, Journal of Cleaner Production 115 (2016) 255-264. 30 
[48] I.l.S. Yang, E.S. Salama, J.O. Kim, S.P. Govindwar, M.B. Kurade, M. Lee, H.S. Roh, B.H. Jeon, 31 
Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and 32 
simultaneous nutrient removal, Energy Conversion and Management 117 (2016) 54-62. 33 
[49] K. Peng, X. Li, C. Luo, Z. Shen, Vegetation composition and heavy metal uptake by wild plants at 34 
three contaminated sites in Xiangxi area, China, Journal of Environmental Science and Health, Part A 35 
41 (2006) 65-76. 36 
[50] A. Mudhoo, S. Kumar, Effects of heavy metals as stress factors on anaerobic digestion processes 37 
and biogas production from biomass, International Journal of Environmental Science and Technology 38 
10 (2013) 1383-1398. 39 
[51] S.V. Vassilev, C.G. Vassileva, D. Baxter, Trace element concentrations and associations in some 40 
biomass ashes, Fuel 129 (2014) 292-313. 41 
[52] H. Kovacs, K. Szemmelveisz, Disposal options for polluted plants grown on heavy metal 42 
contaminated brownfield lands–A review, Chemosphere 166 (2017) 8-20. 43 
[53] Y. Jiang, A. Ameh, M. Lei, L. Duan, P. Longhurst, Solid–gaseous phase transformation of 44 
elemental contaminants during the gasification of biomass, Science of The Total Environment 563 45 
(2016) 724-730. 46 
[54] H. Zhang, Y. Tian, L. Wang, L. Zhang, L. Dai, Ecophysiological characteristics and biogas 47 
production of cadmium-contaminated crops, Bioresource Technology 146 (2013) 628-636. 48 
[55] C. Keller, C. Ludwig, F. Davoli, J. Wochele, Thermal treatment of metal-enriched biomass 49 
produced from heavy metal phytoextraction, Environmental Science & Technology 39 (2005) 3359-50 
3367. 51 



66 
 

[56] A. Boularbah, C. Schwartz, G. Bitton, W. Aboudrar, A. Ouhammou, J.L. Morel, Heavy metal 1 
contamination from mining sites in South Morocco: 2. Assessment of metal accumulation and 2 
toxicity in plants, Chemosphere 63 (2006) 811-817. 3 
[57] E. Maestri, M. Marmiroli, G. Visioli, N. Marmiroli, Metal tolerance and hyperaccumulation: costs 4 
and trade-offs between traits and environment, Environmental and Experimental Botany 68 (2010) 5 
1-13. 6 
[58] S.P. McGrath, F.J. Zhao, Phytoextraction of metals and metalloids from contaminated soils, 7 
Current Opinion in Biotechnology 14 (2003) 277-282. 8 
[59] A. van der Ent, A.J.M. Baker, R.D. Reeves, A.J. Pollard, H. Schat, Hyperaccumulators of metal and 9 
metalloid trace elements: facts and fiction, Plant and Soil 362 (2013) 319-334. 10 
[60] P. Tlustoš, J. Száková, J. Hrubý, I. Hartman, J. Najmanová, J. Nedelnık, D. Pavlıková, M. Batysta, 11 
Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants, Plant Soil 12 
Environ 52 (2006) 413-423. 13 
[61] L. Koppolu, L.D. Clements, Pyrolysis as a technique for separating heavy metals from 14 
hyperaccumulators. Part I: Preparation of synthetic hyperaccumulator biomass, Biomass and 15 
Bioenergy 24 (2003) 69-79. 16 
[62] Q. Wang, X.M. Liu, Y.S. Cui, Y.T. Dong, P. Christie, Responses of legume and non-legume crop 17 
species to heavy metals in soils with multiple metal contamination, Journal of Environmental Science 18 
and Health, Part A 37 (2002) 611-621. 19 
[63] I. Raskin, B.D. Ensley, Phytoremediation of toxic metals, John Wiley and Sons2000. 20 
[64] L.Q. Ma, K.M. Komar, C. Tu, W. Zhang, Y. Cai, E.D. Kennelley, A fern that hyperaccumulates 21 
arsenic, Nature 409 (2001) 579-579. 22 
[65] Z. Fischerová, P. Tlustoš, J. Száková, K. Šichorová, A comparison of phytoremediation capability 23 
of selected plant species for given trace elements, Environmental Pollution 144 (2006) 93-100. 24 
[66] M. Vyslouzilova, P. Tlustos, J. Száková, Cadmium and zinc phytoextraction potential of seven 25 
clones of Salix spp. planted on heavy metal contaminated soils, Plant Soil and Environment 49 (2003) 26 
542-547. 27 
[67] G. Kabir, B.H. Hameed, Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-28 
grade bio-oil and bio-chemicals, Renewable and Sustainable Energy Reviews 70 (2017) 945-967. 29 
[68] W. Huang, F. Gong, M. Fan, Q. Zhai, C. Hong, Q. Li, Production of light olefins by catalytic 30 
conversion of lignocellulosic biomass with HZSM-5 zeolite impregnated with 6 wt.% lanthanum, 31 
Bioresource Technology 121 (2012) 248-255. 32 
[69] Y. Hadar, Sources for lignocellulosic raw materials for the production of ethanol,  Lignocellulose 33 
Conversion, Springer2013, pp. 21-38. 34 
[70] A. Geng, Conversion of oil palm empty fruit bunch to biofuels,  Liquid, Gaseous and Solid 35 
Biofuels-Conversion Techniques, InTech2013. 36 
[71] K. Raveendran, A. Ganesh, Heating value of biomass and biomass pyrolysis products, Fuel 75 37 
(1996) 1715-1720. 38 
[72] Z.A. Mayer, A. Apfelbacher, A. Hornung, Effect of sample preparation on the thermal 39 
degradation of metal-added biomass, Journal of Analytical and Applied Pyrolysis 94 (2012) 170-176. 40 
[73] Z.A. Mayer, A. Apfelbacher, A. Hornung, A comparative study on the pyrolysis of metal-and ash-41 
enriched wood and the combustion properties of the gained char, Journal of Analytical and Applied 42 
Pyrolysis 96 (2012) 196-202. 43 
[74] A. Mahar, P. Wang, A. Ali, M.K. Awasthi, A.H. Lahori, Q. Wang, R. Li, Z. Zhang, Challenges and 44 
opportunities in the phytoremediation of heavy metals contaminated soils: A review, Ecotoxicology 45 
and Environmental Safety 126 (2016) 111-121. 46 
[75] B. Pandey, S. Suthar, V. Singh, Accumulation and health risk of heavy metals in sugarcane 47 
irrigated with industrial effluent in some rural areas of Uttarakhand, India, Process Safety and 48 
Environmental Protection 102 (2016) 655-666. 49 



67 
 

[76] J. He, J.P. Chen, A comprehensive review on biosorption of heavy metals by algal biomass: 1 
materials, performances, chemistry, and modeling simulation tools, Bioresource Technology 160 2 
(2014) 67-78. 3 
[77] H.C.J. Godfray, J.R. Beddington, I.R. Crute, L. Haddad, D. Lawrence, J.F. Muir, J. Pretty, S. 4 
Robinson, S.M. Thomas, C. Toulmin, Food security: the challenge of feeding 9 billion people, Science 5 
327 (2010) 812-818. 6 
[78] P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the 7 
environment,  Molecular, Clinical and Environmental Toxicology, Springer2012, pp. 133-164. 8 
[79] W.J. Liu, W.W. Li, H. Jiang, H.Q. Yu, Fates of chemical elements in biomass during its pyrolysis, 9 
Chemical Reviews 117 (2017) 6367-6398. 10 
[80] I. Adeyemi, I. Janajreh, T. Arink, C. Ghenai, Gasification behavior of coal and woody biomass: 11 
Validation and parametrical study, Applied Energy 185 (2017) 1007-1018. 12 
[81] S.W. Park, C.H. Jang, K.R. Baek, J.K. Yang, Torrefaction and low-temperature carbonization of 13 
woody biomass: Evaluation of fuel characteristics of the products, Energy 45 (2012) 676-685. 14 
[82] M. Nuruddin, M. Hosur, M. Uddin, D. Baah, S. Jeelani, A novel approach for extracting cellulose 15 
nanofibers from lignocellulosic biomass by ball milling combined with chemical treatment, Journal of 16 
Applied Polymer Science 133 (2016). 17 
[83] E. Rouches, I. Herpoël-Gimbert, J.P. Steyer, H. Carrere, Improvement of anaerobic degradation 18 
by white-rot fungi pretreatment of lignocellulosic biomass: A review, Renewable and Sustainable 19 
Energy Reviews 59 (2016) 179-198. 20 
[84] J. Singh, M. Suhag, A. Dhaka, Augmented digestion of lignocellulose by steam explosion, acid 21 
and alkaline pretreatment methods: a review, Carbohydrate Polymers 117 (2015) 624-631. 22 
[85] J. Li, J. Chen, S. Chen, Supercritical water treatment of heavy metal and arsenic metalloid-23 
bioaccumulating-biomass, Ecotoxicology and Environmental Safety 157 (2018) 102-110. 24 
[86] T. Wang, Y. Zhai, Y. Zhu, C. Peng, B. Xu, T. Wang, C. Li, G. Zeng, Acetic acid and sodium 25 
hydroxide-aided hydrothermal aarbonization of woody biomass for enhanced pelletization and fuel 26 
properties, Energy & Fuels 31 (2017) 12200-12208. 27 
[87] S.M. Kim, B.S. Dien, V. Singh, Promise of combined hydrothermal/chemical and mechanical 28 
refining for pretreatment of woody and herbaceous biomass, Biotechnology for Biofuels 9 (2016) 97. 29 
[88] H.L. Trajano, N.L. Engle, M. Foston, A.J. Ragauskas, T.J. Tschaplinski, C.E. Wyman, The fate of 30 
lignin during hydrothermal pretreatment, Biotechnology for Biofuels 6 (2013) 110. 31 
[89] A. Brandt-Talbot, F.J.V. Gschwend, P.S. Fennell, T.M. Lammens, B. Tan, J. Weale, J.P. Hallett, An 32 
economically viable ionic liquid for the fractionation of lignocellulosic biomass, Green Chemistry 19 33 
(2017) 3078-3102. 34 
[90] F. Xu, J. Sun, N.V.S.N.M. Konda, J. Shi, T. Dutta, C.D. Scown, B.A. Simmons, S. Singh, 35 
Transforming biomass conversion with ionic liquids: process intensification and the development of 36 
a high-gravity, one-pot process for the production of cellulosic ethanol, Energy & Environmental 37 
Science 9 (2016) 1042-1049. 38 
[91] K. Zhang, Z. Pei, D. Wang, Organic solvent pretreatment of lignocellulosic biomass for biofuels 39 
and biochemicals: a review, Bioresource Technology 199 (2016) 21-33. 40 
[92] A.A. Elgharbawy, M.Z. Alam, M. Moniruzzaman, M. Goto, Ionic liquid pretreatment as emerging 41 
approaches for enhanced enzymatic hydrolysis of lignocellulosic biomass, Biochemical Engineering 42 
Journal 109 (2016) 252-267. 43 
[93] H. Jung, G. Baek, J. Kim, S.G. Shin, C. Lee, Mild-temperature thermochemical pretreatment of 44 
green macroalgal biomass: effects on solubilization, methanation, and microbial community 45 
structure, Bioresource Technology 199 (2016) 326-335. 46 
[94] F. Qian, X. Zhu, Y. Liu, Q. Shi, L. Wu, S. Zhang, J. Chen, Z.J. Ren, Influences of temperature and 47 
metal on subcritical hydrothermal liquefaction of hyperaccumulator: Implications for the recycling of 48 
hazardous hyperaccumulators, Environmental Science & Technology 52 (2018) 2225-2234. 49 
[95] M. Said, L. Cassayre, J.L. Dirion, X. Joulia, A. Nzihou, Effect of nickel impregnation on wood 50 
gasification mechanism, Waste and Biomass Valorization 8 (2017) 2843-2852. 51 



68 
 

[96] W.J. Liu, K. Tian, H. Jiang, X.S. Zhang, H.S. Ding, H.Q. Yu, Selectively improving the bio-oil quality 1 
by catalytic fast pyrolysis of heavy-metal-polluted biomass: take copper (Cu) as an example, 2 
Environmental Science & Technology 46 (2012) 7849-7856. 3 
[97] M. Šyc, M. Pohořelý, M. Jeremiáš, M. Vosecký, P. Kameníková, S. Skoblia, K. Svoboda, M. 4 
Punčochář, Behavior of heavy metals in steam fluidized bed gasification of contaminated biomass, 5 
Energy & Fuels 25 (2011) 2284-2291. 6 
[98] S.E. Kinata, K. Loubar, M. Paraschiv, A. Bouslamti, C. Belloncle, M. Tazerout, Slow pyrolysis of 7 
CCB-treated wood for energy recovery: Influence of chromium, copper and boron on pyrolysis 8 
process and optimization, Journal of Analytical and Applied Pyrolysis 104 (2013) 210-217. 9 
[99] V.T.D.C. Neves, E.A. Sales, L.W. Perelo, Influence of lipid extraction methods as pre-treatment of 10 
microalgal biomass for biogas production, Renewable and Sustainable Energy Reviews 59 (2016) 11 
160-165. 12 
[100] S.K. Prajapati, A. Malik, V.K. Vijay, Comparative evaluation of biomass production and 13 
bioenergy generation potential of Chlorella spp. through anaerobic digestion, Applied Energy 114 14 
(2014) 790-797. 15 
[101] T. Wigley, A.C.K. Yip, S. Pang, A detailed product analysis of bio-oil from fast pyrolysis of 16 
demineralised and torrefied biomass, Journal of Analytical and Applied Pyrolysis 123 (2017) 194-203. 17 
[102] J. Shao, X. Yuan, L. Leng, H. Huang, L. Jiang, H. Wang, X. Chen, G. Zeng, The comparison of the 18 
migration and transformation behavior of heavy metals during pyrolysis and liquefaction of 19 
municipal sewage sludge, paper mill sludge, and slaughterhouse sludge, Bioresource Technology 198 20 
(2015) 16-22. 21 
[103] S. Sharma, S. Tiwari, A. Hasan, V. Saxena, L.M. Pandey, Recent advances in conventional and 22 
contemporary methods for remediation of heavy metal-contaminated soils, 3 Biotech 8 (2018) 216. 23 
[104] M. Rumayor, J.R. Gallego, E. Rodriguez-Valdes, M. Díaz-Somoano, An assessment of the 24 
environmental fate of mercury species in highly polluted brownfields by means of thermal 25 
desorption, Journal of Hazardous Materials 325 (2017) 1-7. 26 
[105] Q. Wu, Z. Wei, X. Long, C. Jiang, Advances in remediation of acid agricultural soils 27 
contaminated by heavy metals in south China,  Twenty Years of Research and Development on Soil 28 
Pollution and Remediation in China, Springer2018, pp. 389-397. 29 
[106] X. Qiu, Z. Fang, X. Yan, F. Gu, F. Jiang, Emergency remediation of simulated chromium (VI)-30 
polluted river by nanoscale zero-valent iron: laboratory study and numerical simulation, Chemical 31 
Engineering Journal 193 (2012) 358-365. 32 
[107] F. Wang, J. Yu, W. Xiong, Y. Xu, R. Chi, A two-step leaching method designed based on chemical 33 
fraction distribution of the heavy metals for selective leaching of Cd, Zn, Cu, and Pb from 34 
metallurgical sludge, Environmental Science and Pollution Research 25 (2018) 1752-1765. 35 
[108] Y. Ma, X. Li, H. Mao, B. Wang, P. Wang, Remediation of hydrocarbon–heavy metal co-36 
contaminated soil by electrokinetics combined with biostimulation, Chemical Engineering Journal 37 
353 (2018) 410-418. 38 
[109] R. Fu, D. Wen, X. Xia, W. Zhang, Y. Gu, Electrokinetic remediation of chromium (Cr)-39 
contaminated soil with citric acid (CA) and polyaspartic acid (PASP) as electrolytes, Chemical 40 
Engineering Journal 316 (2017) 601-608. 41 
[110] A. Burges, I. Alkorta, L. Epelde, C. Garbisu, From phytoremediation of soil contaminants to 42 
phytomanagement of ecosystem services in metal contaminated sites, International Journal of 43 
Phytoremediation 20 (2018) 384-397. 44 
[111] A. Kocoń, B. Jurga, The evaluation of growth and phytoextraction potential of Miscanthus x 45 
giganteus and Sida hermaphrodita on soil contaminated simultaneously with Cd, Cu, Ni, Pb, and Zn, 46 
Environmental Science and Pollution Research 24 (2017) 4990-5000. 47 
[112] A. Ullah, S. Heng, M.F.H. Munis, S. Fahad, X. Yang, Phytoremediation of heavy metals assisted 48 
by plant growth promoting (PGP) bacteria: a review, Environmental and Experimental Botany 117 49 
(2015) 28-40. 50 



69 
 

[113] O. Richter, H.A. Nguyen, K.L. Nguyen, V.P. Nguyen, H. Biester, P. Schmidt, Phytoremediation by 1 
mangrove trees: experimental studies and model development, Chemical Engineering Journal 294 2 
(2016) 389-399. 3 
[114] A. Jacobs, L. De Brabandere, T. Drouet, T. Sterckeman, N. Noret, Phytoextraction of Cd and Zn 4 
with Noccaea caerulescens for urban soil remediation: influence of nitrogen fertilization and planting 5 
density, Ecological Engineering 116 (2018) 178-187. 6 
[115] W. Peng, X. Li, S. Xiao, W. Fan, Review of remediation technologies for sediments 7 
contaminated by heavy metals, Journal of Soils and Sediments 18 (2018) 1701-1719. 8 
[116] V. Sinha, N.A. Manikandan, K. Pakshirajan, R. Chaturvedi, Continuous removal of Cr (VI) from 9 
wastewater by phytoextraction using Tradescantia pallida plant based vertical subsurface flow 10 
constructed wetland system, International Biodeterioration & Biodegradation 119 (2017) 96-103. 11 
[117] R. Chandra, S. Yadav, S. Yadav, Phytoextraction potential of heavy metals by native wetland 12 
plants growing on chlorolignin containing sludge of pulp and paper industry, Ecological Engineering 13 
98 (2017) 134-145. 14 
[118] S. Muthusaravanan, N. Sivarajasekar, J.S. Vivek, T. Paramasivan, M. Naushad, J. Prakashmaran, 15 
V. Gayathri, O.K. Al-Duaij, Phytoremediation of heavy metals: mechanisms, methods and 16 
enhancements, Environmental Chemistry Letters (2018) 1-21. 17 
[119] N. Sarwar, M. Imran, M.R. Shaheen, W. Ishaque, M.A. Kamran, A. Matloob, A. Rehim, S. 18 
Hussain, Phytoremediation strategies for soils contaminated with heavy metals: Modifications and 19 
future perspectives, Chemosphere 171 (2017) 710-721. 20 
[120] J. Luo, L. Cai, S. Qi, J. Wu, X.W.S. Gu, Improvement effects of cytokinin on EDTA assisted 21 
phytoremediation and the associated environmental risks, Chemosphere 185 (2017) 386-393. 22 
[121] Y.B. Sun, Q.X. Zhou, J. An, W.T. Liu, R. Liu, Chelator-enhanced phytoextraction of heavy metals 23 
from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum 24 
alfredii Hance), Geoderma 150 (2009) 106-112. 25 
[122] G. Su, F. Li, J. Lin, C. Liu, G. Shi, Peanut as a potential crop for bioenergy production via Cd-26 
phytoextraction: a life-cycle pot experiment, Plant and Soil 365 (2013) 337-345. 27 
[123] Z. Han, Z.H. Guo, Y. Zhang, X.Y. Xiao, C. Peng, Potential of pyrolysis for the recovery of heavy 28 
metals and bioenergy from contaminated broussonetia papyrifera biomass, BioResources 13 (2018) 29 
2932-2944. 30 
[124] T. Sterckeman, M. Puschenreiter, Phytoextraction of cadmium: feasibility in field applications 31 
and potential use of harvested biomass,  Agromining: Farming for Metals, Springer2018, pp. 205-219. 32 
[125] Z.A.S. Harumain, H.L. Parker, A. Muñoz García, M.J. Austin, C.R. McElroy, A.J. Hunt, J.H. Clark, 33 
J.A. Meech, C.W.N. Anderson, L. Ciacci, Toward financially viable phytoextraction and production of 34 
plant-based palladium catalysts, Environmental Science & Technology 51 (2017) 2992-3000. 35 
[126] J. Wang, Y. Xing, P. Li, J. Xia, T. Liu, X. Feng, Chemically-assisted phytoextraction from metal 36 
(loid) s-polluted soil at a typical carlin-type gold mining area in southwest China, Journal of Cleaner 37 
Production 189 (2018) 612-619. 38 
[127] G. Brunetti, C. Ruta, A. Traversa, G. D'Ambruoso, W. Tarraf, F. De Mastro, G. De Mastro, C. 39 
Cocozza, Remediation of a heavy metals contaminated soil using mycorrhized and non‐40 
mycorrhized Helichrysum italicum (Roth) Don, Land Degradation & Development 29 (2018) 91-104. 41 
[128] M. Delplanque, S. Collet, F. Del Gratta, B. Schnuriger, R. Gaucher, B. Robinson, V. Bert, 42 
Combustion of Salix used for phytoextraction: The fate of metals and viability of the processes, 43 
Biomass and Bioenergy 49 (2013) 160-170. 44 
[129] B. Kos, H. Greman, D. Lestan, Phytoextraction of lead, zinc and cadmium from soil by selected 45 
plants, Plant Soil and Environment 49 (2003) 548-553. 46 
[130] H. Borkowska, R. Molas, D. Skiba, Productivity of the Sida hermaphrodita in the long term use, 47 
Acta Agrophysica 22 (2015) 5-15. 48 
[131] C.J. Zilverberg, W.C. Johnson, V. Owens, A. Boe, T. Schumacher, K. Reitsma, C.O. Hong, C. 49 
Novotny, M. Volke, B. Werner, Biomass yield from planted mixtures and monocultures of native 50 



70 
 

prairie vegetation across a heterogeneous farm landscape, Agriculture, Ecosystems & Environment 1 
186 (2014) 148-159. 2 
[132] A. Kowalczyk-Jusko, B. Koscik, Biomass production from Miscanthus x giganteus and Spartina 3 
pectinata in various soil conditions and possibilities of the conversion into energy, Bulletin IHAR 234 4 
(2004) 21-32. 5 
[133] M. Pogrzeba, J. Krzyżak, A. Sas-Nowosielska, Environmental hazards related to Miscanthus x 6 
giganteus cultivation on heavy metal contaminated soil,  E3S Web of Conferences, EDP Sciences, 7 
2013, pp. 29006. 8 
[134] G. Siebielec, R.L. Chaney, U. Kukier, Liming to remediate Ni contaminated soils with diverse 9 
properties and a wide range of Ni concentration, Plant and Soil 299 (2007) 117-130. 10 
[135] Y. Chen, X. Li, Z. Shen, Chelant-enhanced phytoextraction of heavy metal-contaminated soils 11 
and its environmental risk assessment,  Twenty Years of Research and Development on Soil Pollution 12 
and Remediation in China, Springer2018, pp. 509-533. 13 
[136] T. Yeh, C. Lin, Overview of integrated phytoremediation for heavy metals contaminated soil, 14 
Sustainable Forestry (2018). 15 
[137] T. Zhou, L. Wu, P. Christie, Y. Luo, D.A. Fornara, The efficiency of Cd phytoextraction by S. 16 
plumbizincicola increased with the addition of rice straw to polluted soils: the role of particulate 17 
organic matter, Plant and Soil (2018) 1-13. 18 
[138] A. Noble, F.B.G. Tanee, J. Osuji, The effect of ripe plantain peels waste on the phytoextraction 19 
of Pb and Cd by Echinochloa colona (L.) link 20 

International Journal of Natural Resource Ecology and Management 3 (2018) 19. 21 
[139] P. Xiong, C. He, O.H. Kokyo, X. Chen, X. Liang, X. Liu, X. Cheng, C. Wu, Z. Shi, Medicago sativa L. 22 
enhances the phytoextraction of cadmium and zinc by Ricinus communis L. on contaminated land in 23 
situ, Ecological Engineering 116 (2018) 61-66. 24 
[140] E. Fasani, A. Manara, F. Martini, A. Furini, G. DalCorso, The potential of genetic engineering of 25 
plants for the remediation of soils contaminated with heavy metals, Plant, Cell & Environment 41 26 
(2018) 1201-1232. 27 
[141] V. Tripathi, S.A. Edrisi, P.C. Abhilash, Towards the coupling of phytoremediation with bioenergy 28 
production, Renewable and Sustainable Energy Reviews 57 (2016) 1386-1389. 29 
[142] V. Tripathi, L.F. Fraceto, P.C. Abhilash, Sustainable clean-up technologies for soils 30 
contaminated with multiple pollutants: plant-microbe-pollutant and climate nexus, Ecological 31 
Engineering 82 (2015) 330-335. 32 
[143] M. Ghosh, S. Singh, A review on phytoremediation of heavy metals and utilization of it’s by 33 
products, Asian Journal on Energy & Environment 6 (2005) 18. 34 
[144] N. Witters, R.O. Mendelsohn, S. Van Slycken, N. Weyens, E. Schreurs, E. Meers, F. Tack, R. 35 
Carleer, J. Vangronsveld, Phytoremediation, a sustainable remediation technology? Conclusions 36 
from a case study. I: Energy production and carbon dioxide abatement, Biomass and Bioenergy 39 37 
(2012) 454-469. 38 
[145] L. Koppolu, F.A. Agblevor, L.D. Clements, Pyrolysis as a technique for separating heavy metals 39 
from hyperaccumulators. Part II: Lab-scale pyrolysis of synthetic hyperaccumulator biomass, Biomass 40 
and Bioenergy 25 (2003) 651-663. 41 
[146] D. Zhong, Z. Zhong, L. Wu, K. Ding, Y. Luo, P. Christie, Pyrolysis of Sedum plumbizincicola, a zinc 42 
and cadmium hyperaccumulator: pyrolysis kinetics, heavy metal behaviour and bio-oil production, 43 
Clean Technologies and Environmental Policy 18 (2016) 2315-2323. 44 
[147] S.S. Dhiman, C. Selvaraj, J. Li, R. Singh, X. Zhao, D. Kim, J.Y. Kim, Y.C. Kang, J.K. Lee, 45 
Phytoremediation of metal-contaminated soils by the hyperaccumulator canola (Brassica napus L.) 46 
and the use of its biomass for ethanol production, Fuel 183 (2016) 107-114. 47 
[148] P. Guay, D. Graham, R. Abhari, P.Z. Havlik, E.G. Roth, L.H. Tomlinson, Method of removing a 48 
contaminant from a contaminant-containing biological composition useful as a biofuel feedstock, US 49 
Patent 9,404,064, 2016. 50 



71 
 

[149] P. Suer, Y. Andersson-Sköld, Biofuel or excavation?-Life cycle assessment (LCA) of soil 1 
remediation options, Biomass and Bioenergy 35 (2011) 969-981. 2 
[150] J. Singh, A.S. Kalamdhad, Effects of lime on bioavailability and leachability of heavy metals 3 
during agitated pile composting of water hyacinth, Bioresource Technology 138 (2013) 148-155. 4 
[151] O.P. Shukla, U.N. Rai, S. Dubey, Involvement and interaction of microbial communities in the 5 
transformation and stabilization of chromium during the composting of tannery effluent treated 6 
biomass of Vallisneria spiralis L, Bioresource Technology 100 (2009) 2198-2203. 7 
[152] H. Kovacs, K. Szemmelveisz, A.B. Palotas, Solubility analysis and disposal options of combustion 8 
residues from plants grown on contaminated mining area, Environmental Science and Pollution 9 
Research 20 (2013) 7917-7925. 10 
[153] A. Sas-Nowosielska, R. Kucharski, E. Małkowski, M. Pogrzeba, J.M. Kuperberg, K. Kryński, 11 
Phytoextraction crop disposal—an unsolved problem, Environmental Pollution 128 (2004) 373-379. 12 
[154] D.B. Lobell, M.B. Burke, C. Tebaldi, M.D. Mastrandrea, W.P. Falcon, R.L. Naylor, Prioritizing 13 
climate change adaptation needs for food security in 2030, Science 319 (2008) 607-610. 14 
[155] Y. Jiang, M. Lei, L. Duan, P. Longhurst, Integrating phytoremediation with biomass valorisation 15 
and critical element recovery: A UK contaminated land perspective, Biomass and Bioenergy 83 (2015) 16 
328-339. 17 
[156] G. Singh, P. Singh, A. Guldhe, T.A. Stenström, F. Bux, S. Kumari, Biotechnological intervention 18 
to enhance the potential ability of bioenergy plants for phytoremediation,  Phytoremediation 19 
Potential of Bioenergy Plants, Springer2017, pp. 387-408. 20 
[157] P. Chakravarty, K. Bauddh, M. Kumar, Phytoremediation: a multidimensional and ecologically 21 
viable practice for the cleanup of environmental contaminants,  Phytoremediation Potential of 22 
Bioenergy Plants, Springer2017, pp. 1-46. 23 
[158] K. Bauddh, B. Singh, J. Korstad, Phytoremediation potential of bioenergy plants, Springer2017. 24 
[159] A.B. Jha, A.N. Misra, P. Sharma, Phytoremediation of heavy metal-contaminated soil using 25 
bioenergy crops,  Phytoremediation Potential of Bioenergy Plants, Springer2017, pp. 63-96. 26 
[160] Z. Han, Z.H. Guo, Y. Zhang, X.Y. Xiao, Z. Xu, Y. Sun, Pyrolysis characteristics of biomass 27 
impregnated with cadmium, copper and lead: influence and distribution, Waste and Biomass 28 
Valorization (2017) 1-8. 29 
[161] M.A. Martín-Lara, G. Blázquez, A. Ronda, M. Calero, Kinetic study of the pyrolysis of pine cone 30 
shell through non-isothermal thermogravimetry: Effect of heavy metals incorporated by biosorption, 31 
Renewable Energy 96 (2016) 613-624. 32 
[162] L. Gonsalvesh, J. Yperman, R. Carleer, M. Mench, R. Herzig, J. Vangronsveld, Valorisation of 33 
heavy metals enriched tobacco biomass through slow pyrolysis and steam activation, Journal of 34 
Chemical Technology and Biotechnology 91 (2016) 1585-1595. 35 
[163] D. Pudasainee, H.R. Paur, S. Fleck, H. Seifert, Trace metals emission in syngas from biomass 36 
gasification, Fuel Processing Technology 120 (2014) 54-60. 37 
[164] H. Cui, S.Q. Turn, V. Keffer, D. Evans, T. Tran, M. Foley, Study on the fate of metal elements 38 
from biomass in a bench-scale fluidized bed gasifier, Fuel 108 (2013) 1-12. 39 
[165] Z.H. Guo, Y.N. Liu, F.Y. Wang, X.Y. Xiao, Liquefaction of metal-contaminated giant reed biomass 40 
in acidified ethylene glycol system: Batch experiments, Journal of Central South University 21 (2014) 41 
1756-1762. 42 
[166] H.J. Huang, X.Z. Yuan, H.N. Zhu, H. Li, Y. Liu, X.L. Wang, G.M. Zeng, Comparative studies of 43 
thermochemical liquefaction characteristics of microalgae, lignocellulosic biomass and sewage 44 
sludge, Energy 56 (2013) 52-60. 45 
[167] Z. Xiao, X. Yuan, L. Jiang, X. Chen, H. Li, G. Zeng, L. Leng, H. Wang, H. Huang, Energy recovery 46 
and secondary pollutant emission from the combustion of co-pelletized fuel from municipal sewage 47 
sludge and wood sawdust, Energy 91 (2015) 441-450. 48 
[168] H. Kovacs, K. Szemmelveisz, T. Koós, Theoretical and experimental metals flow calculations 49 
during biomass combustion, Fuel 185 (2016) 524-531. 50 



72 
 

[169] M. Chalot, D. Blaudez, Y. Rogaume, A.S. Provent, C. Pascual, Fate of trace elements during the 1 
combustion of phytoremediation wood, Environmental Science & Technology 46 (2012) 13361-2 
13369. 3 
[170] Z. Cao, S. Wang, T. Wang, Z. Chang, Z. Shen, Y. Chen, Using contaminated plants involved in 4 
phytoremediation for anaerobic digestion, International Journal of Phytoremediation 17 (2015) 201-5 
207. 6 
[171] J. Xie, Q. Weng, G. Ye, S. Luo, R. Zhu, A. Zhang, X. Chen, C. Lin, Bioethanol production from 7 
sugarcane grown in heavy metal-contaminated soils, BioResources 9 (2014) 2509-2520. 8 
[172] S. Zhang, Q. Dong, T. Chen, Y. Xiong, Combination of light bio-oil washing and torrefaction 9 
pretreatment of rice husk: its effects on physicochemical characteristics and fast pyrolysis behavior, 10 
Energy & Fuels 30 (2016) 3030-3037. 11 
[173] H. Wiinikka, P. Carlsson, A.C. Johansson, M. Gullberg, C. Ylipää, M. Lundgren, L. Sandström, 12 
Fast pyrolysis of stem wood in a pilot-scale cyclone reactor, Energy & Fuels 29 (2015) 3158-3167. 13 
[174] V. Bert, J. Allemon, P. Sajet, S. Dieu, A. Papin, S. Collet, R. Gaucher, M. Chalot, B. Michiels, C. 14 
Raventos, Torrefaction and pyrolysis of metal-enriched poplars from phytotechnologies: Effect of 15 
temperature and biomass chlorine content on metal distribution in end-products and valorization 16 
options, Biomass and Bioenergy 96 (2017) 1-11. 17 
[175] S.R.G. Oudenhoven, A.G.J. van der Ham, H. van den Berg, R.J.M. Westerhof, S.R.A. Kersten, 18 
Using pyrolytic acid leaching as a pretreatment step in a biomass fast pyrolysis plant: Process design 19 
and economic evaluation, Biomass and Bioenergy 95 (2016) 388-404. 20 
[176] J. Xuan, S. Junshe, L. Li, K. Liping, Promotive effect of acid pretreatment of corn stalk using 21 
metal cations, Transactions of the Chinese Society of Agricultural Engineering 2009 (2009). 22 
[177] S. Zhang, Y. Xiong, Washing pretreatment with light bio-oil and its effect on pyrolysis products 23 
of bio-oil and biochar, RSC Advances 6 (2016) 5270-5277. 24 
[178] C.A. Mullen, A.A. Boateng, Accumulation of inorganic impurities on HZSM-5 zeolites during 25 
catalytic fast pyrolysis of switchgrass, Industrial & Engineering Chemistry Research 52 (2013) 17156-26 
17161. 27 
[179] B. Jagustyn, M. Kmieć, Ł. Smędowski, M. Sajdak, The content and emission factors of heavy 28 
metals in biomass used for energy purposes in the context of the requirements of international 29 
standards, Journal of the Energy Institute 99 (2017) 704-714. 30 
[180] F.J. Frandsen, S.C. van Lith, R. Korbee, P. Yrjas, R. Backman, I. Obernberger, T. Brunner, M. 31 
Jöller, Quantification of the release of inorganic elements from biofuels, Fuel Processing Technology 32 
88 (2007) 1118-1128. 33 
[181] A. Raheem, W.W. Azlina, Y.H.T. Yap, M.K. Danquah, R. Harun, Thermochemical conversion of 34 
microalgal biomass for biofuel production, Renewable and Sustainable Energy Reviews 49 (2015) 35 
990-999. 36 
[182] T. Kuppens, M. Van Dael, K. Vanreppelen, T. Thewys, J. Yperman, R. Carleer, S. Schreurs, S. Van 37 
Passel, Techno-economic assessment of fast pyrolysis for the valorization of short rotation coppice 38 
cultivated for phytoextraction, Journal of Cleaner Production 88 (2015) 336-344. 39 
[183] C. Lievens, R. Carleer, T. Cornelissen, J. Yperman, Fast pyrolysis of heavy metal contaminated 40 
willow: influence of the plant part, Fuel 88 (2009) 1417-1425. 41 
[184] G.W. Huber, S. Iborra, A. Corma, Synthesis of transportation fuels from biomass: chemistry, 42 
catalysts, and engineering, Chemical Reviews 106 (2006) 4044-4098. 43 
[185] T.P. Vispute, H. Zhang, A. Sanna, R. Xiao, G.W. Huber, Renewable chemical commodity 44 
feedstocks from integrated catalytic processing of pyrolysis oils, Science 330 (2010) 1222-1227. 45 
[186] X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application of biochar for the removal of 46 
pollutants from aqueous solutions, Chemosphere 125 (2015) 70-85. 47 
[187] M.W.H. Evangelou, A. Brem, F. Ugolini, S. Abiven, R. Schulin, Soil application of biochar 48 
produced from biomass grown on trace element contaminated land, Journal of Environmental 49 
Management 146 (2014) 100-106. 50 



73 
 

[188] Z. Al Chami, N. Amer, K. Smets, J. Yperman, R. Carleer, S. Dumontet, J. Vangronsveld, 1 
Evaluation of flash and slow pyrolysis applied on heavy metal contaminated Sorghum bicolor shoots 2 
resulting from phytoremediation, Biomass and Bioenergy 63 (2014) 268-279. 3 
[189] A. Hornung, A. Apfelbacher, S. Sagi, Intermediate pyrolysis: a sustainable biomass-to-energy 4 
concept-biothermal valorisation of biomass (BtVB) process, Journal of Scientific and Industrial 5 
Research 70 (2011). 6 
[190] T. Cornelissen, M. Jans, M. Stals, T. Kuppens, T. Thewys, G.K. Janssens, H. Pastijn, J. Yperman, G. 7 
Reggers, S. Schreurs, Flash co-pyrolysis of biomass: The influence of biopolymers, Journal of 8 
Analytical and Applied Pyrolysis 85 (2009) 87-97. 9 
[191] J. Yoder, S. Galinato, D. Granatstein, M. Garcia-Pérez, Economic tradeoff between biochar and 10 
bio-oil production via pyrolysis, Biomass and Bioenergy 35 (2011) 1851-1862. 11 
[192] A.V. Bridgwater, Review of fast pyrolysis of biomass and product upgrading, Biomass and 12 
Bioenergy 38 (2012) 68-94. 13 
[193] D.X. Zhong, Z.P. Zhong, L.H. Wu, H. Xue, Z.W. Song, Y.M. Luo, Thermal characteristics and fate 14 
of heavy metals during thermal treatment of Sedum plumbizincicola, a zinc and cadmium 15 
hyperaccumulator, Fuel Processing Technology 131 (2015) 125-132. 16 
[194] A. Oasmaa, C. Peacocke, Properties and fuel use of biomass-derived fast pyrolysis liquids, VTT 17 
Publications: Finland 731 (2010) 79. 18 
[195] T. Cornelissen, J. Yperman, G. Reggers, S. Schreurs, R. Carleer, Flash co-pyrolysis of biomass 19 
with polylactic acid. Part 1: Influence on bio-oil yield and heating value, Fuel 87 (2008) 1031-1041. 20 
[196] C. Lievens, J. Yperman, J. Vangronsveld, R. Carleer, Study of the potential valorisation of heavy 21 
metal contaminated biomass via phytoremediation by fast pyrolysis: Part I. Influence of temperature, 22 
biomass species and solid heat carrier on the behaviour of heavy metals, Fuel 87 (2008) 1894-1905. 23 
[197] H.J. Park, J.I. Dong, J.K. Jeon, Y.K. Park, K.S. Yoo, S.S. Kim, J. Kim, S. Kim, Effects of the operating 24 
parameters on the production of bio-oil in the fast pyrolysis of Japanese larch, Chemical Engineering 25 
Journal 143 (2008) 124-132. 26 
[198] K. Raveendran, A. Ganesh, K.C. Khilar, Influence of mineral matter on biomass pyrolysis 27 
characteristics, Fuel 74 (1995) 1812-1822. 28 
[199] F.A. Agblevor, S. Besler, Inorganic compounds in biomass feedstocks. 1. Effect on the quality of 29 
fast pyrolysis oils, Energy & Fuels 10 (1996) 293-298. 30 
[200] T. Wigley, A.C.K. Yip, S. Pang, Pretreating biomass via demineralisation and torrefaction to 31 
improve the quality of crude pyrolysis oil, Energy 109 (2016) 481-494. 32 
[201] L. Shi, L. Wang, T. Zhang, J. Li, X. Huang, J. Cai, J. Lü, Y. Wang, Reducing the bioavailability and 33 
leaching potential of lead in contaminated water hyacinth biomass by phosphate-assisted pyrolysis, 34 
Bioresource Technology 241 (2017) 908-914. 35 
[202] C. Di Blasi, C. Branca, A. Galgano, Effects of diammonium phosphate on the yields and 36 
composition of products from wood pyrolysis, Industrial & Engineering Chemistry Research 46 (2007) 37 
430-438. 38 
[203] H.J. Lin, C.X. Rong, B.B. Jiu, B.X. Li, Q.J. Yu, L.H. Gan, Z.Y. Zhang, Effects of chromium on 39 
pyrolysis characteristic of water hyacinth (Eichornia crassipes), Renewable Energy 115 (2018) 676-40 
684. 41 
[204] S. Wang, B. Gao, Y. Li, Y.S. Ok, C. Shen, S. Xue, Biochar provides a safe and value-added 42 
solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa 43 
Roxb.(Phytolaccaceae), Chemosphere 178 (2017) 59-64. 44 
[205] S. Li, T. Zhang, J. Li, L. Shi, X. Zhu, J. Lü, Y. Li, Stabilization of Pb (II) accumulated in biomass 45 
through phosphate-pretreated pyrolysis at low temperatures, Journal of Hazardous Materials 324 46 
(2017) 464-471. 47 
[206] Y.N. Liu, Z.H. Guo, S. Yang, S. Wei, Z.Y. Han, X.Y. Xiao, Z. Peng, Stabilization of heavy metals in 48 
biochar pyrolyzed from phytoremediated giant reed (Arundo donax) biomass, Transactions of 49 
Nonferrous Metals Society of China 27 (2017) 656-665. 50 



74 
 

[207] J.R. Bunt, F.B. Waanders, Trace element behaviour in the Sasol–Lurgi MK IV FBDB gasifier. Part 1 
1–the volatile elements: Hg, As, Se, Cd and Pb, Fuel 87 (2008) 2374-2387. 2 
[208] J.R. Bunt, F.B. Waanders, Trace element behaviour in the Sasol–Lurgi MK IV FBDB gasifier. Part 3 
2–The semi-volatile elements: Cu, Mo, Ni and Zn, Fuel 88 (2009) 961-969. 4 
[209] J.R. Bunt, F.B. Waanders, Trace element behaviour in the Sasol-Lurgi fixed-bed dry-bottom 5 
gasifier. Part 3–The non-volatile elements: Ba, Co, Cr, Mn, and V, Fuel 89 (2010) 537-548. 6 
[210] E. Taarning, C.M. Osmundsen, X. Yang, B. Voss, S.I. Andersen, C.H. Christensen, Zeolite-7 
catalyzed biomass conversion to fuels and chemicals, Energy & Environmental Science 4 (2011) 793-8 
804. 9 
[211] S. Şensöz, İ. Kaynar, Bio-oil production from soybean (Glycine max L.); fuel properties of bio-oil, 10 
Industrial Crops and Products 23 (2006) 99-105. 11 
[212] G. Yildiz, T. Lathouwers, H.E. Toraman, K.M. van Geem, G.B. Marin, F. Ronsse, R. van Duren, 12 
S.R.A. Kersten, W. Prins, Catalytic fast pyrolysis of pine wood: effect of successive catalyst 13 
regeneration, Energy & Fuels 28 (2014) 4560-4572. 14 
[213] X.D. Song, X.Y. Xue, D.Z. Chen, P.J. He, X.H. Dai, Application of biochar from sewage sludge to 15 
plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy 16 
metal accumulation, Chemosphere 109 (2014) 213-220. 17 
[214] Y. Sun, B. Gao, Y. Yao, J. Fang, M. Zhang, Y. Zhou, H. Chen, L. Yang, Effects of feedstock type, 18 
production method, and pyrolysis temperature on biochar and hydrochar properties, Chemical 19 
Engineering Journal 240 (2014) 574-578. 20 
[215] A. Demirbaş, Mechanisms of liquefaction and pyrolysis reactions of biomass, Energy 21 
Conversion and Management 41 (2000) 633-646. 22 
[216] D.A. Bulushev, J.R.H. Ross, Catalysis for conversion of biomass to fuels via pyrolysis and 23 
gasification: a review, Catalysis Today 171 (2011) 1-13. 24 
[217] D. Mohan, C.U. Pittman, P.H. Steele, Pyrolysis of wood/biomass for bio-oil: a critical review, 25 
Energy & Fuels 20 (2006) 848-889. 26 
[218] M. Garcia-Perez, A. Chaala, H. Pakdel, D. Kretschmer, C. Roy, Characterization of bio-oils in 27 
chemical families, Biomass and Bioenergy 31 (2007) 222-242. 28 
[219] M.M. Wright, D.E. Daugaard, J.A. Satrio, R.C. Brown, Techno-economic analysis of biomass fast 29 
pyrolysis to transportation fuels, Fuel 89 (2010) S2-S10. 30 
[220] J. Lehto, A. Oasmaa, Y. Solantausta, M. Kytö, D. Chiaramonti, Review of fuel oil quality and 31 
combustion of fast pyrolysis bio-oils from lignocellulosic biomass, Applied Energy 116 (2014) 178-32 
190. 33 
[221] C.H. Ko, S.H. Park, J.K. Jeon, D.J. Suh, K.E. Jeong, Y.K. Park, Upgrading of biofuel by the catalytic 34 
deoxygenation of biomass, Korean Journal of Chemical Engineering 29 (2012) 1657-1665. 35 
[222] A. Aho, A. Tokarev, P. Backman, N. Kumar, K. Eränen, M. Hupa, B. Holmbom, T. Salmi, D.Y. 36 
Murzin, Catalytic pyrolysis of pine biomass over H-Beta zeolite in a dual-fluidized bed reactor: effect 37 
of space velocity on the yield and composition of pyrolysis products, Topics in Catalysis 54 (2011) 38 
941. 39 
[223] K. Jacobson, K.C. Maheria, A.K. Dalai, Bio-oil valorization: a review, Renewable and Sustainable 40 
Energy Reviews 23 (2013) 91-106. 41 
[224] B. Valle, A.G. Gayubo, A.T. Aguayo, M. Olazar, J. Bilbao, Selective production of aromatics by 42 
crude bio-oil valorization with a nickel-modified HZSM-5 zeolite catalyst, Energy & Fuels 24 (2010) 43 
2060-2070. 44 
[225] A.A. Lappas, K.G. Kalogiannis, E.F. Iliopoulou, K.S. Triantafyllidis, S.D. Stefanidis, Catalytic 45 
pyrolysis of biomass for transportation fuels, Wiley Interdisciplinary Reviews: Energy and 46 
Environment 1 (2012) 285-297. 47 
[226] S.D. Stefanidis, K.G. Kalogiannis, E.F. Iliopoulou, C.M. Michailof, P.A. Pilavachi, A.A. Lappas, A 48 
study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin, 49 
Journal of Analytical and Applied Pyrolysis 105 (2014) 143-150. 50 



75 
 

[227] G. Yildiz, M. Pronk, M. Djokic, K.M. van Geem, F. Ronsse, R. van Duren, W. Prins, Validation of a 1 
new set-up for continuous catalytic fast pyrolysis of biomass coupled with vapour phase upgrading, 2 
Journal of Analytical and Applied Pyrolysis 103 (2013) 343-351. 3 
[228] A. Veses, M. Aznar, J.M. López, M.S. Callén, R. Murillo, T. García, Production of upgraded bio-4 
oils by biomass catalytic pyrolysis in an auger reactor using low cost materials, Fuel 141 (2015) 17-22. 5 
[229] A. Veses, M. Aznar, I. Martínez, J.D. Martínez, J.M. López, M.V. Navarro, M.S. Callén, R. Murillo, 6 
T. García, Catalytic pyrolysis of wood biomass in an auger reactor using calcium-based catalysts, 7 
Bioresource Technology 162 (2014) 250-258. 8 
[230] T.S. Nguyen, S. He, G. Raman, K. Seshan, Catalytic hydro-pyrolysis of lignocellulosic biomass 9 
over dual Na2CO3/Al2O3 and Pt/Al2O3 catalysts using n-butane at ambient pressure, Chemical 10 
Engineering Journal 299 (2016) 415-419. 11 
[231] H. Zhang, M. Luo, R. Xiao, S. Shao, B. Jin, G. Xiao, M. Zhao, J. Liang, Catalytic conversion of 12 
biomass pyrolysis-derived compounds with chemical liquid deposition (CLD) modified ZSM-5, 13 
Bioresource Technology 155 (2014) 57-62. 14 
[232] C. Peng, G. Zhang, J. Yue, G. Xu, Pyrolysis of lignin for phenols with alkaline additive, Fuel 15 
Processing Technology 124 (2014) 212-221. 16 
[233] Y.T. Cheng, G.W. Huber, Chemistry of furan conversion into aromatics and olefins over HZSM-5: 17 
a model biomass conversion reaction, ACS Catalysis 1 (2011) 611-628. 18 
[234] M. Zhou, J. Ye, P. Liu, J. Xu, J. Jiang, Water-assisted selective hydrodeoxygenation of guaiacol to 19 
cyclohexanol over supported Ni and Co bimetallic catalysts, ACS Sustainable Chemistry & 20 
Engineering 5 (2017) 8824-8835. 21 
[235] S. Vichaphund, D. Aht-ong, V. Sricharoenchaikul, D. Atong, Catalytic upgrading pyrolysis vapors 22 
of Jatropha waste using metal promoted ZSM-5 catalysts: An analytical PY-GC/MS, Renewable 23 
Energy 65 (2014) 70-77. 24 
[236] S.D. Stefanidis, K.G. Kalogiannis, E.F. Iliopoulou, A.A. Lappas, P.A. Pilavachi, In-situ upgrading of 25 
biomass pyrolysis vapors: catalyst screening on a fixed bed reactor, Bioresource Technology 102 26 
(2011) 8261-8267. 27 
[237] S. Vichaphund, D. Aht-Ong, V. Sricharoenchaikul, D. Atong, Effect of synthesis time on physical 28 
properties and catalytic activities of synthesized HZSM-5 on the fast pyrolysis of Jatropha waste, 29 
Research on Chemical Intermediates 40 (2014) 2395-2406. 30 
[238] Y.C. Lin, G.W. Huber, The critical role of heterogeneous catalysis in lignocellulosic biomass 31 
conversion, Energy & Environmental Science 2 (2009) 68-80. 32 
[239] E.L. Kunkes, D.A. Simonetti, R.M. West, J.C. Serrano-Ruiz, C.A. Gärtner, J.A. Dumesic, Catalytic 33 
conversion of biomass to monofunctional hydrocarbons and targeted liquid-fuel classes, Science 322 34 
(2008) 417-421. 35 
[240] J. Giuntoli, S. Arvelakis, H. Spliethoff, W. De Jong, A.H.M. Verkooijen, Quantitative and kinetic 36 
thermogravimetric fourier transform infrared (TG-FTIR) study of pyrolysis of agricultural residues: 37 
influence of different pretreatments, Energy & Fuels 23 (2009) 5695-5706. 38 
[241] Z. Cheng, W. Wu, P. Ji, X. Zhou, R. Liu, J. Cai, Applicability of Fraser–Suzuki function in kinetic 39 
analysis of DAEM processes and lignocellulosic biomass pyrolysis processes, Journal of Thermal 40 
Analysis and Calorimetry 119 (2015) 1429-1438. 41 
[242] E.F. Iliopoulou, S.D. Stefanidis, K.G. Kalogiannis, A. Delimitis, A.A. Lappas, K.S. Triantafyllidis, 42 
Catalytic upgrading of biomass pyrolysis vapors using transition metal-modified ZSM-5 zeolite, 43 
Applied Catalysis B: Environmental 127 (2012) 281-290. 44 
[243] J. Payormhorm, K. Kangvansaichol, P. Reubroycharoen, P. Kuchonthara, N. Hinchiranan, 45 
Pt/Al2O3-catalytic deoxygenation for upgrading of Leucaena leucocephala-pyrolysis oil, Bioresource 46 
Technology 139 (2013) 128-135. 47 
[244] A. Galadima, O. Muraza, In situ fast pyrolysis of biomass with zeolite catalysts for 48 
bioaromatics/gasoline production: a review, Energy Conversion and Management 105 (2015) 338-49 
354. 50 



76 
 

[245] M.G. Cutrufello, I. Ferino, R. Monaci, E. Rombi, V. Solinas, Acid-base properties of zirconium, 1 
cerium and lanthanum oxides by calorimetric and catalytic investigation, Topics in Catalysis 19 (2002) 2 
225-240. 3 
[246] V.S. Sikarwar, M. Zhao, P. Clough, J. Yao, X. Zhong, M.Z. Memon, N. Shah, E.J. Anthony, P.S. 4 
Fennell, An overview of advances in biomass gasification, Energy & Environmental Science 9 (2016) 5 
2939-2977. 6 
[247] J.A. Tafur-Marinos, M. Ginepro, L. Pastero, A. Torazzo, E. Paschetta, D. Fabbri, V. Zelano, 7 
Comparison of inorganic constituents in bottom and fly residues from pelletised wood pyro-8 
gasification, Fuel 119 (2014) 157-162. 9 
[248] P. Parthasarathy, K.S. Narayanan, Hydrogen production from steam gasification of biomass: 10 
Influence of process parameters on hydrogen yield–A review, Renewable Energy 66 (2014) 570-579. 11 
[249] S. Rapagna, N. Jand, A. Kiennemann, P.U. Foscolo, Steam-gasification of biomass in a fluidised-12 
bed of olivine particles, Biomass and Bioenergy 19 (2000) 187-197. 13 
[250] T.R. McLendon, A.P. Lui, R.L. Pineault, S.K. Beer, S.W. Richardson, High-pressure co-gasification 14 
of coal and biomass in a fluidized bed, Biomass and Bioenergy 26 (2004) 377-388. 15 
[251] P. Basu, Biomass gasification and pyrolysis: practical design and theory, Academic Press, 16 
Boston, 2010. 17 
[252] M.J.F. Llorente, R.E. Cuadrado, Influence of the amount of bed material on the distribution of 18 
biomass inorganic elements in a bubbling fluidised bed combustion pilot plant, Fuel 86 (2007) 867-19 
876. 20 
[253] C. Liao, C. Wu, Y. Yan, The characteristics of inorganic elements in ashes from a 1 MW CFB 21 
biomass gasification power generation plant, Fuel Processing Technology 88 (2007) 149-156. 22 
[254] M. Said, L. Cassayre, J.L. Dirion, X. Joulia, A. Nzihou, On the relevance of thermodynamics to 23 
predict the behaviour of inorganics during CO2 gasification of willow wood,  Computer Aided 24 
Chemical Engineering, Elsevier2017, pp. 2671-2676. 25 
[255] C. Yu, P. Thy, L. Wang, S.N. Anderson, J.S. VanderGheynst, S.K. Upadhyaya, B.M. Jenkins, 26 
Influence of leaching pretreatment on fuel properties of biomass, Fuel Processing Technology 128 27 
(2014) 43-53. 28 
[256] S. Liu, Y. Wang, L. Yu, J.E. Oakey, Volatilization of mercury, arsenic and selenium during 29 
underground coal gasification, Fuel 85 (2006) 1550-1558. 30 
[257] A.L. Elled, L.E. Åmand, B. Leckner, B.Å. Andersson, The fate of trace elements in fluidised bed 31 
combustion of sewage sludge and wood, Fuel 86 (2007) 843-852. 32 
[258] P. Vervaeke, F.M.G. Tack, F. Navez, J. Martin, M.G. Verloo, N. Lust, Fate of heavy metals during 33 
fixed bed downdraft gasification of willow wood harvested from contaminated sites, Biomass and 34 
Bioenergy 30 (2006) 58-65. 35 
[259] D.J. Poole, V. Sharifi, J. Swithenbank, P. Kilgallon, N. Simms, J. Oakey, D. Ardelt, Continuous 36 
analysis of elemental emissions from a biofuel gasifier, Journal of Analytical Atomic Spectrometry 22 37 
(2007) 532-539. 38 
[260] D. Sutton, B. Kelleher, J.R.H. Ross, Review of literature on catalysts for biomass gasification, 39 
Fuel Processing Technology 73 (2001) 155-173. 40 
[261] Z. Abu El-Rub, E.A. Bramer, G. Brem, Review of catalysts for tar elimination in biomass 41 
gasification processes, Industrial & Engineering Chemistry Research 43 (2004) 6911-6919. 42 
[262] A. Nzihou, B. Stanmore, The fate of heavy metals during combustion and gasification of 43 
contaminated biomass—a brief review, Journal of Hazardous Materials 256 (2013) 56-66. 44 
[263] G. Xue, M. Kwapinska, A. Horvat, W. Kwapinski, L.P.L.M. Rabou, S. Dooley, K.M. Czajka, J.J. 45 
Leahy, Gasification of torrefied Miscanthus× giganteus in an air-blown bubbling fluidized bed gasifier, 46 
Bioresource Technology 159 (2014) 397-403. 47 
[264] M. Dıaz-Somoano, M.R. Martınez-Tarazona, Trace element evaporation during coal gasification 48 
based on a thermodynamic equilibrium calculation approach, Fuel 82 (2003) 137-145. 49 
[265] R. Meij, H. te Winkel, The emissions of heavy metals and persistent organic pollutants from 50 
modern coal-fired power stations, Atmospheric Environment 41 (2007) 9262-9272. 51 



77 
 

[266] J. Oakey, N. Simms, P. Kilgallon, Gas turbines: gas cleaning requirements for biomass-fired 1 
systems, Materials Research 7 (2004) 17-25. 2 
[267] P. Kilgallon, N.J. Simms, J.E. Oakey, Materials for Gasifier Heat Exchangers, DTI2004. 3 
[268] G.P. Reed, D.R. Dugwell, R. Kandiyoti, Control of trace elements in gasification: distribution to 4 
the output streams of a pilot scale gasifier, Energy & Fuels 15 (2001) 794-800. 5 
[269] R. Poškas, A. Sirvydas, P. Poškas, H. Jouhara, N. Striūgas, N. Pedišius, V. Valinčius, Investigation 6 
of warm gas clean-up of biofuel flue and producer gas using electrostatic precipitator, Energy 143 7 
(2018) 943-949. 8 
[270] J. Konttinen, R. Backman, M. Hupa, A. Moilanen, E. Kurkela, Trace element behavior in the 9 
fluidized bed gasification of solid recovered fuels–A thermodynamic study, Fuel 106 (2013) 621-631. 10 
[271] T. Talonen, Chemical equilibria of heavy metals in waste incineration: comparison of 11 
thermodynamic databases, Lic. Thesis (2008). 12 
[272] D. Lindberg, R. Backman, P. Chartrand, M. Hupa, Towards a comprehensive thermodynamic 13 
database for ash-forming elements in biomass and waste combustion—Current situation and future 14 
developments, Fuel Processing Technology 105 (2013) 129-141. 15 
[273] L.J.R. Nunes, J.C.O. Matias, J.P.S. Catalão, Biomass combustion systems: A review on the 16 
physical and chemical properties of the ashes, Renewable and Sustainable Energy Reviews 53 (2016) 17 
235-242. 18 
[274] M. Šyc, M. Pohořelý, P. Kameníková, J. Habart, K. Svoboda, M. Punčochář, Willow trees from 19 
heavy metals phytoextraction as energy crops, Biomass and Bioenergy 37 (2012) 106-113. 20 
[275] P. Sommersacher, N. Kienzl, T. Brunner, I. Obernberger, Simultaneous online determination of 21 
S, Cl, K, Na, Zn, and Pb release from a single particle during biomass combustion. Part 2: results from 22 
test runs with spruce and straw pellets, Energy & Fuels 30 (2016) 3428-3440. 23 
[276] B. Zhao, Y. Su, D. Liu, H. Zhang, W. Liu, G. Cui, SO2/NOx emissions and ash formation from 24 
algae biomass combustion: Process characteristics and mechanisms, Energy 113 (2016) 821-830. 25 
[277] A. Sarabèr, Co-combustion and its impact on fly ash quality; pilot-scale experiments, Fuel 26 
processing technology 104 (2012) 105-114. 27 
[278] J.M. Toledo, J. Corella, L.M. Corella, The partitioning of heavy metals in incineration of sludges 28 
and waste in a bubbling fluidized bed: 2. Interpretation of results with a conceptual model, Journal 29 
of hazardous materials 126 (2005) 158-168. 30 
[279] T.H. Christensen, P. Kjeldsen, P.L. Bjerg, D.L. Jensen, J.B. Christensen, A. Baun, H.-J. Albrechtsen, 31 
G. Heron, Biogeochemistry of landfill leachate plumes, Applied geochemistry 16 (2001) 659-718. 32 
[280] P. Kjeldsen, M.A. Barlaz, A.P. Rooker, A. Baun, A. Ledin, T.H. Christensen, Present and long-33 
term composition of MSW landfill leachate: a review, Critical reviews in environmental science and 34 
technology 32 (2002) 297-336. 35 
[281] S. Lu, Y. Du, D. Zhong, B. Zhao, X. Li, M. Xu, Z. Li, Y. Luo, J. Yan, L. Wu, Comparison of trace 36 
element emissions from thermal treatments of heavy metal hyperaccumulators, Environmental 37 
Science & Technology 46 (2012) 5025-5031. 38 
[282] A. Chouchene, M. Jeguirim, G. Trouvé, Biosorption performance, combustion behavior, and 39 
leaching characteristics of olive solid waste during the removal of copper and nickel from aqueous 40 
solutions, Clean Technologies and Environmental Policy 16 (2014) 979-986. 41 
[283] R. PÖYKIÖ, M. MÄKELÄ, G. Watkins, H. Nurmesniemi, D. Olli, Heavy metals leaching in bottom 42 
ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment, 43 
Transactions of Nonferrous Metals Society of China 26 (2016) 256-264. 44 
[284] L. Li, C. Yu, J. Bai, Q. Wang, Z. Luo, Heavy metal characterization of circulating fluidized bed 45 
derived biomass ash, Journal of hazardous materials 233 (2012) 41-47. 46 
[285] Z. Xiao, X. Yuan, H. Li, L. Jiang, L. Leng, X. Chen, G. Zeng, F. Li, L. Cao, Chemical speciation, 47 
mobility and phyto-accessibility of heavy metals in fly ash and slag from combustion of pelletized 48 
municipal sewage sludge, Science of the Total Environment 536 (2015) 774-783. 49 



78 
 

[286] M. Wu, C. Lin, W. Huang, J. Chen, Characteristics of pervious concrete using incineration 1 
bottom ash in place of sandstone graded material, Construction and Building Materials 111 (2016) 2 
618-624. 3 
[287] H. Kovacs, K. Szemmelveisz, A.B. Palotas, Environmentally Sound Combustion of Ligneous 4 
Plants Grown in Heavy Metal-Contaminated Soil,  Heavy Metal Contamination of Soils, Springer2015, 5 
pp. 261-277. 6 
[288] F. Guo, Z. Zhong, Pollution emission and heavy metal speciation from co-combustion of sedum 7 
plumbizincicola and sludge in fluidized bed, Journal of Cleaner Production 179 (2018) 317-324. 8 
[289] F. Guo, Z. Zhong, H. Xue, D. Zhong, Migration and distribution of heavy metals during co-9 
combustion of sedum plumbizincicola and coal, Waste and Biomass Valorization (2017) 1-8. 10 
[290] H. Belevi, M. Langmeier, Factors determining the element behavior in municipal solid waste 11 
incinerators. 2. Laboratory experiments, Environmental science & technology 34 (2000) 2507-2512. 12 
[291] S.G. Sahu, P. Sarkar, N. Chakraborty, A.K. Adak, Thermogravimetric assessment of combustion 13 
characteristics of blends of a coal with different biomass chars, Fuel Processing Technology 91 (2010) 14 
369-378. 15 
[292] S.E. Smith, R.C. Neavel, E.J. Hippo, R.N. Miller, DTGA combustion of coals in the Exxon coal 16 
library, Fuel 60 (1981) 458-462. 17 
[293] C. Boman, M. Öhman, A. Nordin, Trace element enrichment and behavior in wood pellet 18 
production and combustion processes, Energy & fuels 20 (2006) 993-1000. 19 
[294] A. Ljung, A. Nordin, Theoretical feasibility for ecological biomass ash recirculation: chemical 20 
equilibrium behavior of nutrient elements and heavy metals during combustion, Environmental 21 
Science & Technology 31 (1997) 2499-2503. 22 
[295] W. Zheng, X. Ma, Y. Tang, C. Ke, Z. Wu, Heavy metal control by natural and modified limestone 23 
during wood sawdust combustion in a CO2/O2 atmosphere, Energy & Fuels 32 (2017) 2630-2637. 24 
[296] Y. He, X. Li, X. Xue, M.S. Swita, A.J. Schmidt, B. Yang, Biological conversion of the aqueous 25 
wastes from hydrothermal liquefaction of algae and pine wood by Rhodococci, Bioresource 26 
Technology 224 (2017) 457-464. 27 
[297] S. Kumar, A. Segins, J.P. Lange, G. Van Rossum, S.R.A. Kersten, Liquefaction of lignocellulose in 28 
light cycle oil: A process concept study, ACS Sustainable Chemistry & Engineering 4 (2016) 3087-3094. 29 
[298] L. Leng, X. Yuan, J. Shao, H. Huang, H. Wang, H. Li, X. Chen, G. Zeng, Study on demetalization of 30 
sewage sludge by sequential extraction before liquefaction for the production of cleaner bio-oil and 31 
bio-char, Bioresource Technology 200 (2016) 320-327. 32 
[299] D.C. Elliott, P. Biller, A.B. Ross, A.J. Schmidt, S.B. Jones, Hydrothermal liquefaction of biomass: 33 
developments from batch to continuous process, Bioresource Technology 178 (2015) 147-156. 34 
[300] D.C. Elliott, T.R. Hart, A.J. Schmidt, G.G. Neuenschwander, L.J. Rotness, M.V. Olarte, A.H. 35 
Zacher, K.O. Albrecht, R.T. Hallen, J.E. Holladay, Process development for hydrothermal liquefaction 36 
of algae feedstocks in a continuous-flow reactor, Algal Research 2 (2013) 445-454. 37 
[301] R.G. dos Santos, N.F. Acero, S. Matos, R. Carvalho, M. Vale, A.C. Marques, J.C. Bordado, M.M. 38 
Mateus, One-component spray polyurethane foam from liquefied pinewood polyols: pursuing eco-39 
friendly materials, Journal of Polymers and the Environment 26 (2018) 91-100. 40 
[302] D. Chiaramonti, M. Prussi, M. Buffi, A.M. Rizzo, L. Pari, Review and experimental study on 41 
pyrolysis and hydrothermal liquefaction of microalgae for biofuel production, Applied Energy 185 42 
(2017) 963-972. 43 
[303] K.Q. Tran, Fast hydrothermal liquefaction for production of chemicals and biofuels from wet 44 
biomass–The need to develop a plug-flow reactor, Bioresource Technology 213 (2016) 327-332. 45 
[304] J. Yang, Heavy metal removal and crude bio-oil upgrading from Sedum plumbizincicola harvest 46 
using hydrothermal upgrading process, Bioresource Technology 101 (2010) 7653-7657. 47 
[305] J. Yip, M. Chen, Y.S. Szeto, S. Yan, Comparative study of liquefaction process and liquefied 48 
products from bamboo using different organic solvents, Bioresource Technology 100 (2009) 6674-49 
6678. 50 



79 
 

[306] Q. Li, D. Liu, L. Song, P. Wu, Z. Yan, M. Li, Investigation of solvent effect on the hydro-1 
liquefaction of sawdust: An innovative reference approach using tetralin as chemical probe, Fuel 164 2 
(2016) 94-98. 3 
[307] H. Li, X. Yuan, G. Zeng, J. Tong, Y. Yan, H. Cao, L. Wang, M. Cheng, J. Zhang, D. Yang, 4 
Liquefaction of rice straw in sub-and supercritical 1, 4-dioxane–water mixture, Fuel Processing 5 
Technology 90 (2009) 657-663. 6 
[308] L.A. Licht, J.G. Isebrands, Linking phytoremediated pollutant removal to biomass economic 7 
opportunities, Biomass and Bioenergy 28 (2005) 203-218. 8 
[309] A.T. Harris, K. Naidoo, J. Nokes, T. Walker, F. Orton, Indicative assessment of the feasibility of 9 
Ni and Au phytomining in Australia, Journal of Cleaner Production 17 (2009) 194-200. 10 
[310] J. Ma, Techno-economic analysis and engineering design consideration of algal biofuel in 11 
southern Nevada, (2011). 12 
[311] T. Thewys, N. Witters, E. Meers, J. Vangronsveld, Economic viability of phytoremediation of a 13 
cadmium contaminated agricultural area using energy maize. Part II: Economics of anaerobic 14 
digestion of metal contaminated maize in Belgium, International Journal of Phytoremediation 12 15 
(2010) 663-679. 16 
[312] K. Urbaniec, R. Grabarczyk, Hydrogen production from sugar beet molasses–a techno-17 
economic study, Journal of Cleaner Production 65 (2014) 324-329. 18 
[313] Y. Man, S. Yang, D. Xiang, X. Li, Y. Qian, Environmental impact and techno-economic analysis of 19 
the coal gasification process with/without CO 2 capture, Journal of Cleaner Production 71 (2014) 59-20 
66. 21 
[314] C.E. LaClaire, C.J. Barrett, K. Hall, Technical, environmental and economic feasibility of bio-oil in 22 
new hampshire's north country, Durham, NH: University of New Hampshire (2004). 23 
[315] J.G. Rogers, J.G. Brammer, Estimation of the production cost of fast pyrolysis bio-oil, Biomass 24 
and Bioenergy 36 (2012) 208-217. 25 
[316] A. Uslu, A.P.C. Faaij, P.C.A. Bergman, Pre-treatment technologies, and their effect on 26 
international bioenergy supply chain logistics. Techno-economic evaluation of torrefaction, fast 27 
pyrolysis and pelletisation, Energy 33 (2008) 1206-1223. 28 
[317] M. Van Dael, N. Márquez, P. Reumerman, L. Pelkmans, T. Kuppens, S. Van Passel, Development 29 
and techno‐economic evaluation of a biorefinery based on biomass (waste) streams–case study in 30 
the Netherlands, Biofuels, Bioproducts and Biorefining 8 (2014) 635-644. 31 
[318] A.V. Bridgwater, Technical and economic assessment of thermal processes for biofuels, Life 32 
Cycle and Techno-Economic Assessment of the Northeast Biomass to Liquids Project. NNFCC Project 33 
8 (2009) 018. 34 
[319] N.M. Dickinson, I.D. Pulford, Cadmium phytoextraction using short-rotation coppice Salix: the 35 
evidence trail, Environment International 31 (2005) 609-613. 36 
[320] I. Lewandowski, U. Schmidt, M. Londo, A. Faaij, The economic value of the phytoremediation 37 
function–assessed by the example of cadmium remediation by willow (Salix ssp), Agricultural 38 
Systems 89 (2006) 68-89. 39 
[321] O. El Kasmioui, R. Ceulemans, Financial analysis of the cultivation of poplar and willow for 40 
bioenergy, Biomass and Bioenergy 43 (2012) 52-64. 41 
[322] L.K. Meulbroek, A senior manager's guide to integrated risk management, Journal of Applied 42 
Corporate Finance 14 (2002) 56-70. 43 
[323] G. Fiorentino, M. Ripa, S. Mellino, S. Fahd, S. Ulgiati, Life cycle assessment of Brassica carinata 44 
biomass conversion to bioenergy and platform chemicals, Journal of Cleaner Production 66 (2014) 45 
174-187. 46 
[324] J. Li, Y. Wang, B. Yan, The hotspots of life cycle assessment for bioenergy: A review by social 47 
network analysis, Science of the Total Environment 625 (2018) 1301-1308. 48 

 49 

View publication statsView publication stats

https://www.researchgate.net/publication/327080044

