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ABSTRACT Test case prioritization (TCP) plays an important role in identifying, characterizing,
diagnosing and correcting faults quickly. TCP has been widely used to order test cases of different types,
including model inputs (also called abstract test cases). Model inputs are constructed by modeling the
program according to its input parameters, values, and constraints, and has been used in different testing
methods, such as combinatorial interaction testing, and software product line testing. Interaction coverage-
based test case prioritization (ICTCP) uses interaction coverage information derived from the model input
to order inputs. Previous studies have focused generally on the fixed-strength ICTCP, which adopts a fixed
strength (i.e., the level of parameter interactions) to support the ICTCP process. It is generally accepted that
using more strengths for ICTCP, i.e., mixed-strength ICTCP, may give better ordering than fixed-strength.
To confirm whether mixed-strength is better than fixed-strength, in this paper we report on an extensive
empirical study using five real-world programs (written in C), each of which has six versions. The results
of the empirical studies show that mixed-strength has better rates of interaction coverage overall than fixed-
strength, but they have very similar rates of fault detection. Our results also show that fixed-strength should
be used instead of the mixed-strength at the later stage of software testing. Finally, we offer some practical
guidelines for testers when using interaction coverage information to prioritize model inputs, under different
testing scenarios and resources.

INDEX TERMS Test case prioritization, model input, interaction coverage, mixed-strength, fixed-strength.

Due to limited testing resources, when conducting testing
in practice (for example in regression testing), the execution
order of test cases can be critical, and more important test
cases in a test set should be executed as early as possible.
A well-ordered test case execution sequence may be able to
identify faults faster than a poorly-ordered sequence, thus
allowing activities such as fault characterization, diagnosis,
and correction, to be started as soon as possible. The process
of determining the order of test cases in a test set is called test
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case prioritization (TCP) [1], and has been used extensively
in many testing situations, such as regression testing [2].
Many TCP algorithms have been proposed to guide the
prioritization of different types of test case, including code
coverage-based prioritization [1], [3], search-based prioriti-
zation [4], [5], and adaptive random prioritization [6]-[9].
A model input [10] (also called an abstract test case [11])
is an important type of test case [12], and can be obtained
based on a model of the software under test (SUT): It
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consists of a fixed number of parameters that influence the
SUT, a finite set of values for each parameter, and a set
of constraints on parameter values. Each model input is
constructed by assigning a value to each of the parameters.
Model inputs have been widely used in testing, including for
highly-configurable systems testing [13], [14], the category-
partition testing method [12], and combinatorial interaction
testing [15]. Model input prioritization has also been studied
extensively in recent years, especially in the field of combina-
torial interaction testing [16]-[18] and software product line
testing [19], [20].

The interaction coverage is the information derived from
the model input itself, represented by the parameter-value
combinations covered by the model input. It has been
widely used to guide the model input prioritization, and
is called interaction coverage-based test case prioritization
(ICTCP) [17], [18], [21]-[23]. Previous studies have mainly
focused on fixed-strength ICTCP, which adopts a fixed value
for strength (i.e., the level of parameter interactions) to sup-
port the whole ICTCP process [18], [21]-[23]. It is expected
that ICTCP using more strengths may provide better ordering
of test cases than using fixed-strength TCP, but it can be more
time-consuming, because more information is required to be
considered.

To determine whether mixed-strength is better than fixed-
strength, we conducted empirical studies on five real-world
programs (written in C), each of which contains six versions,
according to some quality evaluation metrics. Based on the
experimental results, we present some empirical findings, and
provide some practical guidelines for testers when facing the
prioritization problem of model inputs. In summary, the main
contributions of this work are as described as follows:

1) We investigated 63 ICTCP techniques, involving 6
fixed-strength techniques, and 57 mixed-strength techniques,
and compared mixed-strength against fixed-strength for the
same maximum prioritization strength.

2) We conducted empirical studies to investigate the testing
effectiveness and efficiency of mixed-strength and fixed-
strength, from the perspective of the rate of interaction cov-
erage, the rate of fault detection, and prioritization cost.

3) We present empirical findings and analysis comparing
mixed-strength and fixed-strength.

4) We provide some practical guidelines for testers about
how to choose mixed-strength and fixed-strength techniques,
when prioritizing the model inputs under different testing
scenarios and resources.

The rest of this paper is organized as follows: Section I
introduces some background information about model in-
puts, and test case prioritization. Section II describes the
research questions, and Section III presents the experimental
setup. Section IV reports on the empirical studies, analyzes
the results, and answers the research questions. In addition,
it provides some practical guidelines for testers, and also
discusses the limitations of this work. Section V reviews
some related work about combinatorial interaction testing,
and test case prioritization. Finally, Section VI concludes the
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paper and proposes future work.

l. BACKGROUND
In this section, we introduce the topic of model input and test
case prioritization (TCP).

A. MODEL INPUT
The software under test (SUT) is generally influenced by
a number of parameters or factors (such as configurations,
features, components). Typically, each parameter can have a
fixed number of possible values, or levels. Generally, there
may be constraints on parameter values, with some value
combinations being infeasible.

We define the input parameter model [11] used to model
the SUT as follows:

Definition 1. An input parameter model, Model(P =
(Bropa, bV = (Vi Vo Vi},C), represents the
information about the test object — p1,pa2,--- , Pk, are the
k parameters; each V; is the set of possible values for the
i-th parameter (p;); and C is the set of value combination
constraints.

For example, Table 1 gives an input parameter model with
two constraints for an application of Partition and Volume
Creation, where four parameters are included, of which the
first two parameters have two values, the third parameter has
three values, and the last parameter has four values. Since the
file system “FAT" is limited to the size less than 7096, and the
file system “FAT32" is limited to the size less than 32000,
two value combination constraints are obtained. To simplify
the problem, each parameter is denoted by p; (i = 1,2, 3,4),
and each value is labelled by an integer, beginning with 0 and
incrementing by 1, from p; to p4 (see Table 1).

After that, we have the following input parameter models
for this example: Model({p1, p2, p3, pa}, {{“0”, “17}, {“2”,
“37Y, {447, 57, 967}, {477, 487, 9, “10°}1},C = {ps =
Qo= py = “T",ps = “BY — pg # “10”}. Because
specific values of each parameter have no impact on the
model, without loss of generality, we can use the following
abbreviated version: Model(|V4||Vz| - - - |Vk],C). In addition,
we adopt the description method of the constraint set C,
previously used in [24], the example above can therefore be
represented as: Model(223'41,C = {“4” — “77 “5" —
—“107}).

An input parameter model (if available) can be used to con-
struct model inputs [10] (also called abstract test cases [11])
for testing the test object. A definition of the model input is
given as follows:

TABLE 1: An example for input parameter model.

P p1: Format p2: Compression p3:File System p4: Size
QUICK(0) ON(2) FAT (4) 1000 (7)

v SLowW(1) OFF(3) FAT32 (5) 5000 (8)
— — NTFS (6) 10000 (9)

— — — 50000 (10)

File System=“FAT" — Size <4096, ie.,p3 = “4” — pg = “7".
File System=“FAT32" — Size < 32000, i.e., p3 = “5” — pa # “10”.

VOLUME 4, 2016

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2879638, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

IEEE Access

Definition 2. A model input, denoted (vy,va,- -+ , vg), is a
k-tuple, where v; € V; (i =1,2,--- k).

If all the value constraints in C are satisfied, then a
model input is said to be valid, otherwise invalid. An ex-
ample of a valid model input for the previous model is
(“17,437,“6”, “7”); and an example of an invalid one is
(“07, “27, “5”, “10”), which violates the constraint (“5” —
_|“1077).

Definition 3. A \-wise value combination is a k-tuple
(01,02, , V), involving X\ parameters with fixed values
(named fixed parameters) and (k — X) parameters with
arbitrary allowable values (named free parameters), where
0< A< kand
5= { v; € Vi, ifp; is a fixed parameter )
¢ “_n if p; is a free parameter

The A-wise value combination is also called A-wise
schema [15]. In order to describe the problem clearly (with-
out loss of generality), the free parameters are not considered.
In other words, a A\-wise value combination is actually a \-
tuple. Each model input could cover some A-wise value com-
binations. For example, a model input (“0”, “2”, “5”, “9”)
covers four 1-wise value combinations, ie., (“07), (“27),
(“5”), and (“9”); and four 3-wise value combinations,
i.e., (“077’ ((2777 £L577)’ (“077’ “2777 “977), (“0777 “577’ “977)’ and
(427, “57,“9”). Similar to model inputs, the A-wise value
combination may also be valid or invalid, for example, a 2-
wise value combination (“07, “2”) is valid; while another
one (“5”, “10”) is invalid. A valid model input covers valid
A-wise value combinations that are valid, regardless of A
values.

To simplify the notation, we define a function (), tc)
for a model input tc that returns the set of all A-wise value
combinations covered by tc, i.e.,

"/}()‘v tC) = {(Ujl’vjz’ T

2
Similarly, a function (X, T') for a set T' of model inputs is
defined to return the set of all A\-wise value combinations
covered by all model inputs in 7', i.e.,

PN T) = | v\ te) 3)
tceT

The size of (), tc), i.e., [(X, tc)], is equal to C'(k, \) (i.e.,
the number of A-combinations from k elements).

B. TEST CASE PRIORITIZATION

Test case prioritization (TCP) schedules test cases so that
those with higher priority, according to some criteria, are
executed earlier than those with lower priority. When the
execution of all test cases in a test suite is not possible, a well-
designed execution order can be very important. The problem
of test case prioritization can be defined as follows [1]:

Definition 4. Given a tuple (T, f), where T is a test
suite, § is the set of all possible permutations of T, and f
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L) < g1 <o < or < ja < K}

is a fitness function from ) to real numbers, the test case
prioritization problem is to find a prioritized test set S € ()
such that:

(V') (8" € Q) (" #9) [£(S) = £(5)] @

There are many fitness functions to support the TCP pro-
cess, for example fault detection [1], and code coverage [4].

Il. RESEARCH QUESTIONS

As we know, mixed-strength ICTCP (abbreviated as
MICTCP) uses more strengths (i.e., more information) than
fixed-strength (FICTCP for short) to guide the prioritization
of model inputs. Therefore, it is expected that MICTCP
may provide higher speed to cover value combinations than
FICTCEP. This leads our first research question:

RQ1: How well does MICTCP compare with FICTCP in
terms of interaction coverage rate?

Similarly, it seems likely that MICTCP could generate
prioritized model inputs which trigger faults earlier in a
test than FICTCP (since more information has been used in
MICTCP). This leads to the next research question:

RQ2: How well does MICTCP compare with FICTCP in
terms of fault detection rate?

Answers to RQ1 and RQ2 would establish whether
MICTCP or FICTCP is more effective. In addition, since
MICTCP makes use of more information than FICTCP, it
is likely to require more prioritization time. Therefore, it is
useful to check which technique is better able to balance
the tradeoff between testing effectiveness (measured rates
of interaction coverage and fault detection) and efficiency
(measured by the prioritization cost), leading to our third
research question:

RQ3: Which one is more cost-effective between MICTCP
and FICTCP?

Finally, we would like to know, when facing different test-
ing scenarios, for example limited testing resources, which
ICTCP to choose. Our main aim therefore, is to answer the
following question:

RQ4: Which approach should be chosen under different
circumstances? MICTCP or FICTCP?

By answering these research questions, we aim to compare
MICTCP and FICTCP, from the perspective of testing effec-
tiveness and efficiency; and also present guidelines to method
selection when facing different testing environments.

lll. EXPERIMENTAL SETUP

Figure 1 presents the experimental process of empirical s-
tudies. At the begging, the set of model inputs is ordered
by ICTCP, to obtained the prioritized model inputs. First,
during the prioritization process, the prioritization time is
collected. Second, the ordered set of model inputs is cal-
culated, according to the interaction coverage rate. Finally,
by transferring the model inputs into real test cases for each

3

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2018.2879638, IEEE Access

IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

TABLE 2: Studied Programs.

Object Input Parameter Model Tests | Information \] \%1 V2 V3 V4 \'A
Version (Year) 243 (1993)  2.47(1994)  2.5.1(1995) 2.52(1996) 25.3(1996) 2.5.4(1997)
Flex Model(9, 263251, C), |C| = 12 500 LOC 8,959 9,470 12,231 12,249 12,370 12,366
#Faults - 32 32 20 33 32
, Version (Year) 2.0 (1996) 2.2(1998) 2.3(1999) 2.4(1999) 2.5(2002) 2.7(2010)
Grep Model(9, 213242516181, C),|C| =83 440 LOC 8,163 11,988 12,724 12,826 20,838 58,344
#Faults - 56 58 54 58 59
Version (Year) — 1.0.7(1993)  1.12(1993)  12.2(1993)  1.2.3(1993)  12.4(1993)  13(1999)
Gzip Model(14, 2'33%,C), |C| = 61 156 LoC 4,324 4,521 5,048 5,059 5,178 5,682
#Faults - 16 18 18 19 22
Version (Year) — 3.75(1996)  3.76.1(1997)  3.77(1998)  3.78.1(1999)  3.79(2000)  3.80 (2002)
Make Model(10,2°,¢), |C| = 1 111 LOC 17,463 18,568 19,663 20,461 23,125 23,400
#Faults - 37 29 28 29 28
Version (Year) — 3.0.1(1998)  3.02(1998)  4.0.6(2003)  4.0.8(2003)  4.1.1(2004)  4.2(2009)
Sed  Model(11,273*4'6'10%,C),|C| =50 324 LOC 7,790 7,793 18,545 18,687 21,743 26,466
#Faults - 8 8 7 7 7

program, the resulting ordered test suite is evaluated on the
five versions (V1 to V5) using mutation testing, in terms of
the fault detection rate.

A. SUBJECT PROGRAMS

We used five open-source C programs (Flex, Grep, Gzip,
Make, and Sed) that were selected from the GNU FTP
server [25]. Flex is a lexical analysis generation, while Grep
and Sed are widely-used command-line tools for searching
and processing text matching regular expressions. Make is a
popular utility used to control the compile and build process
of programs, while Gzip is a compression utility. These
programs have been widely used in the field of test case
prioritization [1], [7], [10], [18], [22], [26], [27].

For each of the programs, Table 2 presents its version num-
ber and the year that it was released, its size in uncommented
lines of code measured by cloc [28], and the number of
seeded faults. The table also describes the input parameter
model for each program modeled by Petke et al. [18], [27],
and the size of test pool. These test pools are available from
the Software Infrastructure Repository (SIR) [29].

Average

Percentage of

Combinations
Covered

Model Inputs

I

—aiin—

1. testcase 1
2. test case 2
3. test case 3

1. model input 1
2. model input 2
\ 3. model input 3

Average
Percentage
of Faults
Detected

Prioritized Model Inputs Prioritized test cases

* [B01) [ [e) () (i)

Prioritization
Cost

FIGURE 1: Experimental process of empirical studies.
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B. THE 63 ICTCP TECHNIQUES STUDIED

Previous investigations have shown that nearly all faults are
caused by the interaction among no more than six parameter-
s [30], [31], therefore, we chose the maximum strength value,
d, ranging from 1 to 6. Therefore, we consider all possible
cases of strength selection with a total of (26 — 1 = 63)
choices, i.e., 6 techniques with fixed-strength (FICTCP); and
57 techniques with mixed-strength (MICTCP).

According to previous investigations [18], [26], [27], when
adopting FICTCP, different strengths provide different levels
of performance. Therefore, in this study when comparing
FICTCP and MICTCP, we will use the same maximum
strength d. More specifically, when FICTCP uses the prior-

TABLE 3: The 63 ICTCP techniques.

d Lg Strengths d Lg Strengths
d=1 ‘1 1 ‘1000000 6
d=2 10 2 €100001° 1,and 6
‘ar 1, and 2 ‘100010 2,and 6
‘100 3 ‘100100°  3,and 6
d=3 ‘101’ 1,and 3 ‘101000° 4, and 6
‘110° 2,and 3 ‘110000° 5, and 6
‘11 1,2,and 3 100011° 1,2,and 6
1000 4 100101° 1,3,and 6
‘1001° 1,and 4 ‘1001100 2,3,and 6
‘1010° 2,and 4 ‘101001° 1,4, and 6
d=4 ‘11007 3,and 4 ‘1010100 2,4,and 6
‘1011° 1,2,and 4 ‘1011000 3,4,and 6
‘1101° 1,3,and 4 ‘110001° 1,5,and 6
‘11107 2,3, and 4 ‘1100100 2,5,and 6
‘1111 1,2,3,and 4 ‘1101000 3,5,and 6
100000 5 d=6 ‘1110000 4,5,and 6
10001° 1,and 5 ‘1001117 1,2,3,and 6
‘10010 2,and 5 ‘1010110 1,2,4,and 6
‘101000 3,and 5 ‘101101° 1,3,4,and 6
‘110000 4,and 5 ‘1011100 2,3,4,and 6
‘10011° 1,2,and 5 ‘110011° 1,2,5,and 6
‘101017 1,3,and 5 ‘1101017 1,3,5,and 6
d=5 ‘11001’ 1,4,and 5 ‘1101100 2,3,5,and 6
‘101100 2,3,and 5 ‘111001° 1,4,5,and 6
‘110100 2,4,and 5 ‘1110100 2,4,5,and 6
‘111000 3,4,and 5 ‘1111000 3,4,5,and 6
‘10111’ 1,2,3,and 5 ‘101111 1,2,3,4,and 6
‘110117 1,2,4,and 5 ‘110111’ 1,2,3,5,and 6
‘1ror 1,3,4,and 5 ‘1110117 1,2,4,5,and 6
‘111100 2,3,4,and 5 ‘111101° 1,3,4,5,and 6
‘111 1,2,3,4,and 5 ‘1111100 2,3,4,5,and 6
‘11111 1,2,3,4,5,and 6
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itization strength d, MICTCP adopts d and other strengths
less than d, which means that the number of strengths used in
MICTCP is limited to d, i.e., 1,2, - - ,d.

To simplify the notation, we define the term L4 to rep-
resent ‘xqyrq—1---x1’ that is a d-digit binary number, i.e.,
z; € {0,1}. If x; = 1 (1 < ¢ < d), the strength i is
included; and if z; = 0, the strength 7 is excluded. Obviously,
when x4 is equal to 1 and other bits are equal to O, it
is FICTCP; otherwise, it is MICTCP. For example, L3 =
‘100’ represents FICTCP with strength 3; while Ly = ‘1101°
represents MICTCP with strengths 1, 3, and 4. Table 3 gives
an overview of the 63 ICTCP techniques investigated, from
which d, L4, and strengths used, are presented.

Algorithm 1 shows the details of the ICTCP, which builds
on previous algorithms to prioritize model inputs using in-
teraction coverage [17], [18], [21]-[23], i.e., it calculates the
fitness of each candidate that has not been chosen, and selects
one candidate such that it has the maximum fitness as the
next test case in the prioritized set. As for the fitness function
fitness(Lg, tc, S), it can be defined as following:

{€l¢ € (i, te) \ :p(i,T»,xi =1} -
Ck

d
fitness(Lg, te,T) = Z |
=1
When facing the tie case (i.e., there exists more than one
candidate achieving the maximum fitness), the algorithm
adopts random tie-breaking [32] to randomly choose one.
After that, the algorithm removes the selected test case from
the candidates. This process is repeated until all model inputs
are chosen.

Since ICTCP involves randomization (due to the random
tie-breaking technique [32]), we ran each experiment 100
times, and collected a set of different outcomes for each
prioritization technique: This could help us further ana-
lyze performance differences between different prioritization
techniques.

C. FAULT SEEDING

For each of the subject programs, the original version con-
tains no seeded-in faults. In this paper, we have used mutation
analysis [33]. As discussed in previous studies [34], [35],

Algorithm 1 ICTCP Procedure

Input: T > An unordered set of model inputs
Ly > A d-digit (1 < d < k) binary number

Output: S > A prioritized set of model inputs
I: S«
2: while |[T'| > 0
3 if|T|>1
4: Select tc € T, where maz (fitness(Lg, tc, S)) i take the random
one in case of equality
5: S.add(tc)
6: T+ T\ {tc}
7: else > T contains only one element
8: S.add(tc), where tc € T
9: T+ 0
10: end if
11: end while
12: return S

VOLUME 4, 2016

mutation analysis can provide more realistic faults than hand-
seeding, and may be more appropriate for studying test case
prioritization.

For the five subject programs, we used the same mutation
faults as used by Henard et al. [10], i.e., we employed the
mutant operators set used by Andrews et al. [34], such as
statement deletion, constant replacement, unary insertion,
arithmetic operator replacement, logical operator replace-
ment, relational operator replacement, and bitwise logical
operator replacement. Among all mutants, we removed the
duplicated and equivalent mutants as possible, and also re-
moved all mutants that are not killed by any model input
by following previous practices [1], [34], [36]. In addition,
all the subsuming mutants [37] (also called minimum mu-
tants [38] or disjoint mutants [39]) that are easily killed from
the original program were removed, because these mutants
may affect the value of the mutation score measurement [34],
[38]-[40]. A mutation fault is said to be detected by a test
case when execution outputs are different for the original and
fault-seeded versions. Table 2 shows the number of faults
adopted in this study.

D. EVALUATION METRICS

To evaluate different ICTCP strategies, in this study we
focused on the following three aspects: (a) rate of interaction
coverage, to measure how quickly each prioritized set of
model inputs covered value combinations; (b) rate of fault
detection, to measure how well each prioritized test set
identified faults; and (c) prioritization cost, to measure how
quickly each prioritized test set was obtained.

1) Interaction Coverage Rate

The average percentage of \-wise combinations covered
(APCC) [41], also named average percentage of combinato-
rial coverage [42] or average percentage of covering-array
coverage [18], is used to measure the rate of interaction
coverage of strength A achieved by a prioritized test set of
model inputs. Its definition is given as follows.

Definition 5. Suppose T = {t1,ta, - ,t,} is a set of model
inputs with size n, the APCC definition of S at strength
A< A<k)is:

" A, s
APCC(), §) = Zz_1n|1i(|¢gj;ﬁ )l _% ©

The APCC metric values range from 0.0 to 1.0, with
higher values meaning better rates of interaction coverage at
a specific strength \. In this paper, we considered APCC with
A=1,2,3,4,5, and 6, by following previous studies [18].

However, previous APCC calculations only evaluate a
given prioritized set of model inputs at a specific strength
A, resulting in the case that different strengths may draw
different conclusions. In this paper, therefore we adopt the
average APCC metric value based on the strengths 1, 2, 3, 4,
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5,and 6, i.e.,

6
AvgAPCC(S) = % > APCC(),S) (7)
A=1

2) Fault Detection Rate

The average percentage of faults detected (APFD) was used
to assess different prioritization techniques [1]. Its definition
is given as follows (from [1]):

Definition 6. Suppose T is a test suite containing n test
cases, and F is a set of m faults revealed by T'. Let SF; be
the number of test cases in the prioritized test set S of T that
are executed until detecting fault F; € F. The APFD for test
sequence S is given by the following equation:

_ SF1+SFy +--- 4 SFy +i ®)

APFD(S) =1
() nxXm 2n

3) Prioritization Cost

The prioritization cost measures the prioritization time re-
quired for each ICTCP technique, and represents the efficien-
cy of the technique. Lower prioritization costs mean better
performance.

E. STATISTICAL ANALYSIS
When assessing the statistical significance of the differences
between the APCC or APFD values (used to evaluate each
ICTCP technique), it is reasonable to use an unpaired test be-
cause there was no relationship between any of the 100 runs.
Therefore, following previous studies dealing with random-
ized algorithms [43], [44], we used the unpaired two-tailed
Wilcoxon-Mann-Whitney test of statistical significance (set
at a 5% level of significance).

Because multiple statistical prioritization techniques were

the executions increases, p becomes sufficiently small [10],
which means that there are differences between the two
algorithms. We used the non-parametric Vargha and Delaney
effect size measure [45], Alg, which presents the probability
that one technique is better than another — with a higher
effect size (value) indicating higher probability. For exam-
ple, A12(a:,y) = 1.0 indicates that, based on the sample,
algorithm x always performs better than algorithm y; and
Ao (z,y) = 0.0 means that x always has worse performance.

IV. RESULTS

In this section, the results of empirical studies are presented
comparing MICTCP and FICTCP techniques. In the plots in
each figure in this section (Figures 2 to 11), the X-axis lists
the prioritization techniques compared, and the Y-axis shows
the AvgAPCC or APFD values for that technique. Each box
plot shows the mean (square in the box), median (line in the
box), upper and lower quartile, and min/max AvgAPCC or
APFD values for the prioritization technique. In addition,
Tables 4 and 6 give the statistical pairwise comparisons of
AvgAPCC and APFD between MICTCP and FICTCP, from
which each cell provides the p-Value/Alz measure.

A. RQ1: INTERACTION COVERAGE EXPERIMENTS

Figures 2 to 6 present the AvgAPCC results of different d
values, each of which contains five sub-figures for subject
program Flex, Grep, Gzip, Make, and Sed, respectively. Each
plot shows the distribution of the 100 AvgAPCC values
(i.e., 100 orderings). Table 4 records the statistical pairwise
AvgAPCC comparison between MICTCP and FICTCP.

1) Observations
Based on the experimental data, we have the following ob-

employed, we report the p-values — as the number of servations:
. o] ) T i
o = wofe
(a) Flex (b) Grep (c) Gzip (d) Make (e) Sed

FIGURE 2: AvgAPCC metric values for each program when d = 2.
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FIGURE 3: AvgAPCC metric values for each program when d = 3.
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FIGURE 5: AvgAPCC metric values for each program when d = 5.

1) When d = 2 or d = 3, i.e., the maximum strength used
in FICTCP and MICTCP is equal to 2 or 3, FICTCP performs
similarly to MICTCP. In nearly all cases, MICTCP has slight-
ly higher rates of interaction coverage than FICTCP, both in
terms of mean and median AvgAPCC values. Nevertheless,
sometimes FICTCP achieves slightly better AvgAPCCs than
MICTCP, for example, ‘110° vs ‘100’ for program Grep.
In other words, MICTCP does not always perform better
than FICTCP. The statistical analysis generally confirms the
box plot results, because all p-values are higher than 0.05;
and all effect size Alg values are around 0.50. It can be
also observed that the A12 values of MICTCP compared to
FICTCP are higher than or equal to 0.50 (except ‘110° vs
‘100 for program Grep, as its values is 0.44).

2) When d is high (i.e., d = 4, 5, and 6), the comparisons
between FICTCP and MICTCP have different levels of per-
formance for different subject programs. More specifically,

o For programs Flex and Grep, each MICTCP technique
constructs prioritized model inputs with much higher
AvgAPCC values than FICTCP, irrespective of d val-
ues. Both in terms of mean and median AvgAPCC
values, the minimum differences of AvgAPCC between
MICTCP and FICTCP are approximately 0.02, 0.03,
and 0.06 for program Flex with d equalling 4, 5, and
6, respectively; while the maximum differences reach
about 0.03, 0.06, and 0.23. The case of program Grep

VOLUME 4, 2016

is similar to that of program Flex, i.e., the minimum
AvgAPCC differences are close to 0.02, 0.06, and 0.14
for d being 4, 5, and 6; while the maximum differences
approach 0.04, 0.12, and 0.29, respectively. According
to the statistical comparisons, all p-values are much less
than 0.05, which means that the differences between
FICTCP and MICTCP are highly significant; while all
effect size Alg values are much higher than 0.50, rang-
ing in [0.67, 1.00] for Flex and [0.76, 1.00] for Grep,
which indicates that MICTCP has better performance
than FICTCP at least 67% of the time.

o As for programs Gzip and Make, we observe the fol-
lowings: a) When d is equal to 4 or 5, FICTCP and
MICTCP have very similar AvgAPCC values, regard-
less of both mean and median values. In some cas-
es, however, FICTCP has slightly better performance
than some MICTCP techniques such as ‘1100°, ‘1101°,
‘1110, “1111°, ‘11100°, ‘111017, ‘11110, and ‘11111°.
The statistical analysis generally validates the box plot
observations: all p-values are higher than 0.05 (except
the case of ‘1101° vs ‘1000’ with 7.0E-03), which
means that FICTCP and MICTCP do not have highly
significant differences; while the effect size Alg val-
ues are less than 0.50 in most cases, which indicates
that MICTCP performs better than FICTCP in less
than 50% of the cases. b) When d is equal to 6, the
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FIGURE 6: AvgAPCC metric values for each program when d = 6.
case seems opposite. In detail, although there exist few has better performance than FICTCP in 50% to 60% of
MICTCP techniques that have similar AvgAPCC values the cases.
to FICTCP, in many cases MICTCP achieves much o For Sed, different d values result in different observa-
higher rates of interaction coverage. Considering pro- tions: a) When d = 4, MICTCP has slightly better
gram Make for example, all MICTCP techniques have performance than FICTCP, both in terms of median
higher AvgAPCC values than FICTCP with the maxi- and mean values. This observation can be confirmed
mum mean and median differences being approximately by the statistical analysis, i.e., the half of p-values are
0.04. Moreover, the majority of p-values for comparing less than 0.05, which means that the AvgAPCC differ-
MICTCP and FICTCP are much less than 0.05, which ences between MICTCP and FICTCP are not highly
means that the AvgAPCC differences between them are significant in half of the cases. However, all effect size
highly significant in the majority of cases. Meanwhile, Ajo values are greater than 0.50, (0.53 0.61), which
all effect size A;o values for comparing MICTCP a- indicates that MICTCP outperforms FICTCP 53% to
gainst FICTCP are greater than 0.50. Specifically, the 61% of the time. b) When d = 5, MICTCP techniques
Aj2 values range from 0.52 to 0.65 for program Gzip, are similar or better than FICTCP, except ‘11100’ and
indicating that MICTCP performs better than FICTCP ‘11110’ both in terms of mean and median AvgAPCC
from 52% to 65% of the time; while ranging from 0.50 values. The maximum difference of the mean AvgAPCC
to 0.64 for program Make, which means that MICTCP between FICTCP and MICTCP reaches more than 0.02.
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TABLE 4: Statistical pairwise AvgAPCC comparison between MICTCP and FICTCP.

d MICTCP FICTCP Flex Grep Gzip Make Sed
2 ‘r ‘10° 0.17/0.56 0.60/0.52 0.42/0.53 0.86/0.51 0.03/0.59
‘1017 0.03/0.59 0.51/0.53 0.52/0.47 0.48/0.47 0.41/0.53

3 ‘110° ‘100 0.27/0.55 0.16/0.44 0.73/0.51 0.94/0.50 0.15/0.56
‘111 0.29/0.54 0.27/0.54 0.51/0.53 0.22/0.55 0.74/0.51

‘1001° 2.8E-05/0.67  1.0E-10/0.76 0.91/0.50 0.86/0.49 0.14/0.56

‘10107 6.2E-10/0.75  2.9E-12/0.79 0.28/0.46 0.67/0.52 0.01/0.61

‘1011° 5.2E-09/0.74  8.5E-17/0.84 0.66/0.48 0.42/0.53  9.6E-03/0.61

4 ‘1100 1000 6.9E-04/0.64  2.1E-03/0.63 0.72/0.49 0.18/0.45 0.45/0.53
‘1101” 8.4E-05/0.66  1.9E-08/0.73 0.40/0.47  7.0E-03/0.39 0.13/0.56

‘11107 4.6E-04/0.64  2.9E-06/0.69 0.89/0.49 0.83/0.49 0.02/0.60

‘111 3.2E-06/0.69  3.0E-09/0.74 0.57/0.48 0.08/0.43 0.23/0.55
‘10001° 3.2E-15/0.82  8.6E-25/0.92 0.21/0.45 0.61/0.48  3.1E-10/0.76
‘10010’ 5.1E-26/0.93  2.3E-32/0.98 0.78/0.51 0.44/0.53  5.5E-12/0.78
‘10011° 8.0E-28/0.95  1.1E-32/0.99 0.57/0.52 0.46/0.47  1.5E-11/0.78
‘10100 1.9E-30/0.97  3.2E-32/0.98 0.88/0.51 0.51/0.47  1.4E-08/0.73
‘10101° 1.4E-31/0.98  8.7E-34/1.00 0.37/0.46 0.74/0.49  3.4E-10/0.76
‘10110 1.1E-30/0.97  1.0E-33/1.00 0.80/0.51 0.52/0.53  9.8E-15/0.82
‘10111° 4.0E-33/0.99  7.1E-34/1.00 0.75/0.49 0.99/0.50  8.8E-13/0.79

5 ‘11000 10000 1.3E-19/0.87  3.9E-20/0.88 0.40/0.47 0.92/0.50  3.3E-03/0.62
‘11001° 5.7E-26/0.93  1.6E-31/0.98 0.80/0.49 0.83/0.49  3.1E-07/0.71
‘11010 4.8E-31/0.97  9.9E-33/0.99 0.65/0.48 0.43/0.47  2.6E-09/0.74
‘11011° 4.6E-32/0.98  5.8E-33/0.99 0.87/0.49 0.60/0.48  1.6E-12/0.79
‘11100° 1.0E-29/0.96  2.3E-30/0.97 0.45/0.47 0.23/0.45 0.12/0.44
‘11101° 2.8E-31/0.98  8.8E-33/0.99 0.34/0.46 0.43/0.47 0.52/0.53
‘11110° 6.5E-31/0.97  1.8E-33/0.99 0.72/0.49 0.22/0.45 0.88/0.51
‘111 1.9E-30/0.97  5.3E-34/1.00 0.13/0.44 0.09/0.43 0.28/0.54
“100001” 4.8E-24/0.91  2.0E-32/0.99 0.65/0.52 0.69/0.52  2.9E-17/0.85
‘100010’ 3.2E-34/1.00  2.7E-34/1.00 0.05/0.58 0.64/0.52  1.1E-28/0.95
‘100011” 5.8E-34/1.00  2.6E-34/1.00 0.33/0.54 0.99/0.50  1.2E-31/0.98
‘100100 2.6E-34/1.00  2.7E-34/1.00 0.02/0.60  5.6E-03/0.61  9.1E-29/0.96
‘100101” 2.6E-34/1.00  2.6E-34/1.00  3.0E-03/0.62  6.8E-03/0.61  3.4E-30/0.97
‘100110° 2.6E-34/1.00  2.6E-34/1.00  1.7E-04/0.65 7.8E-03/0.61  2.8E-31/0.98
‘100111° 2.6E-34/1.00  2.6E-34/1.00 0.02/0.60 0.15/0.56  1.8E-32/0.99
‘101000’ 2.6E-34/1.00  2.8E-34/1.00  7.1E-04/0.64 0.04/0.58  2.5E-28/0.95
‘101001” 2.6E-34/1.00  2.6E-34/1.00  3.8E-03/0.62 0.12/0.56  2.5E-31/0.98
‘101010 2.6E-34/1.00  2.6E-34/1.00  7.1E-03/0.61 0.15/0.56  6.7E-32/0.98
‘101011° 2.6E-34/1.00  2.6E-34/1.00  6.1E-03/0.61 0.08/0.57  6.5E-32/0.98
‘101100’ 2.6E-34/1.00  2.6E-34/1.00 0.01/0.60  5.2E-04/0.64  2.4E-24/0.92
‘101101° 2.6E-34/1.00  2.6E-34/1.00  1.9E-04/0.65 0.02/0.60  1.4E-25/0.93
‘101110° 2.6E-34/1.00  2.6E-34/1.00  6.1E-03/0.61 0.04/0.59  2.1E-26/0.94
‘101111° 2.6E-34/1.00  2.6E-34/1.00 0.05/0.58 0.02/0.60  3.7E-26/0.93

6 ‘110000’ ‘100000°  2.7E-34/1.00  8.3E-32/0.98 0.12/0.56  5.3E-03/0.61  8.0E-13/0.79
‘110001” 2.6E-34/1.00  2.7E-34/1.00 0.39/0.54 0.24/0.55  2.5E-26/0.93
‘110010 2.6E-34/1.00  2.6E-34/1.00 0.07/0.58 0.11/0.56  1.6E-28/0.95
‘110011° 2.6E-34/1.00  2.6E-34/1.00 0.08/0.57 0.20/0.55  1.8E-28/0.95
‘110100’ 2.6E-34/1.00  2.6E-34/1.00 0.15/0.56  3.7E-03/0.62  2.8E-31/0.98
‘110101” 2.6E-34/1.00  2.6E-34/1.00  5.5E-03/0.61 0.02/0.59  2.2E-32/0.99
‘110110° 2.6E-34/1.00  2.6E-34/1.00  2.0E-03/0.63 0.01/0.60  2.7E-32/0.98
‘110111° 2.6E-34/1.00  2.6E-34/1.00 0.02/0.59 0.05/0.58  3.1E-32/0.98
‘111000 2.6E-34/1.00  2.9E-34/1.00 0.11/0.56 0.46/0.53  2.3E-28/0.95
‘111001° 2.6E-34/1.00  2.6E-34/1.00  3.5E-03/0.62 0.04/0.59  2.4E-29/0.96
‘111010° 2.6E-34/1.00  2.6E-34/1.00  1.9E-03/0.63 0.02/0.59  1.2E-30/0.97
‘r11o1r 2.6E-34/1.00  2.6E-34/1.00  3.9E-03/0.62  4.7E-03/0.62  2.4E-32/0.98
‘111100° 2.6E-34/1.00  2.6E-34/1.00  2.3E-03/0.62 0.06/0.58  5.0E-18/0.85
‘11ior 2.6E-34/1.00  2.6E-34/1.00  4.2E-02/0.58  3.7E-03/0.62  1.9E-26/0.94
‘111110 2.6E-34/1.00  2.6E-34/1.00  8.5E-03/0.61  4.0E-03/0.62  2.0E-22/0.90
L 2.6E-34/1.00  2.6E-34/1.00  6.0E-03/0.61  1.3E-03/0.63  1.7E-26/0.94

As observed in the statistical results, apart from the
last four MICTCP techniques (i.e., ‘11100°, ‘11101°,
‘11110°, and ‘11111°), all others techniques have highly
significant differences compared to FICTCP, because p-
values are much less than 0.05. However, all MICTCP
techniques (except ‘11100’) have effect size Ay values
which range from 0.51 to 0.82 compared to FICTCP,
which means that MICTCP outperforms FICTCP in

51% to 82% of the cases. ¢) When d = 6, all MICTCP
techniques have much higher AvgAPCCs than FICTCP,
where the minimum difference is about 0.02; and the
maximum difference reaches 0.05, both in terms of
median and mean values. The p-values of MICTCP
compared to FICTCP are much lower than 0.05, which
means that their differences are highly significant; while
the effect size Alg values are much higher than 0.50,
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ranging from 0.79 to 0.99, which means that MICTCP
outperforms in 79% to 99% of the cases.

To sum up, when d is high, in most cases MICTCP has
similar or better performance than FICTCP, although
there are exceptions. Additionally, the statistical analysis
supports the box plot observations.

3) With the increase of d, in most cases MICTCP achieves
higher differences against FICTCP for all programs, although
there exist some fluctuations. In other words, when d is
higher, the differences between MICTCP and FICTCP be-
comes higher. Consider the effect size values for comparing
MICTCP against FICTCP, the 5-tuple of A, intervals for
program Flex is ([0.56, 0.56], [0.54, 0.59], [0.64, 0.75], [0.82,
0.99], [0.91, 1.00]) for five d values, respectively, i.e., d = 2,
3,4, 5, and 6; ([0.52, 0.52], [0.44, 0.54], [0.63, 0.79], [0.88,
1.00], [0.99, 1.00]) for program Grep; ([0.53, 0.53], [0.47,
0.53], [0.46, 0.50], [0.44, 0.51], [0.52, 0.65]) for program
Gzip; ([0.51, 0.51], [0.47, 0.55], [0.39, 0.53], [0.43, 0.53],
[0.52, 0.64]) for program Make; and ([0.59, 0.59], [0.51,
0.56], [0.53, 0.61], [0.44, 0.82], [0.39, 0.99]) for program
Sed. It can be seen that the percentage of the cases where
MICTCP outperforms FICTCP generally increases, along
with the increase of d.

To sum up, in terms of interaction coverage rates,
MICTCP generally performs better than FICTCP in
most cases, especially when d is high. However, the better
performance of MICTCP compared to FICTCP is not
always observed, which means that sometimes FICTCP
could have better rates of interaction coverage.

2) Analysis
In this section, we briefly analyze the above AvgAPCC and
APCC observations. For ease of description, let the strength
A be used in the calculation of APCC.

On the one hand, FICTCP adopts a fixed strength d (1 <
d < 6) to prioritize model inputs, which means that it
attempts to cover d-wise value combinations as quickly as
possible. On the other hand, MICTCP adopts more than
one strength, less than or equal to d (from which the pri-
oritization strength d is bound to be chosen), to guide the
prioritization, which means that there exists a balance among
different strengths. In other words, MICTCP may satisfy
more strengths to sacrifice the strength d.

Our results are consistent with three cases, listed as fol-
lows:

o Case 1: When d (used in FICTCP and MICTCP) is
equal to A used in APCC, FICTCP with the strength d
achieves higher or similar d-wise APCCs to MICTCP,
because FICTCP uses the number of uncovered -
wise value combinations as the prioritization criterion
(although there are a few exceptions due to local op-
timization being used instead of global optimization in
FICTCP).

e Case 2: When d is higher than A\, MICTCP would
have prioritized model inputs with higher APCCs than

10

TABLE 5: Mean APCC at each \ for FICTCP and MICTCP.

Object : . S‘"}“g"‘ Val“zm L . AvgAPCC
0 64 9899 9658 9261 §701 7071 C5)
‘A 99.66 9899 9660 9264 8707 7980 9246
T00 9962 9893 9771 9430  §886  BI06 9345
1 9965 9897 9771 9449 8887 8109 93.46
e To00 0958 0882 0761 0540 0083 8325 935
1 99.64 9891 9768 9538 9079 8325 948
TO000 9953 0869 9740 0528 OT65 518 Y
G 9964 9885 9756 9536 9161 8509 94.69
TO0000 0045 9847 9708 9493 OT45 8578 9753
G111 9964 9881 9747 9525 9l6l 8574 9475
0 929 9761 9173 8424 7642 6886 %636
I 9932 9761 9175 8425 7643 6887 86.37
00" 025 9752 9393 8736 60 7126 819
1 9932 9759 9393 8753 7958 7126 8820
Grep To00 00100735 0385 ®836 L0 7362 %903
1 9932 9752 9391 8853  8L53 7355 89.06
TO000—99.06 O7.16 9364 B850 BI80 7405 %908
G 9932 9746 9384 8855 8175 7398 89.15
TO0000 0879 9683 0334 830 BI76 A% R8T
G 9932 9740 9375 8849 8I79 7410 89,14
0 9871 9731 9446 9038 8617 8157 o147
I 9870 9730 9447 9062 8624 8l67 9150
00" B 9729 9514 0.5 8851 8442 9370
1 9870 9730 9515 9217 8852 8444 9271
G To00 0871 0732 90507 0241 920 8561 9307
1 9870 9730 9505 9240  89.19 856l 93.06
TO000 98700730 9513 0233 008 8532 9301
Q11 9870 9730 9502 9231 8905 8548 9299
0000008709729 9513 9234 K908 8549 9301
G 9871 9731 9514 9234 8909 85.53 9302
0 9908 9810 9383 0197 8669 8032 92.00
‘1 9908 9811 9582 9196 8669 8033 92,00
o0 9007 0810 9656 9355 8871 8226 9304
i 9908 9811 9657 9357 8875 8231 9307
Make To00 0007 0B09 9655 0412 9000 B&I8 9368
1 9906 9809 9655 9410 9007 8415 9367
TO000 9903 9808 9655 OF12 0043 8511 9389
T 9907 9809 9655 9411 9040 8504 9388
TO0000 0899 9807 9653 9407 004T 8527 9389
G 9907 9809 9653 9410 9043 8525 9391
0 W03 9697 9025 820 7664 7073 %615
I 9916 9696 9034 8331 7674 7082 86.22
00" 00T 0692 9271 8699 8066 7436 %846
i 99.14 9694 9271 8698  80.66 7436 88.47
S To00 9008 0687 9270 8730 STA0 7549 REST
1 99.13 9692 9271 8129 8138 7546 88.82
TO000—99.04 0680 9265 R730 STAT 7560 REST
T 9903 9689 9270 8729 8140 7549 88.82
TO0000 0899 9673 0238 8727 BIA 7563 R0
G 9903 9686 9267 8730 8Id6  75.59 88.84

FICTCP, because MICTCP considers the strengths low-
er than d during the prioritization process, which may
deliver better A-wise APCC values.

e Case 3: When d is less than A, it is difficult to
distinguish which one is better between FICTCP and
MICTCP for obtaining prioritized model inputs with
higher APCCs, but they could perform similarly. The
main reason for this is that: Considering a small d
(for example, d = 2 or 3), when all d-wise value
combinations have been covered by already selected
model inputs (indicating that all value combinations at
the strengths less than d have also been covered), the
remaining candidate model inputs could be prioritized
randomly for both MICTCP and FICTCP.

Table 5 describes a A-wise (1 < A < 6) APCC comparison
of FICTCP and d-strength MICTCP for each subject pro-
gram, from which the above three cases could be validated.
As shown in Eq.(7), the AvgAPCC metric is the average
result of six APCC values at strengths from 1 to 6. As
a consequence, when d is small (such as d = 2,3), the
AvgAPCC difference between FICTCP and MICTCP could
be small, due to Case 1, and Case 3. However, when d is high
(such as d = 4, 5, 6), the difference generally seems highly
significant, due to Case 1, and Case 2.

In a few cases of Gzip and Make, such as d = 4 and
d = 5, their AvgAPCC observations slightly conflict with the
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above explanations. The main reason may be the special input
parameter model of each program. As shown in Table 2, the
model of program Gizp is Model (14, 2133, C), |C| = 69, and
the model of program Make is Model(10, 21°,C), |C| = 28.
Both of them have nearly all parameters with binary values,
and many constraints among parameter values, resulting in
the case that FICTCP with d = 4 or d = 5 could achieves
considerable (even better) A-wise (1 < A < d) APCCs
compared to MICTCP. As shown in Table 5, for program
Gzip, FICTCP with d = 4 (i.e., ‘1000’) and d = 5 (i.e.,
‘10000’) can have higher or equal A-wise APCC values
compared to d-strengths MICTCP (i.e., ‘1111’ for d = 4, and
‘11111’ for d = 5). Similarly, for program Make, the ‘1000
is equal to or better than the ‘1111 in terms of APCCs at
each A value; and the ‘10000’ has lower APCCs at A = 1,2
than the ‘11111°, but it has higher APCCs at other A\ values
(i.e., A =3,4,5).

To answer RQI therefore, MICTCP does not always
achieve better rates of interaction coverage compared with
FICTCP, even though it uses more information to support
the prioritization of model inputs. Nevertheless, MICTCP
performs better than FICTCP in many cases, especially when
d is high.

B. RQ2: FAULT DETECTION EXPERIMENTS

Figures 7 to 11 present the APFD results for different d
values, each of which contains five sub-figures for subject
programs Flex, Grep, Gzip, Make, and Sed. Each plot shows
the distribution of the 500 APFD values (i.e., 100 orderings
x5 versions). Table 6 records statistical pairwise APFD
comparisons of MICTCP and FICTCP.

1) Observations
Based on the experimental data, we have made the following
observations:

1) For all five programs (Flex, Grep, Gzip, Make, and Sed)
with all d values, MICTCP has similar APFDs to FICTCP.
From the figures it can be seen that the maximum APFD
difference between FICTCP and MICTCP is around 1%, both
in terms of mean and median APFD values.

2) For some cases, MICTCP performs slightly better than
FICTCP, such as program Grep with d = 6. However,
FICTCP also achieves slightly higher APFDs in some cases,
such as program Make with d = 5 and d = 6. In other words,
there is no technique that is always the best.

3) The statistical analysis overall validates the box plot
observations. More specifically, the majority of p-values (220
out of 285 cases being equal to 77%) are greater than 0.05,
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TABLE 6: Statistical pairwise APFD comparison between MICTCP and FICTCP.

d MICTCP FICTCP Flex Grep Gzip Make Sed
2 ‘r ‘10° 0.49/0.51 0.95/0.50  0.95/0.50 0.96/0.50 0.08/0.47
‘101° 7.3E-04/0.44 0.71/0.49  0.97/0.50  3.4E-06/0.42 0.94/0.50

3 ‘110 100 0.96/0.50 0.64/0.51  0.76/0.51  4.2E-04/0.44 0.03/0.54
‘111 1.7E-05/0.42 0.08/0.47  0.46/0.51 0.54/0.51 0.12/0.53

‘1001 2.2E-04/0.57 0.44/0.51  0.88/0.50 0.29/0.48  5.7E-04/0.56

‘1010 0.55/0.51 0.21/0.48  0.88/0.50 0.06/0.54  2.4E-03/0.56

‘1011° 0.38/0.48 0.08/0.47  0.96/0.50 0.48/0.51  3.0E-04/0.57

4 ‘1100 1000 0.57/0.51 0.99/0.50  0.84/0.50 0.12/0.53 0.02/0.54
‘1101° 0.04/0.54 0.62/0.49  0.80/0.50 0.48/0.51 0.03/0.54

‘1110° 0.60/0.51 0.31/0.48  0.70/0.49 0.04/0.54  1.8E-03/0.56

‘111 0.24/0.52 0.17/0.48  0.67/0.51 0.04/0.46 0.29/0.52
‘10001 7.9E-03/0.55 0.04/0.54  0.79/0.50 0.02/0.46 0.30/0.48
‘10010 0.86/0.50 0.01/0.55  0.73/0.51 0.75/0.51 0.33/0.52
‘10011° 0.58/0.51 0.52/0.51  0.85/0.50  9.0E-03/0.45 0.24/0.52
‘10100 0.37/0.52 0.01/0.54  0.85/0.50 0.03/0.46 0.07/0.53
‘10101° 0.27/0.52 0.03/0.54  0.65/0.51 0.11/0.47 0.11/0.53
‘10110 0.16/0.47 0.08/0.53  0.60/0.49 0.02/0.46 0.38/0.48
‘10111° 0.19/0.48 0.08/0.53  0.56/0.49 0.40/0.48 0.51/0.51

5 ‘11000 10000 0.04/0.54 0.06/0.53  0.59/0.49 0.28/0.52 0.56/0.51
‘11001° 0.24/0.52 0.11/0.53  0.45/0.51 0.35/0.48 0.29/0.52
‘11010 0.12/0.53 0.03/0.54  0.34/0.52 0.12/0.47 0.11/0.53
‘11011° 0.40/0.48  2.5E-03/0.56  0.63/0.49 0.62/0.49 0.31/0.52
‘11100° 0.98/0.50 0.20/0.52  0.57/0.49 0.66/0.49 0.10/0.53
‘11101° 0.87/0.50 0.12/0.53  0.88/0.50 0.83/0.50 0.07/0.53
‘11110 0.24/0.52 0.66/0.51  0.64/0.49 0.06/0.47 0.33/0.52
‘111 0.99/0.50 0.10/0.53  0.38/0.52 0.18/0.48 0.48/0.51
“100001” 0.52/0.51  5.5E-03/0.55  0.34/0.52 0.02/0.46 0.13/0.47
‘100010’ 0.29/0.52  2.3E-04/0.57  0.01/0.55  2.2E-03/0.44 0.14/0.53
‘100011” 0.37/0.48  4.2E-06/0.58  0.08/0.53 0.02/0.46 0.08/0.47
‘100100 0.42/0.51 0.01/0.55  0.40/0.52 0.47/0.49 0.70/0.51
‘100101° 0.47/0.51  4.7E-06/0.58  0.88/0.50 0.91/0.50  6.9E-03/0.45
‘100110° 0.54/0.51  3.1E-04/0.57  0.50/0.49 0.07/0.47 0.28/0.48
‘100111° 0.27/0.52 0.49/0.51  0.11/0.53 0.74/0.49 0.97/0.50
‘101000’ 0.65/0.51  1.1E-04/0.57  0.15/0.53 0.08/0.47 0.32/0.48
‘101001” 0.82/0.50  5.0E-03/0.55 0.43/0.51  3.8E-03/0.45 0.09/0.47
‘101010 0.44/0.51  3.3E-04/0.57  0.87/0.50 0.04/0.46 0.13/0.47
‘101011° 0.34/0.52 0.01/0.55  0.23/0.52 0.07/0.47 0.61/0.51
‘101100° 0.49/0.49  3.9E-03/0.55 0.71/0.49 0.68/0.49 0.55/0.49
‘101101° 0.73/0.51 0.20/0.52  0.47/0.51  5.3E-03/0.45 0.02/0.46
‘101110° 0.38/0.48  9.4E-03/0.55  0.09/0.53 0.04/0.46 0.82/0.50
‘101111° 0.03/0.46 0.06/0.53  0.67/0.51 0.84/0.50 0.37/0.48

6 ‘110000’ 100000 1.6E-03/0.56 0.18/0.52  0.04/0.54 0.04/0.46 0.21/0.48
‘110001” 0.04/0.54 0.14/0.53  0.04/0.54 0.04/0.46  9.6E-04/0.44
‘110010 0.31/0.52  8.1E-03/0.55  0.32/0.52 0.04/0.46 0.33/0.48
‘110011° 0.92/0.50  5.8E-03/0.55  0.29/0.52 0.26/0.48 0.06/0.46
‘110100° 0.58/0.49 0.04/0.54  1.00/0.50 0.66/0.51 0.30/0.48
‘110101” 0.16/0.53 0.04/0.54  0.56/0.49 0.69/0.49 0.45/0.49
‘110110° 0.19/0.48  5.7E-05/0.57  0.68/0.49 0.12/0.47 0.24/0.52
‘110111° 0.84/0.50 0.17/0.53  0.21/0.52 0.07/0.47 0.80/0.50
‘111000’ 0.41/0.51 0.02/0.54  0.56/0.51 0.02/0.46 0.33/0.52
‘111001 0.04/0.54 0.03/0.54  0.58/0.51 0.59/0.49 0.74/0.49
‘111010° 0.06/0.53 0.10/0.53  0.43/0.51 0.67/0.51 0.17/0.48
‘r11o1r 0.74/0.49 0.03/0.54  0.55/0.51 0.04/0.46 0.73/0.51
‘111100° 0.99/0.50 0.18/0.52  0.87/0.50 0.02/0.46 0.37/0.48
‘11ior 0.80/0.50  5.5E-05/0.57 0.41/0.52 0.50/0.49 0.55/0.49
‘111110 0.53/0.49 0.03/0.54  0.20/0.52 0.44/0.51 0.87/0.50
‘AL 0.83/0.50  1.7E-03/0.56  0.19/0.52 0.85/0.50 0.95/0.50

which means that only 23% of cases are less than 0.05. In 39/285 = 14%, and 96/285 = 33%, respectively. As a

other words, in most cases the APFD differences between
MICTCP and FICTCP are not highly significant. As for the
effect size Alg values, when d is high, i.e., d = 4, 5, and 6,
the most A;, values are greater than 0.50 for all programs
except program Make. Additionally, the percentages of the
cases with Aqo values higher than, equaling to, and less
than 0.50 are equal to approximately 150/285 = 53%,

12

consequence, MICTCP performs slightly better than FICTCP
in about 53% of the cases; while the opposite situation occurs
in 33% of the cases (i.e., FICTCP performs slightly better
than MICTCP).

To conclude, MICTCP has very similar rates of fault
detection compared with FICTCP, and there is no con-
sistently superior technique for prioritizing model input-
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FIGURE 10: APFD metric values for each program when d = 5.

s. Nevertheless, MICTCP slightly performs better than
FICTCP in more than 50% of the cases.

2) Analysis
In this section, we briefly present an analysis of above APFD
observations.

When FICTCP uses the prioritization strength d to pri-
oritize model inputs, MICTCP uses d and other prioritiza-
tion strengths lower than d. As discussed in Section IV-A,
MICTCP could achieve a balance between d and other
strengths during the prioritization process, which could result
in the following two cases: 1) MICTCP achieves the lower
rates of covering d-wise value combinations than FICTCP;
and 2) MICTCP achieves higher rates of covering value
combinations at strengths lower than d than FICTCP.

As we know, each program fault could be triggered by a
number of parameters, i.e., the failure-triggering fault inter-
action (FTFI) number [31], or the failure-causing parameter
interaction (FCPI) number [46]. For example, when the FTFI
number of a fault is equal to 2, i.e., this fault is caused by
two parameters and testing all pairwise value combinations
is bound to identify such a fault. Consider a fault F with
the FTFI number 7 (1 < 7 < k), where k is the number
of parameters of the input parameter model, there exist the
following three cases:

o Casel:If d = 7, i.e., the fault F could be triggered by d
parameters; FICTCP may detect F' more quickly than
MICTCP, because FICTCP could cover d-wise value
combinations sooner.

e Case 2: If d > 7, i.e., the fault F could be identified
by less than d parameters; MICTCP may perform more
effectively than FICTCP to detect F,, because MICTCP
could cover T-wise value combinations more quickly.

e Case 3: If d < 7, ie., the fault F could be caused
by more than d parameters; it is difficult to distinguish
whether MICTCP or FICTCP is better, because they do

VOLUME 4, 2016

not aim to cover 7-wise value combinations as soon as
possible.

As shown in Table 7, the FTFI number of each 7 is given
for each program. It can been seen that for subject programs
Flex, Grep, Gzip, and Sed, over 50% of faults are with FTFI
numbers being equal to less than 3; while for program Make,
most of faults are with the FTFI number higher than 6.
Therefore, it would be expected that MICTCP could have
better rates of fault detection than FICTCP, especially when
d is high. As investigated in Section IV-B, the observations
do not fully support such as assertion.

There are two possible reasons:

1) The above three cases are satisfied in many cases rather
than in all cases, because covering A-wise value combination-
s could also achieve a degree of covering value combinations
at a strength either higher or lower than \. For example, an
element from candidates selected as the next model input
that covers the largest number of uncovered A-wise value
combinations can also cover a number of uncovered \'-wise
value combinations, where 1 < A\ < X < k. Similarly, this
model input may cover a certain number of uncovered \"-
wise value combinations, where 1 < A\’ < X\ < k.

2) As we know, two faults have the same FTFI number,
yet they may have different properties. For example, the
FTFI number of two faults F; and F9 is equal to 2, i.e.,
these faults are caused by two parameters p; and po. The
parameters p; and po have the values from the sets V7 and
V5, respectively. Suppose that the fault F; could be triggered

TABLE 7: The FTFI number of each program.

- FTFT Number (1)

Object ——————7 35— g S
Flex 10 33 38 18 8 2 13 1@
Grep 8 94 81 55 46 0 1 285
Gdp 23 10 2 0 2 0 0 37
Make O O 0 0 5 4 142 151
Sed 4 46 34 9 0 0 0 93

13

2169-3536 (c) 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2018.2879638, IEEE Access
IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

96 94
L " . . . T ] e
94 T TR K " S . .
H ey [ LT, B 924
924 b : : 914
90
90 89
88
88 - a7
o6 . A 86 -
85
84 84
83 |
82
e ¥ L bt v ot
80| 81 - . : L
4 J B * i 80 * B
+ +
LR e e L A e e s e e o e S LA e e s e e I e e e AL A B o e o e e e e e LA S e s s
3 o D O S i S O S D DD O Oy DD > IR A T I P T T P T PR R S I IR SR RV
S T S S S S e o S S S S S S S S s S 0&@”@§®er »@p S S e S S S S S S S S S S S P
RO AT AT RO RD RO RS AE RSO RDTRE” RDTRDTRY R R R AR R R R R YR R R R R O RET RO ETAE ADTADT RO RS 7RO OO ADTRDT R R RYT R YR R R YR YR R YRR
(a) Flex (b) Grep
100 62
09 61 - . -
60 -+ + FR ¥ S
98 - 59 N - . .
o7 58 -
57
9 - 6
95 55
54
94 N
53
93 E 52
2., 3 * N : Pt g £ % . 514
4 % i E b4 + i 50
91‘§ i 2 % T ¥ % § ; % + % i i % % § i 2 § B 1 49
b + M M T
90~% 1 b i i F ; H Ios f:os i ;i, % % : 484 L .
v kS PR PO ¥ FUUF ¥ +
i + H H i - x . .
4 i [T S T i . a7 % :
89 T S [ S A ol E
¥ e E + M k2 T N 46 +
B !
88 T T T L T T T T T T T T T T T T T T T T T T T T T T T T T T T 45 T T T T T T T T T T T T T T T T T T T T T L T T T T T T T T T
ST T T T T S R T TR S S R I P RS SR SR IR A T T T S T T A R R S I R S S SR VR
S S e O S SO GGG S S S S S S S S s S S S S S S S S, \?Ss)»&'y S
O RO 7R RO AET RO AOT RO RE RS RDTRD OO R R R R R R R R R R YR R YR OO RO AT O ADTADT RDRD RO OO RDTRDT R R RYT R R R R YR YR R R R Y
(c) Gzip (d) Make
o7
96 - + -

84

»
-
P

4o
IS s
“

paes

s
FRRI v

[ A e
e

FIGURE 11: APFD metric values for each program when d = 6.

by the 2-wise interaction (p; = v1)&&(p2 va); and and MICTCP are approximately 1%, which means that

the fault 75 could be identified by the 2-wise interaction
(p1 # v1)&&(pa # vs2), where v1 € V; and vy € Vs
Therefore, the probability of detecting F; (also failure rate

of F7) is equal to 6, m; while the probability of
detecting Fo is 0 = W With the increase of

|V1| and |V5|, the failure rates of F; and F are significantly
different, i.e., 8, approaches 0.0; while 65 is close to 1.0. In
other words, the F; becomes more difficult to detect, and the
F5 is easier to identify. As a consequence, the fault with a low
FTFI number may not be as easily identified as another fault
with high FTFI number, because the former may have a lower
failure rate. As discussed in Section III-C, all subsuming
faults were removed from the experiments, which means that
most of the seeding faults have low failure rates.

To answer RQ2, the APFD differences between FICTCP

14

FICTCP and MICTCP have very similar rates of fault de-
tection. In addition, there is no best prioritization technique,
which means that MICTCP does not always outperform
FICTCP, because in some cases FICTCP can achieve better
performance.

C. RQ3: PRIORITIZATION COST EXPERIMENTS
In this section, we present the prioritization cost of each
ICTCP technique for each program. Table 8 shows the
prioritization time of each prioritization technique for each
program, from which the prioritization time is represented
by the mean and standard deviation (/o) over the 100 runs.
In this table, we also show the prioritization cost sum of all
programs for each prioritization technique.

From the table, it can be observed that (as expected),
MICTCP requires more prioritization time than FICTCP,
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TABLE 8: Prioritization time (1/0) in seconds for MICTCP
and FICTCP.

d Method TTex Grep (5:5 Make Sed Sum
T=T T OT80.0T OI57001 T0300T_00270.00 0T00.0T 0
=% O 060008 03T/00 0180017 0.0570.07 0.I8/0.06 TS0

o0 TI3002 T30 0790020167001 T3T0.02 SO

d=3 110 223/0.04 1:88/0.07 095002 020/0.01 1.74/0.02 7,00~
A1 2.37/0.11 2.00/0.05 101/0.02__ 0.22/0.01 1.83/0.02 743/

~TO00 T I3003 73006 723003 0257001 33006 TI20-

381006 1303~

1010° 3.05/0.04 3.40/0.07 2.43/0.05 0.34/0.02
d=4a 1011° 3.30/0.10 3.57/0.09 2.48/0.03 0.35/0.03 3.92/0.05 13.62/—
= 11007 3.91/0.04 4.40/0.10 3.03/0.02 0.44/0.01 4.77/0.09 16.55/—
1101 4.11/0.06 4.59/0.13 3.08/0.03 0.45/0.01 4.91/0.16 17.14/-
11107 4.52/0.05 5.09/0.12 3.25/0.03 0.50/0.04 5.16/0.05 1852/~
RENIN 4.86/0.06 5.10/0.10 3.23/0.03 0.48/0.01 5.30/0.05 18.97/—
“T0000 3.0900.16 T98/0.08 7:80/0.04 0.3770.04 6.30/0.07 T0.63~
TOUOT 32570.13 S5.T8/0.T F907/0.03 0.38/0.0T 6.50/0.0 0.2T7=
10010° 3.70/0.14 5.52/0.06 5.05/0.04  0.41/0.01 6.85/0.06  21.53/~
10011° 3.99/0.17 5.69/0.09 510004  0.42/0.01 6.95/0.07 22.15/~
10100° 4.59/0.15 6.51/0.09 5.56/0.05 0.52/0.01 7.78/0.08 24.96/~
10101 4.90/0.17 6.71/0.08 5.64/0.04  0.53/0.01 7.90/0.07 25.68/~
10110° 5.28/0.18 7.26/0.12 5.78/0.06  0.56/0.01 8.18/0.11 27.06/~
di=5 10111 5.66/0.25 7.30/0.12 5.85/0.05 0.58/0.01 8.31/0.09 27.70/~
= “11000° 5.65/0.20 7.91/0.11 7.06/0.05 0.64/0.01 9.76/0.10  31.02/~
11001° 5.83/0.15 8.16/0.09 7.16/0.04  0.65/0.01 9.89/0.08 31.69/-
11010° 6.34/0.15 8.51/0.12 7.32/0.05 0.69/0.01 10.19/0.19 33.05/~
11011 6.67/0.18 8.74/0.09 7.37/0.15 0.71/0.01 10.37/0.07 33.86/~
11100° 7.20/0.14 9.74/0.13 7.86/0.06  0.80/0.01 11.08/0.10  36.68/~
11101° 7.55/0.12 9.79/0.08 7.91/0.05 0.82/0.02 11.38/0.12 37.45/-
11107 8.15/0.14 10.12/0.13 8.04/0.05 0.86/0.01 11.68/0.07 38.85/~
L 8.65/0.25 10.11/0.08 8.15/0.15 0.88/0.01 11.58/0.08 39.37/~
TO0000 7.1610.03 T2.65/031 3R0.05 0.33/0.01 2067133 3338
3670 T770. 2370, 3270, 7770 Koy
£100010° 2.82/0.06 13.59/0.48 8.57/0.10  0.38/0.01 12.28/0.19 37.64/~
100011 3.11/0.08 13.71/0.28 8.73/036  0.42/0.01 12.66/0.23 38.63/~
*100100° 371/0.11 14.93/0.52 9.93/1.31 0.51/0.01 13.82/0.22 42,90/~
*100101° 3.98/0.12 15.25/0.29 9.24/0.10  0.52/0.01 14.01/0.23  43.00/—
“100110° 4.42/0.15 15.99/0.31 9.41/0.10  0.56/0.01 14.37/0.37  44.75/-
100111° 4.82/0.18 15.97/0.32 9.46/0.11 0.56/0.03 14.61/0.19 4542/~
101000 4.88/0.12 19.03/0.41 10.75/0.09  0.62/0.01 1721/0.54 52,49/
101001 5.08/0.11 19.55/0.33 10.79/0.10  0.65/0.01 17.28/020  53.35
101010 5.46/0.13 20.13/0.33 10.98/0.09  0.69/0.01 17.57/0.18 54.83/
101011 5.86/0.18 20.34/0.39 11.03/024  0.69/0.01 17.81/0.32 5573/~
101100 6.350.16  21.82/1.27 11.63/0.08 0.78/0.01 18.63/0.18 59.21/~
101101 6.67/0.25 22.01/0.34 11.63/0.09  0.79/0.02 18.98/0.20  60.08/~
101110 7.06/0.31 22.64/2.12 11.78/0.07 0.83/0.02 19.39/0.34  61.70/~
d=6 101111 7.59020  22.32/0.36 11.92/0.09  0.87/0.01 19.26/0.16  61.96/~
110000 5.47/0.18 26.10/0.46 13.84/0.12  0.70/0.01 21.55/0.37 67.66/—
110001 5.68/0.17 27.07/0.48 14.01/0.11 0.74/0.01 21.66/0.18 69.16/~
“110010° 6.1800.24  28.13/0.59 14.19/0.10  0.78/0.01 22.17/0.19 71.45/-
110011 6.61/0.16 28221045 1422/0.12  0.77/0.02  22.34/0.19 72.16/~
*110100° 6.96/0.14  29.58/0.51 14.67/0.13 0.87/0.01 23.49/0.21 75.57/~
110101 7.19/0.17 29.28/0.48 14.74/0.14  0.86/0.01 23.88/0.32 75.95/~
110110° 7.61/0.14  29.89/0.48 14.92/020  0.90/0.02  24.17/0.19 77.49/~
110111 8.03/0.18 30.46/0.95 15.05/0.10  0.96/0.02  24.34/0.22 78.84/—
111000 8.30/0.22 34.16/0.65 16.33/0.13 1.00/0.03 26.13/0.16  85.92/-
111001 8.34/0.21 34.23/0.52 16.41/0.16 1.01/0.02  26.44/020  86.43/-
111010 9.18/0.42 34.92/0.54 16.57/0.14 1.04/0.02  2691/020  88.62/—
111011 932/020  35.01/0.45 16.73/0.11 1.08/0.02  26.94/0.35 89.08/~
111100 9.80/0.24  36.97/1.75 17.24/0.16 1.15/0.03 2830/024  93.46/-
111101 10.10/0.28 36.95/0.50 17.38/0.14 1.22/0.03 28.41/0.21 94.06/~
111100 10.69/0.25 37.53/0.49 17.56/0.13 1.26/0.03 28.66/0.26  95.70/~
RIS 11.00/0.30  37.28/4.82 17.79/0.22 1.26/0.01 28.89/0.23 96.22/~

because it adopts more strength information to guide the
prioritization of model inputs. Additionally, MICTCP with
lower strengths (such as 1 and 2) could have comparative
prioritization costs to FICTCP.

As we know, when using AvgAPCC as the evaluation
metric, we believe that MICTCP with lower strengths (such
as 1 and 2) may be more cost-effective than FICTCP, be-
cause MICTCP has better rates of interaction coverage than
FICTCEP, but requires considerable prioritization time. How-
ever, when using APFD as the evaluation metric, we believe
that FICTCP would be more preferable than MICTCP, be-
cause it has very similar rates of fault detection, but needs
less prioritization cost. It can be seen that using different
evaluation metrics, the results seem contradictory. However,
AvgAPCC and APFD have the same mechanism, but they
have been used as the metric for different testing scenarios.

More specifically, APCC measures the rate of interaction
coverage at a given strength ), i.e., the speed covering \-
wise value combinations. In effect, APCC guarantees that all
A-wise value combinations have the same probability to be
failure-causing, because they provide the same contribution
during the APCC calculation. Therefore, APCC has two
assumptions, described as following: 1) the FTFI number is
equal to \; and 2) each A-wise value combination is failure-
causing with the same probability. In addition, the AvgAPCC
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measures the average APCCs based on the strengths ranged
from 1 to 6, which means that it considers value combina-
tions coverage at different strengths. In other words, higher
speed to cover value combinations at each strength, higher
AvgAPCC values. Similar to APCC, AvgAPCC also has the
following two assumptions: 1) the FTFI numbers range from
1 to 6; and 2) each value combination at a fixed strength
has the same probability to be failure-causing. From this
perspective, therefore AvgAPCC has the same mechanism as
APFD.

On the one hand, when using AvgAPCC as the evaluation
metric, i.e., considering each value combination is failure-
causing, there exist many faults with low and high failure
rates. Therefore, the AvgAPCC experiments (as shown in
Section IV-A) represent an initial stage of software testing.
This is because, during the life span of the software, many
types of faults (such as low and high failure rates) exist. On
the other hand, as discussed in Section IV-B, most of the
faults have low failure rates, which means that these faults
are difficult to detect. In other words, the APFD experiments
represent a later stage of software testing. This is because,
usually more and more faults will be detected and removed
from the code, i.e., the software is being tested or maintained.

To answer RQ3, we need to discuss this research question
according to different metrics of testing effectiveness, i.e.,
MICTCP with low strengths (such as 1 and 2) will be more
cost-effective than FICTCP at an initial stage of software
testing, while it will be more cost-effective to use FICTCP
instead of MICTCP at a later stage of software testing.

D. RQ4: SELECTION OF FICTCP AND MICTCP

In this section, we attempt to present some guidelines for
testers about the best choice of prioritization technique
(FICTCP or MICTCP).

Figure 12 shows the AvgAPCC values of FICTCP with
six d values, from which we can observe that FICTCP with
d = 1 is worst, followed by that with d = 2 and d = 3.
However, 4-wise, 5-wise, and 6-wise FICTCP perform simi-
larly. However, FICTCP with d = 5 overall performs best.
As shown in Table 9, the statistical analysis validates the
above observations. However, Figure 13 shows the APFD
results of FICTCP with different d values, from which it
can be observed that in terms of mean and median APFD
values, the maximum APFD difference between them is
approximately 5%. However, FICTCP with the high strength
generally achieves better rates of fault detection than FICTCP
with low strength. The statistical results for the comparison
between these 6 approaches are presented in Table 10, which
overall confirms the box-plot observations. In addition, as
shown in Table 8, FICTCP requires more prioritization time,
with the increase of d.

Similarly, as discussed in Section IV-A, MICTCP with
more strengths could obtain better AvgAPCC values, and
MICTCP with high d could have better performance than that
with low d. However, as discussed in Section IV-B, MICTCP
has similar fault detection rates to FICTCP when using the
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TABLE 9: Statistical pairwise AvgAPCC comparison be-

FIGURE 13: APFD metric values for FICTCP with different d values.

tween FICTCP techniques (A and B).

A B Flex Grep Gzip Make Sed
‘107 2.6E-34/1.00 2.6E-34/1.00 3.1E-34/1.00 5.3E-30/0.97 2.6E-34/1.00
‘100 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00
1000 ‘r 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00
10000 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00
100000 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00
100 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.7E-34/1.00 2.6E-34/1.00
1000 Qo 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00
10000 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00
100000 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00
1000 2.6E-34/1.00 2.6E-34/1.00 2.7E-33/0.99 2.6E-34/1.00 2.6E-34/1.00
10000 ‘1007 2.6E-34/1.00 2.6E-34/1.00 5.0E-31/0.97 2.6E-34/1.00 2.6E-34/1.00
100000 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00 2.6E-34/1.00
10000 1000° 2.6E-34/1.00 0.12/0.56 2.6E-11/0.23 2.8E-34/1.00 0.68/0.52
100000 2.6E-34/1.00 2.3E-33/0.01 3.8E-16/0.17 1.4E-33/0.99 6.4E-10/0.25
100000 10000 8.5E-32/0.02 1.1E-33/0.01 0.01/0.40 0.80/0.51 8.5E-14/0.19

same d value; while FICTCP with high d overall performs
better than MICTCP with low d. Therefore, MICTCP with
high d overall outperforms that with low d. Additionally, as
shown in Table 8, MICTCP with higher d and more strengths

generally needs more prioritization time.

During the selection of FICTCP and MICTCP, we main-
ly considered the following two impact factors: testing re-
sources, and testing stage. As discussed in Section IV-C,
MICTCP is preferable at an initial stage of software testing;

TABLE 10: Statistical pairwise APFD comparison between

FICTCP techniques (A and B).

A B Flex Grep Gzip Make Sed
‘107 0.29/0.52 1.9E-23/0.68 0.65/0.51 0.08/0.53 8.4E-43/0.75
‘100 6.2E-07/0.59 7.6E-30/0.71 0.30/0.52 0.11/0.53 1.0E-68/0.82
1000 ‘r 6.9E-10/0.61 9.4E-33/0.72 0.23/0.52 0.10/0.47 4.9E-70/0.82
10000 8.2E-21/0.67 5.1E-39/0.74 0.12/0.53 0.47/0.51 2.3E-77/0.84
100000 1.2E-42/0.75 2.3E-40/0.74 0.37/0.52 1.0E-03/0.56 6.4E-82/0.85
1007 9.8E-06/0.58 0.47/0.51 0.56/0.51 0.86/0.50 1.3E-06/0.59
1000 q0° 1.7E-08/0.60 0.20/0.52 0.45/0.51 1.2E-04/0.43 1.5E-07/0.60
10000 9.6E-21/0.67 3.1E-03/0.55 0.25/0.52 0.13/0.47 2.6E-10/0.62
100000 1.8E-48/0.77 2.0E-03/0.56 0.75/0.51 0.21/0.52 5.6E-15/0.64
1000 0.22/0.52 0.60/0.51 0.82/0.50 1.0E-04/0.43 0.66/0.51
10000 1007 3.0E-07/0.59 0.02/0.54 0.62/0.51 0.12/0.47 0.10/0.53
100000 1.8E-25/0.69 0.01/0.54 0.72/0.49 0.17/0.53 5.3E-04/0.56
10000 1000° 1.4E-04/0.57 0.07/0.53 0.94/0.50 1.1E-03/0.56 0.25/0.52
100000 1.3E-19/0.67 0.06/0.53 0.34/0.48 1.9E-11/0.62 1.4E-03/0.56
100000 10000 6.7E-06/0.58 0.95/0.50 0.29/0.48 7.0E-05/0.57 0.04/0.54
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and FICTCEP is superior at a later stage of software testing.
Therefore, we discuss another impact factor, i.e., how to
choose the detailed MICTCP or FICTCP technique from
many possible choices (for example, there are 6 FICTCP
techniques, and 57 MICTCP techniques), under different
testing scenarios. To answer RQ4, Table 11 describes the
selection guide for different testing scenarios and testing
resources. More specifically, when testing resources are suf-
ficient at an initial stage of software testing, we recommend
that MICTCP with ‘111111’ be applied to the prioritization
of model inputs; otherwise, MICTCP with a low d is rec-
ommended. Similarly, when testing resources are sufficient
at a later stage of software testing, we recommend the use
of FICTCP with d = 6 (i.e., ‘100000’) to prioritize model
inputs; otherwise, FICTCP with low d is suggested.

E. LIMITATIONS OF THIS WORK

It is possible that the results of this work may not be valid
when applied to the general population of software. The
major threats to external validity are the programs and their
faults. We used five programs in our experiments, therefore,
it may be difficult to generalize the results for all other
programs. However, we believe that each program with six
versions is sufficient to draw comparative conclusions, and
these programs have been widely used in the prioritization
field [1], [7], [10], [18], [22], [26], [27]. The faults in each
version of each program were based on mutation testing,
however these faults were obtained from previous test case

TABLE 11: Guidelines for choosing FICTCP and MICTCP.

Testing Resource

Sufficient Insufficient
Testing Initial Stage ‘11111 MICTCP with low d
Scenario | Later Stage 100000’ FICTCP with low d
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prioritization results [10]. Considering this, additional studies
including more programs and more sets of faults are required
to minimize these threats. Additionally, as discussed before,
the input parameter model and candidate model input set may
influence the generalization of the conclusions, so we would
like to conduct more empirical studies to further investigate
our method, especially in larger and more complex systems,
and with different sets of model inputs.

In terms of the internal validity, choice of the maximum
strength (i.e., d) was set as 6, according to previous inves-
tigations [30], [31]. However, no studies attempt to adopt
strength higher than 6 to guide the prioritization of model
inputs. Additional studies with higher d values may reduce
this threat.

V. RELATED WORK
In this section, we present some related work about combi-
natorial interaction testing, and test case prioritization.

A. COMBINATORIAL INTERACTION TESTING
Combinatorial interaction testing (CIT) [15] is a black-box
testing method taht aims to generate an effective test suite (a
covering array [47]) to identify faults that are caused by the
parameter interactions. As discussed in Wu and Nie [48], the
research field of CIT can be divided into six areas: Model,
Generation, Optimization, Evaluation, Diagnosis, and Appli-
cation. Here, we briefly introduce the most important work
on CIT, since the year 2010 (see the survey reference for
details about earlier CIT work [15], [49]).

Model: As discussed in Section I-A, the model for CIT
is intended to identify parameters, values, and constraints.
Segall et al. [50] proposed two methods to construct param-
eters and values of the model, which considerably reduces
the complexity of the modeling task. Satish et al. [51], [52]
adopted UML activity and sequence diagrams to extract the
parameters and values for the model, respectively. Arcaini et
al. [53] attempted to validate the models by checking that
the constraints were consistent; that there was no constraint
implied by the other constraints; and that the parameters and
their values were really necessary. Gargantini et al. [54] used
search-based CIT to validate constraints among configuration
parameters. Tzoref-Brill et al. [55] applied three different
forms of visualization (matrices, graphs, and treemaps) to
visualize the relationships between the different elements
of the model. Satish et al. [56] proposed a method to
build combinatorial test input model from use case artifacts.
Tzoref-Brill and Maoz [57] proposed a syntactic and seman-
tic differencing technique for combinatorial models of test
designs that defines a concise and canonical representation
for differences between two models.

Generation: This area of research aims to generate as
small test suites as possible. It is the most active area
of CIT, and there are many popular algorithms or tools,
such as Automatic Efficient Test Generator (AETG) [58],
Pairwise Independent Combinatorial Testing (PICT) [ [59],
Advanced Combinatorial Testing System (ACTS) [60], [61],
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and Covering Arrays by Simulated Annealing (CASA) [62].
Recently, there are many algorithms for CIT test suite genera-
tion using different search-based techniques, such as Swarm
Optimization [63]-[65], Harmony Search [66], Genetic Al-
gorithm [67], [68], and Hyperheuristic Search [69], [70]. Ad-
ditionally, there are other construction tools using different
information, such as coverage inheritance [71], Two-Mode
Meta-Heuristic Algorithm [72], unsatisfiable cores [73], in-
teraction trees [74], combinatorial optimization [75], balance
between frequencies and fault detection [76], and similarity
or distance [20], [77]. More algorithms and tools have been
listed in an orchestrated survey [78].

Optimization: This area of research focusses on prioritiz-
ing or minimizing the number of test cases in the CIT test
suite. Different information can be used to guide the prioriti-
zation or minimization of test cases, such as similarity [19],
[20], [79], interaction coverage [17], [80]-[83], test case
cost [42], [84], switching cost [85], and model mutation [10].
For more details about optimization of CIT, please see our
earlier work [86].

Evaluation: This area of research includes the assessment
of CIT and metrics to evaluate test suites constructed by
different CIT tools. Felbinger et al. [87] presented a qual-
ity assessment of CIT test suites, according to mutation
score, coverage, and model inference. Some work [88]-
[91] compared CIT with random testing [92], and adaptive
random testing [93], from the perspective of fault detection,
code coverage, and interaction coverage. Petke et al. [18],
[27] conducted empirical studies to investigate three CIT
test suite constructors, and compared different prioritization
strengths for prioritizing CIT test suites, based on testing
effectiveness and efficiency. Choi et al. [94] evaluated the
testing effectiveness of prioritized CIT through a case study;
while Medeiros et al. compared 10 sampling algorithms
(including 5 CIT algorithms) for configurable systems. Kuhn
et al. [95] presented many combinatorial coverage metrics for
evaluating CIT test suites, Chen and Zhang [96] proposed a
metric called fuple density, which measures CIT test suites
by considering higher-strength interaction coverage. Wang
et al. [42] proposed some metrics to evaluate prioritized
CIT test suites by considering test case cost and weight;
while Huang et al. [41] proposed a series of metrics for
prioritized CIT test suites by taking account of different
levels of interaction coverage.

Diagnosis: This area of research centres on locating con-
crete failure-causing interactions. Zhang and Zhang [46]
proposed a fault characterization method, called faulty in-
teraction characterization. Many kinds of information have
been used to guide the diagnosis, such as failure-inducing
combinations [97], [98], test augmentation and classifica-
tion [99], constraint solving and optimization [100], tuple
relation tree [101], partial covering array [102], and logistic
regression [103].

Application: This approach is to apply CIT to different
testing environments and system applications. On the one
hand, there are many testing environments that adopt the
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principles of CIT, for example, even sequence testing [104]-
[106], grammar-based testing [107], security testing [108]—
[110], scenario-based testing [111], solution testing [112],
and certificate testing [113]. On the other hand, many system
applications have been tested by CIT, including MP3 appli-
cations [114], [115], concurrent programs [116], [117], cloud
environments [118], mobile applications [119]-[121], soft-
ware products lines [19], [20], big data applications [122],
industrial settings [123], web applications [124]-[126], and
cyber-physical systems [127].

It should be noted that we only present some representative
examples of CIT research rather than all CIT work (for more
details and studies, please see the CIT repository [48]).

B. TEST CASE PRIORITIZATION

Test case prioritization (TCP) aims at ordering a set of test
cases to achieve an early optimization based on preferred
properties [1]. It gives an approach the ability to execute
highly important test cases earlier, according to some criteria.
Here, we present the main TCP approaches, based on differ-
ent knowledge to guide the prioritization process.

Coverage-based TCP: This approach uses the code infor-
mation to support the prioritization process, such as function
coverage, branch coverage, and statement coverage [128].
There are two main coverage-based prioritization approach-
es [2]: total coverage-based TCP and additional coverage-
based TCP. The former selects each element from the can-
didates as the next test case such that it achieves the highest
coverage; while the latter chooses the next test case such that
it has the highest coverage of uncovered code or statement by
already executed tests.

Search-based TCP: This approach has quite a number of d-
ifferent implementation algorithms such as Greedy [4], [129],
Genetic Algorithms (GA) [4], [130], Ant-Colony [131],
Adaptive Random Sequences [6]-[9], and others [132],
[133]. Experiments by Li [4] showed that GA is worse than
a greedy algorithm on computer-generated data. However,
the application of a search-based TCP technique may differ
based on different factors, such as the selected test suite,
fitness function, and the like. The current results showed the
major benefit of GA in TCP, but there are some drawbacks,
such as the time-consuming nature of the process.

Requirements-based TCP: This approach uses system re-
quirements information to prioritize test cases. Srikanth ef
al. [134] proposed a new approach to prioritize system test
cases based on four factors: requirements volatility, customer
priority, implementation complexity, and fault-proneness of
the requirements. Recently work by Srikanth [135], showed
that the combination of two or more factors may provide
better testing effectiveness than a single factor. Muthusamy
et al. [136] proposed a requirement-based TCP approach,
based on traceability, completeness, the impact of a fault
in requirements, changes in requirements, customer priority,
and developers views.

Risk-based TCP: This approach concerns on the poten-
tial risks existed the software to be developed. Srikanth et
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al. [135], proposed two risk-based TCP techniques, based on
the risk information of the system. Some researchers used the
information of requirement risks to prioritize test cases that
were expected to distinguish the faults related to the risks
of the system [137]. Hettiarachchi ez al. [138] proposed five
steps to use requirement risk values for prioritizing test cases.

Fault-based TCP: This approach attempts to prioritize test
cases to identify certain targeted faults that can be detected
when executing particular statements. Yu and Lau [139]
proposed a fault-based TCP approach, by adopting a new
effectiveness metric, the Fault Adequate Test Size (FATS),
which is used to determine the size of the minimal fault
adequate subset. Higher FATS values mean lower chances of
detecting all targeted faults.

History-based TCP: This approach uses history data for
prioritizing test cases. Kim and Porter [140] proposed a
history-based TCP technique by assigning the weight for
each test case based on history data such as the count of
executions which detected a fault. Khalilian et al. [141]
proposed an extension of Kim and Porter’s history-based
TCP approach [140], aiming to improve fault detection rates.

Other TCP approaches using different information, such as
Bayesian-Network-based TCP [142], and cost-aware-based
TCP [143], also exist [144], [145].

VI. CONCLUSION AND FUTURE WORK

Model input prioritization aims to schedule the model inputs
so that the more important elements will be selected to be
run earlier. Interaction coverage has been widely used in
the prioritization of model inputs, and is called interaction
coverage-based test case prioritization (ICTCP). Previous
studies have focused on fixed-strength interaction coverage
for supporting the ICTCP (fixed-strength ICTCP, FICTCP).
When mixed-strength is used for ICTCP (mixed-strength
ICTCP, MICTCP), does it have better performance than
fixed-strength? To answer this question, we conducted empir-
ical studies to compare the testing effectiveness and efficien-
cy of MICTCP and FICTCP. We have also provided some
practical guidelines for testers choosing between MICTCP
and FICTCP, when prioritizing model inputs under different
testing scenarios. The results of the empirical studies have
the following findings:

1) In terms of the rates of interaction coverage, when
the maximum prioritization strength d is small, such as
d = 2,3, both FICTCP and MICTCP have similar per-
formance; however, when d is high, such as d = 4,5,6,
MICTCP performs much better than FICTCP in many cases,
and their differences are highly significant. Nevertheless,
sometimes FICTCP has better rates of interaction coverage
than MICTCP.

2) In terms of the rates of fault detection, MICTCP has
very similar performance compared with FICTCP in many
cases. However, overall MICTCP performs slightly better
than FICTCP, although the differences are not highly sig-
nificant. Nevertheless, sometimes FICTCP has slightly better
fault detection rates than MICTCP.
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3) MICTCP with low strengths (such as 1 and 2) is more
cost-effective than FICTCP at the initial testing stage; while
this is reversed at the later stages of testing.

4) When testing resources are not sufficient, MICTCP
and FICTCP with low d are recommended at the initial and
later stages of software testing, respectively. However, when
testing resources are sufficient, MICTCP with ‘111111° and
FICTCP with ‘100000’ are suggested for the initial and later
stages of testing.

We would also like to use other algorithms to implement
the ICTCP, such as search-based prioritization [4], to make
our conclusions more generally applicable. In addition, since
we have only considered interaction coverage as the prior-
itization criterion in this paper, we would like to consider
additional information such as the switching cost and weight
of model inputs, to guide the prioritization in future.
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