
On the Selection of Strength for Fixed-strength
Interaction Coverage Based Prioritization

Rubing Huang∗, Weiwen Zong∗, Tsong Yueh Chen†, Dave Towey‡, Jinfu Chen∗, Yunan Zhou∗, Weifeng Sun∗
∗School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, P.R. China

{rbhuang, vevanzong, jinfuchen, zhouyn}@ujs.edu.cn, 3140608036@stmail.ujs.edu.cn
†Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn 3122, Australia

tychen@swin.edu.au
‡School of Computer Science, University of Nottingham Ningbo China, Ningbo 315100, P.R. China

dave.towey@nottingham.edu.cn

Abstract—Abstract test cases are derived by modeling the
system under test, and have been widely applied in practice, such
as for software product line testing, and combinatorial testing.
Abstract test case prioritization (ATCP) is used to prioritize
abstract test cases, and aims at achieving higher rates of fault
detection. Many ATCP algorithms have been proposed, using
different prioritization criteria and information. One ATCP
approach makes use of fixed-strength level-combinations infor-
mation covered by abstract test cases, and is called fixed-strength
interaction coverage based prioritization (FICBP). Before using
FICBP, the prioritization strength λ needs to be decided. Previous
studies have generally focused on λ values ranging between 1
and 6. However, no study has investigated the appropriateness
of such a range, nor how to assign the prioritization strength
for FICBP. To answer these questions, this paper reports on an
empirical study involving four real-life programs (each of which
with six versions). The experimental results indicate that λ should
be set approximately equal to a value corresponding to half of
the number of parameters, when testing resources are sufficient.
Our results also show that when testing resources are limited
or insufficient, either small or large λ values are suggested for
FICBP.

Index Terms—Software testing; abstract test case prioritiza-
tion; FICBP; prioritization strength; empirical study.

I. INTRODUCTION

A system under test can generally be influenced by many
parameters or factors, such as environment variables, input
parameters, and so on. Each such parameter may contain a
finite number of levels or values. Combinations of parameter
levels are called abstract test cases (ATCs) [1] or model
inputs [2]. Abstract test cases have been widely used in
many testing environments, including in software product line
testing [3], and combinatorial testing [4]. Due to limited testing
resources, for example when conducting regression testing,
ATC prioritization (ATCP) can be employed by reordering
elements in the given test suite, with the goal of executing
those ATCs that are more likely to detect failures.

Many ATCP methods have been proposed according to
different intuitions [5], such as test case similarity based
ATCP [3, 6]. A well-studied ATCP that uses information
of level-combinations coverage of a fixed strength λ (called
prioritization strength) directly obtained from ATCs them-

selves is fixed-strength interaction coverage based prioritiza-
tion (FICBP) [7]. FICBP repeatedly chooses an element from
candidate ATCs as the next test case such that it covers the
largest number of λ-wise level combinations that have not yet
been covered by previously selected test cases. Many studies
have shown that FICBP is an effective method for prioritizing
ATCs [7–9].

Intuitively speaking, FICBP needs to assign a fixed value
for the prioritization strength λ that is usually between 1 and 6
(inclusive) [7–11]. To the best of our knowledge, however, no
study has yet examined whether or not these λ values are the
most appropriate. In this paper, we report on an empirical in-
vestigation into FICBP with all possible prioritization strength
values for the programs under test. For example, when the test
object has k parameters, the assignment of λ ranges between 1
and k. The investigation involved four widely-used programs
written in C, each of which has six versions, to compare
the testing effectiveness and efficiency of FICBP techniques
with different prioritization strengths. In addition to the rate of
interaction coverage, we also studied the rate of fault detection,
and the prioritization cost.

In summary, the main contributions of this paper are:
• We report on an empirical study to investigate the selec-

tion of prioritization strength assigned for FICBP.
• We report on an investigation into the testing effectiveness

and efficiency of FICTP with all possible prioritization
strength values, in terms of interaction coverage rate, fault
detection rate, and prioritization cost.

• We present some guidelines for testers about how to
choose the prioritization strength for FICBP under dif-
ferent testing scenarios.

The rest of this paper is organized as follows: Section II
introduces some background information. Section III presents
details of the empirical study, and Section IV discusses some
potential threats to validity. Finally, Section V concludes the
paper, and discusses potential future work.

II. BACKGROUND

Some background information about parameter-level models
and test case prioritization is introduced in this section.

A. Factor-Level Model

The parameter-level model is used to model the system
under test (SUT), describing information about the parameters
and levels.

Definition 1: A parameter-level model, Model(F,L,C), is
the model of the SUT, where F = {f1, f2, · · · , fk} is the set
of k impact parameters, L = {L1, L2, · · · , Lk} is a set of k
parameter-level sets such that each Li corresponds to each
fi (i = 1, 2, · · · , k), and C is a set of constraints among
different parameter levels.

Since the specific levels of each parameter have no im-
pact on the model, without loss of generality, we can
use an abbreviated version of the model in this paper:
Model(|L1||L2| · · · |Lk|, C).

Definition 2: An abstract test case, denoted (l1, l2, · · · , lk),
is a k-tuple, where li ∈ Li (i = 1, 2, · · · , k).

An ATC is also a test case, but not a concrete one. An
ATC is said to be valid if C is satisfied (i.e., if all the model
constraints are satisfied).

Definition 3: A η-wise level combination is a η-tuple φ =
(li1 , li2 , · · · , liη), where lij ∈ Vij (j = 1, 2, · · · , η), 1 ≤ li1 <
li2 < · · · < liη ≤ k, and 0 ≤ η ≤ k.

In general, a η-wise level combination is also called a η-
level schema [4], with η being the size of the combination.
Similarly, a η-wise level combination is said to be valid if it
satisfies all constraints in C. When η = k, a η-wise level com-
bination is an ATC for the SUT. An ATC tc = (l1, l2, · · · , lk)
can cover a η-wise level combination φ = (l′i1 , l

′
i2
, · · · , l′iη),

if and only if for 1 ≤ j ≤ η, lij = l′ij , i.e., the levels of
the parameter fij are identical in tc and φ. Obviously, each
ATC could cover Cη

k η-wise level combinations. For ease of
description, we define a term Ψ(η, tc) as the set of η-wise
level combinations covered by the test case tc. Similarly, we
define a term Ψ(η, T) as the set of η-wise level combinations
covered by all test cases in T , i.e., Ψ(η, T) =

∪
tc∈T Ψ(η, tc).

B. TCP and FICBP

Test case prioritization (TCP) is used to schedule test cases
in an order, so that, according to some criteria (e.g., condition
coverage), test cases with higher priority are executed as
early as possible. A well-prioritized test suite may improve
the likelihood of detecting faults faster, which can be very
important when testing resources are limited. The problem of
TCP can be defined as [12]:

Definition 4: Given (T,Ω, g), where T is a set of test cases,
Ω is the set of all prioritized test suites obtained by permuting
test cases of T , and g is a function from a prioritized test suite
to an award value, the problem of TCP is to find an S ∈ Ω
such that:

(∀S′) (S′ ∈ Ω) (S′ ̸= S) [g(S) ≥ g(S′)]. (1)

Applying TCP to ATCs is called ATC Prioritization
(ATCP) [5]. The most well-studied ATCP algorithm is fixed-
strength interaction coverage based prioritization (FICBP) [7],
which greedily chooses each element as the next ATC such that
it covers the largest number of λ-wise level combinations that

Algorithm 1: FICBP algorithm.
Input: T ◃ Unordered ATCs

λ ◃ Prioritization strength
Output: S ◃ Prioritized ATCs
1: S ← []
2: while (|T | > 0) do
3: if (|T | > 1) then
4: Select tc ∈ T , where max

(
|Ψ(1, tc)

∪
Ψ(1, S)|

)
◃ take a random

one in case of equality
5: S.add(tc)
6: T ← T \ {tc}
7: else ◃ T contains only one element
8: S.add(tc), where tc ∈ T
9: T ← ∅

10: end if
11: end while
12: return S

have not yet been covered by previously selected ATCs. The
detailed information of FICBP is given in Algorithm 1.

An important aspect of the FICBP algorithm is that it is
necessary to assign a value to the prioritization strength (λ)
parameter in advance.

III. EMPIRICAL STUDY

This section reports on an empirical study conducted to
evaluate the testing effectiveness and efficiency of FICBP with
different prioritization strengths.

A. Research Questions

The following two research questions motivated the empir-
ical study.

RQ1: Which prioritization strength for FICBP results
in the best testing effectiveness? The answer to this question
will help us to decide which level of interaction coverage
information to use for FICBP.

RQ2: How do the testers choose the appropriate prior-
itization strength for FICBP in different testing environ-
ments? The answer to this question will help us decide the
most appropriate prioritization strength to use when facing
different testing scenarios. Although it would obviously be
very convenient if the cheapest level could deliver the most
effective result, even if this is not the case, we would still like
to know the best option to choose.

B. Subject Programs and Test Suites

We used four open-source programs (obtained from the
GNU FTP server [13]) written in the C language: FLEX,
GREP, SED, and GZIP. The FLEX program is a lexical anal-
ysis generator; GREP and SED are widely-used command-
line tools for searching and processing text-matching regular
expressions; and GZIP is a compression utility. Each program
has six versions. These programs have been widely used in
TCP research [2, 9, 12, 14, 15].

Table I presents details of the subject programs, including
version number, year of release, size in uncommented lines
of code (measured by cloc [16]), and the number of seeded
faults. The table also includes the parameter-level model for
each program (from Petke et al. [9]), and the number of ATCs.
These test pools of ATCs are available from the Software

TABLE I
SUBJECT PROGRAMS

Program Factor-Level Model Test
Pool Information V0 V1 V2 V3 V4 V5

FLEX Model(263251, C1), |C1| = 32 500
Version 2.4.3 (1993) 2.4.7 (1994) 2.5.1 (1995) 2.5.2 (1996) 2.5.3 (1996) 2.5.4 (1997)
LOC 8,959 9,470 12,231 12,249 12,370 12,366
#Faults - 32 32 20 33 32

GREP Model(213342516181, C2), |C2| = 58 440
Version 2.0 (1996) 2.2 (1998) 2.3 (1999) 2.4 (1999) 2.5 (2002) 2.7 (2010)
LOC 8,163 11,988 12,724 12,826 20,838 58,344
#Faults - 56 58 54 58 59

SED Model(27314161101, C3), |C3| = 58 324
Version 3.0.1 (1998) 3.0.2 (1998) 4.0.6 (2003) 4.0.8 (2003) 4.1.1 (2004) 4.2 (2009)
LOC 7,790 7,793 18,545 18,687 21,743 26,466
#Faults - 16 18 18 19 22

GZIP Model(21331, C4), |C4| = 69 159
Version 1.0.7 (1993) 1.1.2 (1993) 1.2.2 (1993) 1.2.3 (1993) 1.2.4 (1993) 1.3 (1999)
LOC 4,324 4,521 5,048 5,059 5,178 5,682
#Faults - 8 8 7 7 7

Infrastructure Repository (SIR) [17]. Table I also shows the
number of faults for each program based on mutation analy-
sis [18], which were used by Henard et al. [2].

C. Results and Discussion

This section presents some results from comparing the test-
ing effectiveness and efficiency among the FICBP techniques
with different prioritization strengths (λ). Based on the results,
we also offer some guidelines for testers using FICBP to
prioritize ATCs. For ease of presentation, the notation λW
is used to abbreviate FICBP with prioritization strength λ (for
example, 4W represents the FICBP technique with λ = 4).

1) Efficacy Observations: For the evaluation metrics of test-
ing efficacy, we consider two widely-used metrics: (a) Average
Percentage of λ-wise Combinations Covered (APCC) [9], and
(b) Average Percentage of Faults Detected (APFD) [12]. Since
the strength λ is a parameter required for APCC, in this paper
we consider the average APCC values by considering λ values
from 1 to 6, namely Average APCC (AvgAPCC) [19].

Figure 1 shows the effectiveness results of FICBPs with
different prioritization strengths for programs FLEX, GREP,
SED, and GZIP, respectively. Each program contains two
subfigures: the first being the AvgAPCC results, and the
second, APFD. Each box plot shows the mean (square in
the box), median (line in the box), upper and lower quartile,
and min/max AvgAPCC or APFD values for the prioritization
technique. In each figure, the dashed line with squared points
connects the mean values.

The experimental results show that different FICBP tech-
niques have different performances for different subject pro-
grams. We next attempt to summarize some common obser-
vations from all subject programs.
• As the prioritization strength λ increases from 1 to k

(the maximum number of parameters), the AvgAPCC
results can generally be divided into three parts: increas-
ing; fluctuating; and decreasing. Formally, two strengths
can be considered the turning points τ1 and τ2, where
1 ≤ τ1 ≤ τ2 ≤ k. This gives the three intervals
corresponding to the three trends: [1, τ1], [τ1, τ2], and
[τ2, k]. Considering two prioritization strengths λ1, λ2

for FICBP, where 1 ≤ λ1 < λ2 ≤ k, the following trends
can be identified: λ1W is worse than λ2W, if 1 ≤ λ1 < λ2 ≤ τ1;

λ1W is similar to λ2W, if τ1 ≤ λ1 < λ2 ≤ τ2;
λ1W is better than λ2W, if τ2 ≤ λ1 < λ2 ≤ k.

(2)

The values of τ1 and τ2 vary for different programs: With
GREP, for example, τ1 is equal to 4, and τ2 is equal to
7; while for SED, τ1 equals to 4, and τ2 equals to 9.

• The APFD situation is similar to that of AvgAPCC, with
the following two differences:

– Different turning points (τ1 and τ2 values) are ob-
tained compared with AvgAPCC. For example, with
GREP, τ1 is equal to 3 while τ2 is equal to 8.
Generally speaking, the APFD [τ1, τ2] interval is
larger than that in AvgAPCC, which means that the
fluctuating trend represents a larger proportion of the
entire interval [1, k].

– Compared with AvgAPCC, the differences between
highest and lowest APFDs appear less.

Figure 2 shows the ranking of the FICBP techniques with
respect to the AvgAPCC and APFD, where each number rep-
resents the prioritization strength. Each subfigure in Figure 2
contains some hexagons: FICBP techniques with no significant
difference (according to the p-values [20]) are in the same
hexagon, and those with significant differences are in dif-
ferent hexagons. Additionally, the FICBPs with prioritization
strengths from left to right become worse (as evaluated by the
effect size Â12 measure [20]), regardless of whether they are
in the same or different hexagons. Consider, for example, the
APFD results for GREP (Figure 2(b)): two ordered sets are
in the first two hexagons: O1 = ⟨5, 6⟩ and O2 = ⟨6, 7, 2, 3⟩.
The difference between 5W and 6W in O1 is not statistically
significant, nor is the difference between any two FICBPs in
O2. Furthermore, 5W performs better than 6W, and 6W is
better than 7W, 2W, and 3W. From these figures, we have the
following observations:
• According to the AvgAPCC results, the FICBP with the

highest prioritization strength (λ = k) generally has
the worst performance; and the FICBP with the lowest

88.0

89.0

90.0

91.0

92.0

93.0

94.0

95.0

4W3W 5W 6W 7W 8W 9W2W1W

(a) FLEX: AvgAPCC

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

4W3W 5W 6W 7W 8W 9W2W1W

(b) FLEX: APFD

80.0

81.0

82.0

83.0

84.0

85.0

86.0

87.0

88.0

89.0

90.0

4W3W 5W 6W 7W 8W 9W2W1W

(c) GREP: AvgAPCC

76.0

78.0

80.0

82.0

84.0

86.0

88.0

90.0

92.0

94.0

4W3W 5W 6W 7W 8W 9W2W1W

(d) GREP: APFD

78.0

79.0

80.0

81.0

82.0

83.0

84.0

85.0

86.0

87.0

88.0

89.0

90.0

11W10W4W3W 5W 6W 7W 8W 9W2W1W

(e) SED: AvgAPCC

72.5

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

97.5

11W10W4W3W 5W 6W 7W 8W 9W2W1W

(f) SED: APFD

87.0

88.0

89.0

90.0

91.0

92.0

93.0

94.0

14W

4W3W 5W 6W 7W 8W 9W2W1W 10W
11W

12W
13W

(g) GZIP: AvgAPCC

84.0

86.0

88.0

90.0

92.0

94.0

96.0

98.0

100.0

14W
4W3W 5W 6W 7W 8W 9W2W1W 10W

11W
12W

13W

(h) GZIP: APFD

Fig. 1. Results for program FLEX.

prioritization strength (λ = 1) has the second worst.
The results are similar for APFD: FICBP techniques
with λ = 1 and λ = k generally have the two worst
performances — an exception being for GZIP, for which
13W is the second worst, and 1W is actually the second
best.

• In most cases, the FICBP techniques generally have the
best (or close to best) performance, in terms of both
AvgAPCC and APFD, when the prioritization strength λ
is approximately equal to ⌈k

2 ⌉. For example, for FLEX
and GREP with k = 9, the FICBP techniques 5W or

� � � � � � � � 	

� � � � � � � � 	

��

��

��

(a) Program FLEX (k = 9)

� � � � � � � � 	

� � � � � � � � 	

��

��

��

(b) Program GREP (k = 9)

� � � �� � �

� �

�	
����

��
�

� � ��

� � � � � � �� �� �

� �

(c) Program SED (k = 11)

��	�
�� � � � �� � � � �� � �� �� � � ��

�
�
 � � � � � � � �� � � �� �� �� ��

(d) Program GZIP (k = 14)

Fig. 2. Statistical ranking of the FICBP techniques.

6W are generally the best performers, for both AvgAPCC
and APFD. For SED with k = 11, 5W has the best
AvgAPCC performance, and is in the top four in terms
of APFD (it should also be noted that there is no
statistically significant difference amongst the best five
FICBP techniques for APFD). For GZIP (k = 14), 7W,
8W, and 9W are in the top three techniques in terms of
AvgAPCC, and are in the top seven in terms of APFD
(there is effectively no statistically significant difference
among the top eight techniques for APFD).

To answer RQ1, the prioritization strength is recommended
to be set at approximately ⌈k

2 ⌉.
2) Efficiency Observations: Table II presents the prioritiza-

tion cost of each FICBP technique for each subject program.
Each cell in the table is a pair µ/ρ, where µ is the mean
execution time, and ρ is standard deviation (calculated over
the 100 independent runs performed per technique). It can
be observed from the table that there is a turning point τ
satisfying the following:
• For two prioritization strengths λ1 and λ2 (where 1 ≤

λ1 < λ2 ≤ k), when 1 ≤ λ1 < λ2 ≤ τ , the prioritization
cost for λ2W is greater than that for λ1W.

• When τ ≤ λ1 ≤ λ2 ≤ k, λ1W has a higher prioritization
cost than λ2W.

According to the mean prioritization time, µ, the turning
point τ is generally equal to about half of the number of
parameters: τ = ⌈k

2 ⌉. In other words, when λ = τ , the
prioritization time of λW is highest. Moreover, FICBP with
λ = k generally requires the least prioritization time among all
possible prioritization strengths, with 1W requiring the second
least.

Even though the prioritization time of ⌈k
2 ⌉W is the highest,

it still actually only requires a few seconds. 5W, for example,
only takes 0.452 and 0.41 seconds for FLEX and GREP,
respectively; 7W requires approximately 4 seconds with SED;

TABLE II
PRIORITIZATION TIME (µ/ρ) OF EACH FICBP TECHNIQUE (IN

MILLISECOND)

FICBP Technique Subject Program
FLEX GREP SED GZIP

1W 35/6 32/8 22/7 17/8
2W 94/8 82/7 77/8 58/9
3W 234/21 202/6 274/31 250/10
4W 402/8 379/50 647/15 884/62
5W 452/16 410/13 1017/22 1865/29
6W 337/38 334/35 1100/24 3065/40
7W 174/8 213/9 980/21 4088/96
8W 62/7 77/7 573/16 3871/35
9W 27/9 28/6 257/11 2947/32

10W – – 84/8 1684/29
11W – – 20/6 734/20
12W – – – 187/10
13W – – – 38/7
14W – – – 8/6

and 6W requires 1.1 seconds for GZIP. In other words,
FICBP with λ = ⌈k

2 ⌉ seems comparable to that with other
prioritization strengths for practical testing, according to the
prioritization costs.

Based on these results and discussions, the answer to
RQ2, therefore, is that no FICBP technique has the best
testing effectiveness and efficiency. In other words, testing
effectiveness and efficiency results seem contradictory when
applying the FICBP technique to the prioritization of ATC-
s. Nonetheless, the FICBP techniques with the best testing
effectiveness require comparable prioritization time to other
FICBP techniques, allowing us to conclude that they are the
most cost-effective, especially when testing resources (such as
prioritization cost) are not limited.

In conclusion, when applying the FICBP technique to prior-
itize ATCs, we recommend setting the prioritization strength
λ to approximately ⌈k

2 ⌉ when testing resources are sufficient.
However, when testing resources are limited, a small or high
prioritization strength is suggested for FICBP.

IV. THREATS TO VALIDITY

In spite of our best efforts, our experiments may face some
threats to validity. There are three potential threats to the
external validity, listed as follows:

1) Subject Program Threat: We only examined four subject
programs in this study, written in the C language, each
of which being of a relatively medium size. However, the
programs are all relatively small with respect to the number
of parameters. Nevertheless, all the programs were obtained
from a well-studied repository [13]. As discussed by Petke
et al. [9], constraints could significantly reduce the number of
parameters in the SUT. In other words, when the SUT contains
a large number of parameters, constraints could be adopted to
remove many of them. Therefore, when testing an SUT with
many parameters, conclusions obtained from this study could
also be relevant.

2) ATC Threat: We used the test suite of ATCs obtained
from the SIR [17], for each program. These test suites were
constructed using the Test Specification Language (TSL) [21].
There are many other types of ATC sets in the field of

combinatorial testing [4], including covering arrays [22], that
could be constructed by many popular tools such as Covering
Arrays by Simulated Annealing (CASA) [23].

3) Randomness Threat: Since FICBP contains some ran-
domness, we ran all techniques 100 times, and also adopted
inferential statistics to compare the results. This should mini-
mize the validity threats related to the randomness.

In addition to the steps taken to address the potential threats
to validity, further studies will be conducted in the future using
more programs with more parameters, and more ATC test
suites.

V. CONCLUSIONS AND FUTURE WORK

ATCP aims at achieving higher rates of fault detection,
and has been widely used to prioritize ATCs that are derived
by modeling the system under test. One well-known method
of ATCP is the fixed-strength interaction coverage based
prioritization (FICBP), which chooses an element from the
candidates as the next ATC such that it covers the largest
number of fixed-strength level combinations that have not yet
been covered by previously selected ATCs. It requires a fixed
strength as the input, namely prioritization strength. Previous
studies have generally used prioritization strengths ranging in
value from 1 to 6. To the best of our knowledge, however, no
other study has yet examined whether or not these values are
most appropriate. In this paper, we have attempted to answer
this question. Based on our experimental results, we have the
following observations:
• As λ increases, the FICBP testing effectiveness generally

increases, then reaches a peak, and then fluctuates around
the peak. After this, the effectiveness generally decreases.

• The FICBP techniques generally have worst performance
when λ = 1 and λ = k, where k is the number of
parameters that influence the system under test, regardless
of the rates of interaction coverage and fault detection.

• If testers attempt to apply FICBP to the prioritization of
ATCs, it is recommended that they set the prioritization
strength λ to be approximately equal to half of the
number of parameters, i.e., λ = ⌈k

2 ⌉, where k is the
number of parameters, especially when testing resources
are not limited. However, when testing resources are
not sufficient, a small or large prioritization strength is
recommended.

The τ -wise covering array [22] is a special set of ATCs
that covers all valid τ -wise level combinations, where τ is
called the generation strength. As discussed in this paper,
the prioritization strength is used in FICBP. Therefore, it is
very promising to investigate the relationship between the
generation strength and prioritization strength, which would
provide some helpful insights for combinatorial testing users
when using FICBP to prioritize covering arrays.

ACKNOWLEDGMENT

We would like to thank Christopher Henard for providing
us the fault data for the four subject programs. This work
is supported by the National Natural Science Foundation of

China under grant nos. 61502205, 61202110, and 71471092,
the Natural Science Foundation of the Jiangsu Higher Educa-
tion Institutions of China under grant no. 15KJB520007, the
Senior Personnel Scientific Research Foundation of Jiangsu
University under grant no. 14JDG039, and the Ningbo Science
and Technology Bureau under grant no. 2014A35006. This
work is also supported by the Young Backbone Teacher
Cultivation Project of Jiangsu University, and the sponsorship
of Jiangsu Overseas Visiting Scholar Program for University
Prominent Young & Middle-aged Teachers and Presidents.
Dave Towey acknowledges the financial support from the
Artificial Intelligence and Optimisation Research Group of
the University of Nottingham Ningbo China, the International
Doctoral Innovation Centre, the Ningbo Education Bureau, the
Ningbo Science and Technology Bureau, and the University
of Nottingham.

REFERENCES

[1] M. Grindal, B. Lindström, J. Offutt, and S. F. Andler,
“An evaluation of combination strategies for test case s-
election,” Empirical Software Engineering, vol. 11, no. 4,
pp. 583–611, 2006.

[2] C. Henard, M. Papadakis, M. Harman, Y. Jia, and
Y. L. Traon, “Comparing white-box and black-box test
prioritization,” in Proceedings of the 38th International
Conference on Software Engineering (ICSE’16), 2016,
pp. 523–534.

[3] C. Henard, M. Papadakis, G. Perrouin, J. Klein, P. Hey-
mans, and Y. L. Traon, “Bypassing the combinatorial
explosion: Using similarity to generate and prioritize t-
wise test configurations for software product lines,” IEEE
Transactions on Software Engineering, vol. 40, no. 7, pp.
650–670, 2014.

[4] C. Nie and H. Leung, “A survey of combinatorial test-
ing,” ACM Computer Survey, vol. 43, no. 2, pp. 11:1–
11:29, 2011.

[5] R. Huang, W. Zong, D. Towey, Y. Zhou, and J. Chen,
“An empirical examination of abstract test case priori-
tization techniques,” in Proceedings of the IEEE/ACM
39th International Conference on Software Engineering
Companion (ICSE-C’17), 2017, pp. 141–143.

[6] M. Al-Hajjaji, T. Thüm, J. Meinicke, M. Lochau, and
G. Saake, “Similarity-based prioritization in software
product-line testing,” in Proceedings of 18th Internation-
al Software Product Line Conference (SPLC’14), 2014,
pp. 197–206.

[7] R. C. Bryce and A. M. Memon, “Test suite prioritization
by interaction coverage,” in Proceedings of the Work-
shop on Domain Specific Approaches to Software Test
Automation (DoSTA’07), 2007, pp. 1–7.

[8] R. C. Bryce, S. Sampath, and A. M. Memon, “Develop-
ing a single model and test prioritization strategies for
event-driven software,” IEEE Transactions on Software
Engineering, vol. 37, no. 1, pp. 48–64, 2011.

[9] J. Petke, M. B. Cohen, M. Harman, and S. Yoo, “Practical
combinatorial interaction testing: Empirical findings on

efficiency and early fault detection,” IEEE Transactions
on Software Engineering, vol. 41, no. 9, pp. 901–924,
2015.

[10] R. Huang, X. Xie, D. Towey, T. Y. Chen, Y. Lu, and
J. Chen, “Prioritization of combinatorial test cases by
incremental interaction coverage,” International Journal
of Software Engineering and Knowledge Engineering,
vol. 23, no. 10, pp. 1427–1457, 2013.

[11] R. Huang, J. Chen, T. Zhang, R. Wang, and Y. Lu,
“Prioritizing variable-strength covering array,” in Pro-
ceedings of the IEEE 37th Annual Computer Software
and Applications Conference (COMPSAC’13), 2013, pp.
502–601.

[12] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold,
“Prioritizing test cases for regression testing,” IEEE
Transactions on Software Engineering, vol. 27, no. 10,
pp. 929–948, 2001.

[13] GNU FTP Server. http://ftp.gnu.org/.
[14] X. Qu, M. B. Cohen, and K. M. Woolf, “Combinato-

rial interaction regression testing: A study of test case
generation and prioritization,” in Proceedings of the
23rd International Conference on Software Maintenance
(ICSM’07), 2007, pp. 255–264.

[15] B. Jiang, Z. Zhang, W. K. Chan, and T. H. Tse, “Adaptive
random test case prioritization,” in Proceedings of the
24th IEEE/ACM International Conference on Automated
Software Engineering (ASE’09), 2009, pp. 233–244.

[16] cloc: Count Lines of Code. http://cloc.sourceforge.net/.
[17] H. Do, S. G. Elbaum, and G. Rothermel, “Supporting

controlled experimentation with testing techniques: An
infrastructure and its potential impact,” Empirical Soft-
ware Engineering, vol. 10, no. 4, pp. 405–435, 2005.

[18] Y. Jia and M. Harman, “An analysis and survey of the
development of mutation testing,” IEEE Transactions on
Software Engineering, vol. 37, no. 5, pp. 649–678, 2011.

[19] R. Huang, Y. Zhou, W. Zong, D. Towey, and J. Chen, “An
empirical comparison of similarity measures for abstract
test case prioritization,” in Proceedings of the IEEE 41st
Annual Computer Software and Applications Conference
(COMPSAC’17), 2017, pp. 3–12.

[20] A. Arcuri and L. Briand, “A hitchhiker’s guide to s-
tatistical tests for assessing randomized algorithms in
software engineering,” Software Testing, Verification and
Reliability, vol. 24, no. 3, pp. 219–250, 2014.

[21] T. J. Ostrand and M. J. Balcer, “The category-partition
method for specifying and generating fuctional tests,”
Communications of the ACM, vol. 31, no. 6, pp. 676–
686, 1988.

[22] M. B. Cohen, P. B. Gibbons, W. B. Mugridge, and C. J.
Colbourn, “Constructing test suites for interaction test-
ing,” in Proceedings of the 25th International Conference
on Software Engineering (ICSE’03), 2003, pp. 38–48.

[23] B. J. Garvin, M. B. Cohen, and M. B. Dwyer, “E-
valuating improvements to a meta-heuristic search for
constrained interaction testing,” Empirical Software En-
gineering, vol. 16, no. 1, pp. 61–102, 2011.

