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Abstract 

Urban land use significantly affects the urban environment, especially urban green 

space. Urban green spaces, such as parks, farmland, and gardens, can provide extensive 

benefits. Previous studies have proved that the ecological and socio-economic benefits 

of urban green spaces are highly dependent on their spatial patterns. The urban green 

landscape can act as a planning strategy to improve the urban environment and make 

the city achieve the Sustainable Development Goals (SDGs). However, the impact of 

urban land use changes on urban green space distributions has largely been ignored due 

to the lack of high-quality urban land use maps and impact analysis methods. Therefore, 

this Ph.D. thesis aims to improve the existing urban land use maps for investigating the 

dynamics of urban land use and assess the impact of urban land use changes on urban 

green space distribution. It is of great significance to study the urban functional patterns 

and urban green space distribution under the background of the transition from urban 

land cover to urban land use. The research uses Hangzhou as a case study, as it is one 

of the most typical cities in terms of urbanization, population growth, economic 

development, and land use changes.  

Chapter 1 described the background of the study and introduces the research aims, 

objectives, main definitions, and structures in this thesis. In Chapter 2, I summarized 

the relevant literature, focusing on the urban land use mapping as well as the impact of 

urban land use on urban green space distribution. Chapter 3 introduced the methods 



 

4 

 

mainly used in this thesis. The results in Chapter 4 (research chapter 1) demonstrated 

that integrating remote sensing (RS) and geospatial big data (GBD) provides new 

opportunities for urban land use classification. The integration strategies were 

categorized into decision-level integration (DI) and feature-level integration (FI) 

according to the fusion mode and process. Chapter 5 (research chapter 2) tested the DI 

and FI methods for mapping urban land use in Hangzhou city and concluded that the 

differences in data sources, features, classifiers, training samples, and land use types 

might lead to the different classification results according to the process of integration 

methods. Chapter 6 (research chapter 3) investigated the spatial-temporal dynamics of 

urban land use changes from 2017 to 2021, indicating the increase of institution and 

residence parcels increased, and the decrease in business and open space parcels. 

Chapter 7 (research chapter 4) found that the urban green space distribution was 

affected significantly by urban land use changes in Hangzhou city. The area of urban 

green space has increased from 2017 to 2021 totally, which was mainly concentrated in 

the urban core regions, indicating Hangzhou city has made remarkable achievements 

in green space planning within the urban center. In addition, the residence parcels have 

the largest increase in urban green space areas, while the areas of urban green space in 

the open space parcels have decreased. There are certain differences in the 

fragmentation, complexity, aggregation, and uniformity of urban green space patches 

within different urban land use change types. Chapter 8 synthesized the results 
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obtained from this thesis with each of the research chapters. An outlook and 

recommendations for future research are also presented. 
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Chapter 1: Introduction  

1.1 Background 

With the advent of Anthropocene (Ellis and Ramankutty 2008; Steffen et al. 2011), 

urbanization is expected to accelerate, with the urban population expected to rise from 

4.2 billion (57.5%) in 2018 to over 6.7 billion (69.1%) in 2050 (Seto et al. 2011). Rapid 

urbanization is exerting pressure on the urban environment, especially urban green 

spaces (Huang et al. 2018bHersperger et al., 2018; Seto and Kaufmann, 2003). Urban 

green space, such as parks, greenways, woods, squares, farmland, green roofs, and 

gardens, is important not only to the physical and psychological health of urban 

dwellers, it most essentially reduces the urban heat island, mitigates the effects of 

climate change, and improves air conditions (Aram et al. 2019; Braubach et al. 2017; 

Kondo et al. 2018). The ecological and socio-economic functions of urban green spaces 

are considered to be highly dependent on their spatial patterns (Li et al. 2015; Song et 

al. 2021). For instance, the increasing area of urban green space is highly correlated 

with the reduction of urban heat island (UHI)(Meng et al. 2018). Also, there is a strong 

correlation between urban green space quantity and gross domestic product (Chen et al. 

2017). According to the target 11.7 of Sustainable Development Goals (SDGs), cities 

should provide universal access to safe, inclusive, and accessible, green and public 
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spaces, particularly for women and children, older persons, and persons with disabilities 

by 2030 (Koch and Krellenberg 2018). The urban green landscape can act as a planning 

strategy to improve the urban environment and make the city achieve the SDGs. 

Several studies have demonstrated the importance of urban green space 

distribution in response to the urban land cover process (Wang et al. 2019c; Zhou and 

Wang 2011). However, the urban land use process also proved to be related to urban 

green landscapes (Woldesemayat and Genovese 2021), which are still poorly 

understood. In addition, many of the related studies used municipal cadastral data or 

urban land use data from the urban planning bureau to understand the urban land use 

dynamics (Woldesemayat and Genovese 2021), which might introduce large errors due 

to the low quality and uncertainty from the urban land use data. Understanding the 

impact of urban land use changes on urban green space distribution can help guide 

green space planning and management from a more socio-economic perspective. It is 

thus critical to look at how urban green space distribution changes in response to urban 

land use changes (e.g., from residential land to business land). To achieve this, two 

issues need to be addressed. (1) To improve the existing urban land use maps to 

understand the urban land use dynamics. (2) To investigate the impact of urban land use 

changes on urban green space distribution by using certain methods.  

Previous studies have demonstrated that the inner-urban functions cannot be 

recognized by using remote sensing (RS) data only due to the lack of socio-economic 
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information. The emergence of geospatial big data (GBD) (Li et al. 2016) such as 

mobile phone positioning data (Ratti et al. 2016; Wu et al. 2020), social media data 

(Ilieva and McPhearson 2018; Yammine et al. 2018; Ye et al. 2016), traffic trajectory 

data (Niu et al. 2017), and geotagged photographs (Cadavid Restrepo et al. 2017; 

Krylov et al. 2018; Srivastava et al. 2018) provide the new opportunity for classifying 

urban land use by capturing socio-economic characteristics (Liu et al. 2015). Thus, the 

integration of RS data and GBD could improve the existing urban land use maps by 

providing both physical and socio-economic information (Dong et al. 2019; Sarmin and 

Ismail 2016; Yin et al. 2021a). Promising progress has been made in the applications of 

integrated RS and GBD on urban land use mapping at different scales and regions (Shi 

et al. 2019; Zhang et al. 2020c; Zhang et al. 2019). Despite the significant potential of 

combining RS and GBD to provide improved insights into urban land use, the 

discrepancies in spatial data quality (e.g., semantic, timestamp, and scale), 

technological format, and data structure make it difficult to combine them (Cao et al. 

2020; Yin et al. 2021b).  

Several approaches have been utilized to investigate the patterns of urban green 

spaces at different regions and scales (Chan and Vu 2017; Gavrilidis et al. 2019; Yang 

et al. 2018). These efforts can be categorized into statistical analysis, landscape analysis, 

and geospatial analysis. Among them, the statistical analysis could reveal the spatial 

patterns of urban green space at the landscape level (Feng and Astell-Burt 2018; 
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Wüstemann et al. 2017), which has the potential to understand the distribution of urban 

green space. Meanwhile, the landscape analysis could relate the landscape patterns of 

urban green space to urbanization and determine their influence on the ecological 

attributes of the urban environment (Daz et al. 2020; Grafius et al. 2018). Moreover, 

geospatial analysis such as hotspot analysis could reveal the spatial heterogeneity of 

urban green space, and further, elucidate the effect of urban development on urban 

green space (Liu et al. 2020c). Few studies, on the other hand, have sought to combine 

these methodologies to investigate the spatial-temporal patterns of urban green space 

and its response to urban land use changes. 

The urban green space planning and management of most undeveloped regions in 

China are still at the initial stage and have ample space for further improvement. While 

large and medium-sized cities, such as Beijing, Shanghai, and Hangzhou, have an 

advantage in terms of governmental support, economic investment, and practical 

research for green space planning and management. The understanding of urban green 

space distributions in response to urban land use changes in these cities is valuable for 

guiding small cities to improve their urban green space patterns and system. Therefore, 

this Ph.D. research takes Hangzhou as the study site, and aims to improve the existing 

urban land use maps by integrating RS and GBD and assess the urban green space 

distributions in response to urban land use changes. 
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1.2 Novel aspects of the research 

This work for the first time reviewed the existing efforts on urban land use 

mapping by integrating RS and GBD and categorized the integration methods into 

decision-level integration (DI) and feature-level integration (FI). 

This work for the first time investigated the spatial and temporal characteristics of 

urban green space within different urban land use changes (e.g., from open space to 

residence) and evaluated the impact of urban land use changes on green space in 

Hangzhou city. 

1.3 Aims and objectives 

This study aims to improve the urban land use maps by integrating RS and GBD 

and then utilize the obtained maps to investigate the impact of urban land use changes 

on urban green space distributions in Hangzhou city. In this study, four individual 

objectives have been defined: 

(1) To review the existing literature on the nature of RS and GBD, as well as their 

integration strategies in urban land use classification. 

(2) To propose a methodology framework based on the integration strategy and 

evaluate the framework in Hangzhou city in 2019. 

(3) To classify urban land use maps in Hangzhou for 2017 and 2021, and 

understand the urban land use dynamics from 2017 to 2021. 
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(4) To investigate the impact of urban land use changes on urban green space 

variations in Hangzhou from 2017 to 2021. 

1.4 Definitions 

When reading this thesis, it is critical to be familiar with how I defined a few terms 

and concepts in the context of this Ph.D. study. 

Urban land use refers to the land in urban areas which used for several purposes, 

e.g. sports centers, airports, hospitals, and houses. The distinction between urban land 

cover and urban land use is significant because land cover relates to the physical aspect 

within urban areas (e.g. forests, grasslands, water bodies, and bare land), while land use 

relates to human activities.  

Urban land use mapping is a fundamental method for recognizing and locating 

urban land uses, such as industrial, residential, institutional, and commercial zones. 

Methods for updating urban land use maps depend on supervised classification and 

unsupervised classification. 

Geospatial big data (GBD) is generated every day mostly by fixed and mobile 

sensors such as environmental sensors, cameras, webcams, social media, or even 

residents’ daily activities. These data such as mobile phone data, traffic trajectories, 

geo-tagged photos, Points of interest (POIs), and social media data provide an 

alternative approach to uncover how cities function. 
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Remote sensing (RS) is the process of detecting and monitoring the physical 

characteristics of an area by measuring its reflected and emitted radiation at a distance 

(typically from satellite or aircraft). RS images can be used to extract urban land use 

information. 

Urban green space is defined as all urban land covered by vegetation of any kind, 

e.g. community gardens, parks, residential green spaces, and greenways. This covers 

vegetation on private and public grounds, irrespective of size and function, and can also 

include small water bodies such as ponds, lakes, or streams. 

1.5 Thesis structure 

This thesis is divided into eight chapters: 

Chapter 1 describes the background of the study and introduces the research aims, 

objectives, and main definitions in this thesis.  

Chapter 2 summarizes the relevant literature, focusing on the urban land use 

mapping as well as the impact of urban land use on urban green space distribution.  

Chapter 3 introduces the methods mainly used in this thesis. 

Chapter 4 reviews the existing literature and focuses on the state-of-the-art 

perspective of the urban land use categorization by integrating RS and GBD. The most 

often utilized RS and GBD features are identified and the integration strategies were 

categorized.  
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Chapter 5 proposes a methodology framework based on the integration strategies 

proposed in Chapter 4 and tests the methodology framework in Hangzhou city, China. 

The advantages and disadvantages of the framework are discussed via bibliographic 

evidence and quantitative analysis. 

Chapter 6 improves the methodology framework proposed in Chapter 5 and 

classifies the urban land use in 2017 and 2021 in Hangzhou city. In addition, the 

physical process of urban land use change from 2017 to 2021, and the underlying 

socioeconomic process are analyzed.  

In Chapter 7, this research investigates the impacts of urban land use changes 

(e.g., the transformation from open space to residence) on urban green space 

distribution by integrating statistical analysis, landscape analysis, and geospatial 

analysis methods. 

Chapter 8 synthesizes the results obtained from this thesis with each of the four 

research papers. An outlook and recommendations for future research are also presented. 
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Chapter 2: Literature review  

2.1 Introduction 

This chapter will provide a general overview of urban land use, urban land use 

changes, accuracy assessment, urban green space, and the impact of urban land use 

changes on urban green space distribution.  

2.2 Urban land use 

2.2.1 Evolution from urban land cover to urban land use 

Urban land cover and land use play an important role in modern urban planning 

and management (Ratnasari et al. 2017; Song et al. 2016; Taubenböck et al. 2012; 

Zhang and Xu 2018). The distinction between urban land cover and urban land use is 

significant because land cover relates to the physical aspect within urban areas, while 

land use relates to human activities (Cao et al. 2018; Xing et al. 2018). To be more 

specific, the urban land cover represents spatial information on different types (classes) 

of natural coverage of the urban environment, e.g. forests, grasslands, impervious 

surfaces, water bodies, and bare land (MacLachlan et al. 2017; Myint et al. 2011; 

Schneider et al. 2001). While urban land use refers to the spatial information on 

different urban land use types of the socio-economic functions (Zhang et al. 2017a). 
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Urban land cover mapping using RS data has a long history (Howarth and Boasson 

1983; Patino and Duque 2013; Reba and Seto 2020; Yang et al. 2003a). With the 

substantial progress of RS techniques, the spatial resolution of urban land cover maps 

has gradually improved from coarse spatial resolutions (e.g., MODIS, AVHRR) to 

moderate and high resolutions (e.g., SPOT, Landsat) (Friedl et al., 2002; Schneider et 

al., 2010Deng et al. 2019). The time period of these urban land cover products has 

transformed from a single period to repeated observations, which could provide time 

series urban land cover information (Gong et al. 2019; Li and Chen 2018; Momeni et 

al. 2016; Reda and Kedzierski 2020). Overall, these urban RS studies have provided 

opportunities for a better understanding of physical urban attributes (e.g., impervious 

surface, built-up areas, artificial surfaces, and urban extent) (Defries and Townshend 

2007; Li et al. 2020b; Schneider et al. 2009; Zhu et al. 2019).  

However, more specific information on inner-urban structures (e.g., urban land use) 

cannot be retrieved by using RS only (Li et al. 2020a; Liu et al. 2015). This is likely 

due to the fact that RS data could only offer physical aspects of the urban environment, 

such as texture, spectra, and contexture (Wetherley et al. 2017; Wu and Murray 2003). 

While these physical characteristics may not be able to map urban land use due to the 

great correlation of texture, contexture, and spectra features among urban land use 

categories (Hagenauer and Helbich 2012; Jepsen and Levin 2013; Lou et al. 2019). 

Recently, the demands for urban land use products with socio-economic characteristics 
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have increased, emphasizing a transformation from urban land cover (e.g., physical 

aspects) to urban land use (e.g., socio-economic aspects). However, it is difficult to map 

urban land use – the human activities on land, particularly in modern cities where 

buildings often host multiple purposes and can be renovated and repurposed (Andrade 

et al. 2020; Ye et al. 2020). 

Urban land use has widespread effects on urban heat islands, biodiversity, air 

condition, and public health (Li et al. 2018a; Meng et al. 2018; Van Zanten et al. 2016). 

With increasing urbanization and population growth, more than half of the global 

population will live in cities by 2050 (Seto and Shepherd 2009). The accelerated 

population from rural areas to urban areas has led to rapidly changing urban land use 

patterns (Chen et al. 2021). Several efforts have been made for identifying urban land 

use structures (Huang et al. 2018a; Shi et al. 2019; Su et al. 2020; Zhang et al. 2018). 

For example, Chang et al. 2015 chose the residential type and divided it into three 

groups based on social media data and home transaction records: gated communities, 

regular communities, and urban slums. Furthermore, Frias-Martinez and Frias-

Martinez (2014) presented a method for automatically determining land uses (business, 

leisure, nightlife, and industry) in metropolitan locations using unsupervised learning 

by grouping geographical zones with comparable tweeting activity patterns. These 

urban land use maps only focused on certain types of urban land use rather than a 

complete classification system. With the development of classification techniques (e.g., 
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machine learning, deep learning), urban land use maps with more types of urban land 

use were generated. Xu et al. (2020) suggested a paradigm for functional recognition 

that employs a deep multi-scale neural network (e.g., industrial, residence, 

administration, green space, transportation, commercial). Gong et al. (2020) published 

a new urban land use map for the whole Chinese mainland that incorporates 10-m 

satellite photos, OpenStreetMap, nighttime lights, POI, and Tencent social big data as 

input characteristics, and employed a two-level categorization algorithm. It can be 

noted that the classification system of urban land use is gradually diversifying with 

different mapping targets. Furthermore, the classification techniques and data sources 

used for the urban land use categorization have been developed.  

2.2.2 Integrating RS and GBD on urban land use mapping 

The emergence of GBD (e.g., social media data, POIs, OSM data, mobile phone 

data) provides a new opportunity for urban land use classification due to the abundant 

anthropogenic information, which also compensates for the lack of socio-economic 

attributes of RS data (Batty 2013; Campbell 2009; Fischer 2012; Harvey 2013; Huang 

and Wong 2016; Liu et al. 2016; Liu et al. 2018b; Munoz et al. 2016; See et al. 2016; 

Wu et al. 2015; Zong et al. 2020). The integration of space-based RS data and time-

based GBD can improve the existing urban land use maps by providing both physical 

and socio-economic information (Dong et al. 2019; Sarmin and Ismail 2016). 

Promising progress has been made in the applications of integrated RS and GBD on 
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urban land use mapping at different scales and regions (Goffi et al. 2020; Grippa et al. 

2018; Shi et al. 2019; Taubenböck et al. 2009; Zhang et al. 2020c; Zhang et al. 2019). 

For example, Liu et al. (2017) used six variables to determine the urban land use type 

inside each land use parcel (spatial, texture, spatial envelope, and rotation-invariant 

from RS photos, Tencent real-time user density, and POIs from social media data). Jia 

et al. (2018) categorized RS data and cell phone location data independently before 

fusing the two findings using a decision fusion approach for urban land use 

classification. 

Here this research reviewed the literature on the nature of RS and GBD and their 

integration strategies to address urban land use mapping, aiming to identify the 

opportunities and challenges that synthesizing RS and GBD offers for urban land use 

studies. The Web of Science database (Science Citation Index-Expanded) was used to 

search for articles integrating RS and GBD for urban land use mapping published before 

December 31, 2021. Only articles and conference papers published in English were 

considered. Specifically, the search extracted articles with “Term 1 AND Term 2 AND 

Term 3” in the title, keywords, or abstracts (Table 2-1). Finally, 38 primary research 

publications were included (Table 2-2). 
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Table 2-1 Key terms for urban land use 

Term1 Term2 Term3 

RS, remotely 

sensed imagery, 

VHR imageries, 

satellite imagery 

Mobile phone, 

traffic, social media, 

geotagged photos, 

maps, search 

engines, smart card 

Urban land use mapping, urban land use 

recognition, urban land use classification, 

urban functional zone mapping, urban 

functional region mapping, urban scene 

recognition, urban functional pattern, 

urban land use categories 
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Table 2-2 Integration publications for urban land use classification 

ID Year Title 
Study 

area 

Spatial 

unit 
RS  GBD  

Integration 

process  
Land use types 

1 2016 

Mapping urban land 

use by using Landsat 

images and open 

social data 

Beijing 
Parcel-

level 

Landsat 

OLI 

OpenStreetMa

p, SINA POIs 

Similarity 

index 

(normalized 

feature 

distance) 

Water, cropland, orchard, forest, 

grassland, shrubland, 

undeveloped, cottage, 

community, retail, service, 

industrial, medical, educational, 

administrative, public 

2 2017 

The combined use of 

RS and social sensing 

data in fine-grained 

urban land use 

mapping: A case study 

in Beijing, China 

Haidian 

District

, 

Beijing, 

China 

Parcel-

level 

Landscape 

Metrics, 

Spectral 

and 

Texture 

Attributes 

from 

Gaofen 

image 

Density and 

Spatial Pattern 

of Baidu POIs, 

Density of 

Geotagged 

Weibo Posts 

Random 

forests (RF) 

model 

Open space, institutional, 

residential, business 
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3 2017 

Classifying urban land 

use by integrating RS 

and social media data 

Haizhu 

District

, 

Guangz

hou 

Parcel-

level 

Worldvie

w-2 image 

OpenStreetMa

p， Gaode 

POIs， real-

time Tencent 

user density 

(RTUD) 

Support vector 

machine 

(SVM) 

classifier 

Public management-service 

land, industrial land, green land, 

commercial land, residential 

land, parkland, urban village 

4 2018 

Integrating Aerial and 

Street View Images 

for Urban Land Use 

Classification 

New 

York 

City 

Pixel- 

level 

Aerial 

images 

(Bing 

map) 

Google Street 

View images 

Deep neural 

network 

Family building, walk-up 

building, mixed residential and 

commercial building, industrial 

and manufacturing, 

transportation, public facilities, 

open space, parking, vacant 

land, unknown 

5 2019 

Model Fusion for 

Building Type 

Classification from 

Aerial and Street View 

Images 

49 US 

states 

Building-

level 

Aerial 

images 

(Bing 

map) 

OpenStreetMa

p, Google 

Street View 

images 

Two-stream 

end-to-end 

fusion network 

(i.e., a 

geometric-

Commercial, industrial, public, 

residential 
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level model 

fusion), and 

decision-level 

model fusion 

6 2019 

Urban Land Use and 

Land Cover 

Classification Using 

Multisource RS 

Images and Social 

Media Data 

Guangz

hou 

Object-

level 

ZY-3 

high-

resolution 

image, 

Landsat 8 

OLI 

multispect

ral image, 

Sentinel-

1A SAR 

image 

WeChat 

user density 

data 

RF 

classification 

Water, urban village, road, 

residential building, industrial 

building, greenhouse, 

vegetation, educational, 

commercial, bare land 
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7 2019 

Functional urban land 

use recognition 

integrating multi-

source geospatial data 

and cross-correlations 

Shenzh

en 
Grid-level 

SPOT-5 

images 

Baidu POIs, 

real-time 

Tencent users 

RF 

classification 

Residential land, industrial 

land, commercial land, public 

management, and service land, 

green and forest land, 

waterbody 

8 2020 

DFCNN-Based 

Semantic Recognition 

of Urban Functional 

Zones by Integrating 

RS Data and POI Data 

Shenzh

en 

Object-

level 

worldview

-3 satellite 

OpenStreetMa

p, Amap POI 

Deeper-

Feature 

Convolutional 

Neural 

Network 

(DFCNN), 

Urban green, industrial districts, 

public services, commercial 

districts, hospitals, schools, 

shanty towns 

9 2020 

Deep learning-based 

remote and social 

sensing data fusion for 

urban region function 

recognition 

N/A 
Pixel- 

level 

URFC-A 

and 

URFC-B 

user visit data 
End-to-end 

deep learning 

Residential, school, industrial 

park, railway station, airport, 

park, shopping area, 

administrative district, hospital 
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10 2020 

Mapping the Essential 

Urban Land Use in 

Changchun by 

Applying Random 

Forest and Multi-

Source Geospatial 

Data 

Changc

hun 

Parcel-

level 

Luojia-1 

satellite, 

Sentinel-2 

satellites 

OpenStreetMa

p, Baidu Street 

View Images, 

Baidu POI 

RF 

classification 

Residential, commercial, 

industrial, public, green space 

11 2020 

Exploring Impact of 

Spatial Unit on Urban 

Land Use Mapping 

with Multisource Data 

Futian 

District

, 

Shenzh

en 

block, 

grids, 

objects 

GaoFen2 

images 

 

OpenStreetMa

p road network 

data, Gaode 

POI 

RF 

classification 

Residential, commercial, public 

facilities, educational, urban 

village, natural land 

12 2020 

Large-scale urban 

functional zone 

mapping by 

integrating RS images 

and open social data 

Beijing objects 

ZiYuan-3 

(ZY-3) 

image 

Gaode POI 

data 
SVM 

Commercial, residential, 

institutional, industrial, 

shantytown, open space 
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13 2020 

Mapping essential 

urban land use 

categories in China 

(EULUC-China): 

preliminary results for 

2018 

27cities 

in 

China 

Parcel-

level 

10-m 

Sentinel-

2A/B 

images,13

0-m 

Luojia-1 

nighttime 

light 

images 

Tencent mobile 

phone 

locating-

request (MPL) 

data, Gaode 

POI data 

RF 

classification 

Residential, business office, 

commercial, industrial, road, 

transportation, airport, 

administrative, educational, 

medical, sports, park 

14 2020 

An Ensemble 

Learning Approach 

for Urban Land Use 

Mapping Based on RS 

Imagery and Social 

Sensing Data 

Beijing 
street 

block 

Google 

Earth 

images, 

Tencent 

street-

view 

images 

Baidu POIs, 

Weibo social 

media 

check-ins  

RF and 

Xgboost 

Commercial, residential, 

educational, natural, civic, 

transport, industrial, 

agricultural, other 

15 2020 

Comparison of 

Machine-Learning 

Methods for Urban 

Hangzh

ou 

Parcel-

level 

Sentinel-

2A 

satellite 

Gaode POIs 

data 

RF, SVM, 

ANN 

Residential, business office, 

commercial, industrial, road, 

transportation, airport, 
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Land-Use Mapping in 

Hangzhou City, China 

images, 

land 

surface 

temperatur

e (LST), 

Luojia-1 

nighttime 

lights 

(NTLs), 

Building 

Height 

administrative, educational, 

medical, sports, park 

16 2020 

Sampling Strategy for 

Detailed Urban Land 

Use Classification: A 

Systematic Analysis in 

Shenzhen 

Shenzh

en 

Parcel-

level 

Sentinel 

2A/B, 

Luojia 1 

OpenStreetMa

p, Gaode POI, 

Tencent social 

big data 

RF 

classification 

Residential, business office, 

commercial, industrial, road, 

transportation, airport, 

administrative, educational, 

medical, sports, park 

17 2020 

Mapping Essential 

Urban Land Use 

Categories in Nanjing 

Nanjing 
Parcel-

level 

10-m 

Sentinel-

2A/B 

Tencent mobile 

phone 

locating-

RF 

classification 

Residential, business office, 

commercial, industrial, road, 

transportation, airport, 
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by Integrating Multi-

Source Big Data 

images,13

0-m 

Luojia-1 

nighttime 

light 

images, 

building 

footprint 

request (MPL) 

data, Gaode 

POI data 

administrative, educational, 

medical, sports, park 

18 2020 

Regional Mapping of 

Essential Urban Land 

Use Categories in 

China: A 

Segmentation-Based 

Approach 

Ningbo 
Parcel-

level 

10-m 

Sentinel-

2A/B 

images,13

0-m 

Luojia-1 

nighttime 

light 

images, 

WorldPop 

Gaode POI 

data 

RF 

classification 

Residential, business office, 

commercial, industrial, road, 

transportation, airport, 

administrative, educational, 

medical, sports, park 
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19 2020 

Heuristic sample 

learning for complex 

urban scenes: 

Application to urban 

functional-zone 

mapping with VHR 

images and POI data 

Beijing 
Parcel-

level 

WorldVie

w-II image 
POIs Deep forest 

Commercial, residential, 

industrial, urban villages, 

campuses, park 

20 2020 

Detailed Mapping of 

Urban Land Use 

Based on Multi-

Source Data: A Case 

Study of Lanzhou 

Lanzho

u 

Parcel-

level 

Sentinel 

12A, 

Luojia-1 

nighttime 

light 

images 

OpenStreetMa

p and Gaode 

road networks, 

Gaode POI 

data, Tencent 

Easygo data 

RF 

classification 

Residential, business office, 

commercial, industrial, road, 

transportation, airport, 

administrative, educational, 

medical, sports, park 

21 2015 

An integrative method 

for mapping urban 

land use change using 

"geo-sensor" data 

(conference paper) 

Kunmi

ng, 

Yunnan 

Pixel-

level, 

parcel-

level 

Landsat 

TM, ETM, 

ASTER 

GDEM 

Tencent map 

POI (Point of 

interest), SINA 

Weibo 

geotagged 

social media 

Overlay (OSM 

for built-up 

parcel 

generation and 

POIs for parcel 

categorization) 

Water, commercial, office, 

recreational, other, 

manufacturing, transportation, 

residential (gated communities, 

ordinary communities, urban 

slums) 
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data, 

OpenStreetMa

p road 

network, 

Fang.com 

(Real estate 

communities, 

House sale 

records) 

22 2017 

Hierarchical semantic 

cognition for urban 

functional zones with 

VHR satellite images 

and POI data 

Beijing 
Parcel-

level 

QuickBird 

image 
POIs 

Hierarchical 

semantic 

cognition 

(HSC) 

Commercial, residential, 

campuses, parks and greenbelt, 

industrial zones, shanty towns 

23 2018 

Social functional 

mapping of urban 

green space using RS 

and social sensing 

data 

Beijing 

Parcel-

level (POI 

level) 

GaoFen-2 

remotely 

sensed 

imagery 

POIs, 

OpenStreetMa

p road network 

Near-convex-

hull analysis 

(NCHA) and 

text-concave-

municipal park, theme park, 

community park, roadside 

green space, residential green 

space, other subsidiaries green 

space 
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hull analysis 

(TCHA) 

24 2018 

Mapping Urban Land 

Use at Street Block 

Level Using 

OpenStreetMap, RS 

Data, and Spatial 

Metrics 

Wester

n 

Africa 

Street 

Block 

Level 

WorldVie

w-3 land-

cover (LC) 

maps 

OpenStreetMa

p 

Supervised 

random forest 

classifier 

Vegetation, bare soil, 

nonresidential built-up, planned 

residential, unplanned 

residential 

25 2018 

Urban Land Use 

Mapping by 

Combining RS 

Imagery and Mobile 

Phone Positioning 

Data 

Beijing Pixel-level 

Gaofen 1 

(GF1) 

wide-field 

view 

(WFV) 

scene 

mobile phone 

positioning 

data (MPPD) 

Decision 

fusion strategy 

business, open, residential, 

entertainment, other 

26 2018 

Mapping urban 

functional zones by 

integrating very high 

spatial resolution RS 

imagery and points of 

Xiamen 

Object-

based 

(parcel 

based) 

GaoFen-2 

RS 

Imagery 

Baidu POIs 

The Weights of 

POIs and 

Segmentation 

Residence, transportation 

zones, convenience shops, 

shopping centers, factories, 

companies, public services 
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interest: A case study 

of Xiamen, China 

27 2018 

Portraying Urban 

Functional Zones by 

Coupling RS Imagery 

and Human Sensing 

Data 

Shenzh

en 

Object-

based 

SPOT-5 

images 

Mobile phone 

positioning 

data 

Hierarchical 

clustering 

urban center, sub-center, 

suburbs, transit region, urban 

buffer, ecological area 

28 2019 

Exploring semantic 

elements for urban 

scene recognition: 

Deep integration of 

high-resolution 

imagery and 

OpenStreetMap 

(OSM) 

Beijing 
object-

based 

Worldvie

w-2 

OpenStreetMa

p data, Baidu 

POIs 

POI label  

commercial, entertainment, 

public service, educational, 

residential 

29 2020 

Social Sensing for 

Urban Land Use 

Identification 

New 

York 

City 

Object-

based 

Sentinel-

2A remote 

sensed 

imagery 

Bike data and 

taxi data, 

OpenStreetMa

p  

Decision tree 

and random 

forest 

Residential, entertainment, 

office, open space, industrial, 

water 
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30 2020 

Recognizing urban 

functional zones by a 

hierarchical fusion 

method considering 

landscape features and 

human activities 

Wuhan 
Parcel-

level 

Landsat-8 

OLI 

images, 

POI data, taxi 

GPS trajectory 

data, 

OpenStreetMa

p 

Fusion-

strategy based 

recognition 

Administrative and public, 

commercial, industrial, 

transportation, residential, 

green space, and square 

31 2020 

A New RS Images and 

Point-of-Interest 

Fused (RPF) Model 

for Sensing Urban 

Functional Regions 

N/A 
Pixel-

based 

Google 

earth 

satellite 

imagery 

Gaode POIs 

data 

RS 

images and 

POI Fused 

(RPF) module. 

Green space and square, 

Industrial area, Administration 

and 

public service, Commercial, 

and business facility, 

Transportation zone, Residence 

32 2020 

Land use 

classification from 

social media data and 

satellite imagery 

Wuhan 
Parcel-

level 

Google 

images 

POI data, road 

networks from 

the 

OpenStreetMa

p 

Hierarchical 

Determination 

method based 

on Kernel 

Density 

Classification 

(KDC-HDM) 

Farmland, undeveloped land, 

lake, and green land, 

residential, industrial, 

commercial, public service, 

transportation, park  
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33 2020 

Open-source data-

driven urban land-use 

mapping integrating 

point-line-polygon 

semantic objects: A 

case study of Chinese 

cities 

Six 

areas of 

cities in 

China 

Object-

based 

Google 

Earth 

images 

OpenStreetMa

p data, POIs 

The rule-based 

category 

mapping 

(RCM) model 

residential, administration, 

cultural facilities, education and 

science, sports, health care, 

commercial, industrial, logistics 

and warehouses roads, 

transportation, municipal, park, 

green buffer, square, specially 

designated land, water, 

farmland, construction land 

34 2021 

Mapping essential 

urban land use 

categories with open 

big data: Results for 

five metropolitan 

areas in the United 

States of America 

the 

United 

States 

Object-

based 

VHR, 

Sentinel, 

nighttime 

light data 

Twitters 

Automatic 

ensemble 

learning 

Residential, entertainment, 

transportation, industrial, office 

35 2021 

Mapping Essential 

Urban Land Use 

Categories in Beijing 

Beijing 
Parcel-

based 

Sentinel-2, 

Luojia-1 

Baidu POIs, 

Tencent easygo 
RF model 

Residential, business, 

commercial, industrial, 

administrative, medical, 
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with a Fast Area of 

Interest (AOI)-Based 

Method 

nighttime 

data 

crowdedness 

data 

cultural, greenspace, 

educational, village 

36 2021 

Identifying Urban 

Building Function by 

Integrating Remote 

Sensing Imagery and 

POI Data 

Wuhan 
Building-

level 

VHR 

images 
POIs 

KDE, spatial 

similarity 

Residential, administration, 

commercial, municipal utilities, 

warehouse, transportation, 

industrial 

37 2021 

Uncovering the 

Nature of Urban Land 

Use Composition 

Using Multi-Source 

Open Big Data with 

Ensemble Learning 

Ningbo 
Parcel-

based 

Multi-

source RS 

data 

POIs, OSM 

Simple non-

iterative 

clustering 

(SNIC) 

algorithm 

Residential, village, business, 

commercial, industrial, 

transportation, administrative, 

educational, medical, sport, 

park, undeveloped 

38 2021 

Decision-Level and 

Feature-Level 

Integration of Remote 

Sensing and 

geospatial Big Data 

Hangzh

ou 

Parcel-

based 

Sentinel-2 

images 

Gaode POIs, 

OSM road 

network data 

RF model 
Residence, business, institution, 

and open space 
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for Urban Land Use 

Mapping 

 



 

49 

 

2.2.3 Urban land use change 

Urban land cover/use change is one of the most important factors profoundly 

affecting the earth’s ecological systems (Angel et al. 2011; Johnson et al. 2017; Rogan 

and Chen 2004; Seto and Fragkias 2005; Xing et al. 2017; Yan et al. 2015; Yang and Lo 

2010; Zha et al. 2003). Previous researchers have studied urban land cover change for 

several years (Chen et al. 2020a; Esch et al. 2012; Goldewijk 2001; Meng et al. 2017; 

Muller et al. 2010; Zhang and Seto 2011). Among these studies, urban areas (e.g., 

impervious surfaces, urban land, urban boundary) have been extracted from regional 

scales to global scales ranging from high resolution to coarse resolution RS images (Li 

et al. 2020c; Wu et al. 2017; Yang et al. 2003b). However, few studies have investigated 

the spatial-temporal patterns of urban land use. Existing efforts on urban land use 

changes and related analysis are referring to the urban planning maps. For example, 

Wang et al. (2019b) used a series of mathematical methods and parcel-level urban land 

use maps from Xi’an municipal planning bureau for a quantification study in the Xi’an 

city wall area. Li et al. (2015) investigated the spatial variations of green space among 

different land use categories from the municipal cadastral data within the city of 

Shanghai at the city, inner-outer ring road, and district scales. While the urban land use 

data used in these studies have a very low resolution or inaccurate units (Deng et al. 

2008). 

Urban land use change will affect both natural (e.g., earthquakes, floods) and 

human systems (e.g., the changes in urban land use types) in the urban environment 

(Eckert 2014; Huang and Wang 2019; Seto and Kaufmann 2003). In particular, it has a 

widespread effect on urban green space in terms of distribution, composition, 

configuration, and function (Hao et al. 2015). Urban land use change can be influenced 
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by several aspects including policy, economic and social aspects (Zhang et al. 2021; 

Zheng et al. 2018; Zhong et al. 2014). Therefore, the spatial-temporal analysis of urban 

land use changes will, in turn, provide a powerful reference for urban management and 

policymaking, as well as urban green space planning. It is thus necessary to analyze the 

spatial-temporal patterns of urban land use changes to understand the urban ecological 

system and anthropogenic activities (Qian et al. 2020). 

2.2.4 Accuracy assessment 

Urban land use greatly influences human activities as well as human health, wealth, 

and well-being. It is thus necessary to produce high-quality and up-to-date urban land 

use information. The accuracy assessment refers to the comparison of the predicted map 

with the actual map that is assumed to be true, which is an unavoidable step of urban 

land use mapping (Donner et al. 2000; Olofsson et al. 2013). Different sampling designs 

and assessment methods during the accuracy assessment process could be used to 

produce different urban land use maps (Olofsson et al. 2014). Previous studies have 

been promoted to improve evaluation methods to enhance their usefulness and help 

produce high-quality urban land use products (Foody 2004; McKenzie et al. 1996).    

The spatial units used for urban land use mapping can be categorized into pixel-

based, grid-based, or object-based (Stehman and Wickham 2011). Among them, the 

spatial units of most urban land use maps are pixel-based. While recent studies classify 

urban land use types based on parcel-level units because of the heterogeneity of urban 

functions among different land use parcels. It is thus essential to overcome the problem 

that how to evaluate parcel-based urban land use maps. According to Stehman and 

Foody (2019)’s work, previous evaluation methods mainly depend on a confusion 

matrix (e.g., overall, user’s, and producer’s accuracy), which is easy to implement. In 
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the confusion matrix, the proportional areal representation of the study site needs to be 

reflected. And the variability of the accuracy and data estimates should be quantified 

by standard errors or confidence intervals.  

In this research, it might not be appropriate to use the area proportion to estimate 

the accuracy of parcel-based urban land use maps. The reason is that the size of urban 

parcels varies, and the larger urban parcel cannot stand for a larger proportion of urban 

land use. Therefore, the area proportion of urban land use parcels should not be utilized 

for the estimation. To solve this problem, the quantity proportion of urban parcels can 

be used to evaluate the confusion matrix instead of the area proportion. To be more 

specific, the area in category i of the contingency table is replaced by the proportion of 

the number of category i to the number of all categories. This research evaluated the 

urban land use classification results by computing the overall accuracy (OA), user's 

accuracy (UA), and producer's accuracy (PA) based on the confusion matrix (Foody 

2002). Also, approximate 95% confidence intervals of OA, UA, and PA were calculated 

based on the equations proposed by Card (1982). The map category is in the column 

and the true category is in the row referring to the contingency table (Table 2-3).  

Table 2-3 Contingency table for accuracy assessment (referring to Card (1982)) 

   Map category(j)   

   1 2 . . . r Total 

True 

category(i) 

1 n11 n12  n1r n1. 

2 n21 n22  n2r n2. 

. 

. 

. 

       

r nr1 nr2  nrr nr. 

Total n.1 n.2  n.r n 
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2.3 Impact analysis of urban land use  

Urbanization significantly affects the urban environment, especially urban green 

space (Byomkesh et al. 2011; Hernández-Moreno and Reyes-Paecke 2018). Urban 

green space can help improve microclimate, mitigate urban heat islands (Xiao et al. 

2018), control air pollution (Heidt and Neef 2008), maintain human welfare, and 

provide entertainment opportunities (Li et al. 2019a; Villeneuve et al. 2012). It is thus 

important to understand urban green space variations influenced by rapid urbanization. 

Several studies have investigated the spatial-temporal dynamics of urban green space 

to help optimize green space patterns and develop related policies (Zhao et al. 2013). 

For example, Liu et al. (2021) employed integrated approaches to characterize the 

changing patterns and intensities of urban green space influenced by urbanization in 

Shanghai from 1990 to 2015. Wang et al. (2020) investigated the importance of a multi-

scale perspective in understanding the spatial distribution of urban green space and its 

change, and its response to urban development. Jiao et al. (2017) used the improved 

gradient partitioning method and six landscape metrics to characterize urban expansion 

and green space fragmentation and investigate the relationship between urban green 

fragmentation and urban expansion using correlation analysis and regression modeling. 

Li et al. (2015) investigated the spatial variations of green space among different land 

use categories within the city of Shanghai at the city, inner-outer ring road, and district 

scales. These efforts provide an improved understanding of the spatial-temporal 

variations of urban green space in response to urban land cover changes (e.g., physical 

aspects of urbanization). However, few studies have examined the effects of urban land 
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use changes (e.g., socio-economic aspects of urbanization) on urban green space 

distribution. 

2.3.1 Urban green space 

Urban green spaces refer to urban areas that are covered by greenness, which can 

not only provide ecological and environmental benefits but also physical and 

psychological benefits for urban dwellers (Shahtahmassebi et al. 2021). Urban areas 

generally have fewer green spaces in comparison to villages or suburbs, resulting in 

weaker ecosystem services in the urban environment (Reyes-Riveros et al. 2021). 

Therefore, urban areas should improve the urban green space patterns to optimize the 

value of urban green spaces (Semeraro et al. 2021).  

Urban green space is diverse, varying in size, vegetation cover, species richness, 

environmental quality, proximity to public transport, facilities, and services (Daniels et 

al. 2018). The World Health Organization (WHO) defined urban green space as "all 

urban land covered by vegetation of any kind" (Wu et al. 2019). It mainly includes two 

aspects: public green space and private green space (Figure 2-1). Public urban green 

space includes parks and reserves, sporting fields, riparian areas like the stream and 

river banks, greenways and trails, community gardens, street trees, and nature 

conservation areas, as well as less conventional spaces such as green walls, green 

alleyways, and cemeteries  (Ludwig et al. 2021). Private green space includes private 

backyards, communal grounds of apartment buildings, and corporate campuses 

(Hussainzad et al. 2021). Furthermore, some researchers utilize “urban open space” 

(e.g., a natural and cultural resource, “unused land” or “park and recreation areas) to 

describe a broader range of urban green spaces.  
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Figure 2-1 Urban green space samples. 

Urban green space provides many functions and benefits that contribute to the 

quality of residents’ daily life (Figure 2-2) (Lee and Maheswaran 2011). These benefits 

can be categorized as follows: 

 

Figure 2-2 Urban green space benefits. 

(1) Environmental benefits 
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Urban green space provides many direct environmental benefits (Wang 2009). For 

example, it helps improve air conditions by preventing the distribution of air pollutants 

(e.g., O3, PM2.5, NO2, SO2, and CO) or by reducing the air pollutants from traveling to 

other places (Eisenman et al. 2019; Matos et al. 2019). Urban green space can also help 

to improve urban hydrology by increasing rainwater infiltration, intercepting rainfall, 

and increasing the water storage capacity (Yang et al. 2019). In addition, it can reduce 

surface runoff by preserving surface water. Urban green space can help reduce the 

increased temperatures caused by urban heat islands (Schipperijn et al. 2013). 

Specifically, shadings and evapotranspiration produced by urban green spaces can 

contribute to the lower temperature (Bao et al. 2016; Masoudi and Tan 2019). Urban 

green space also contributes to the reduction of CO2 by direct sequestration (Amoatey 

et al. 2018).  

(2) Socio-economic benefits 

Urban green space can provide social benefits such as relaxation or recreation for 

urban residents. Research shows that people are more likely to engage in physical 

activity when the urban green spaces nearby are accessible. Furthermore, urban green 

space can serve as an outdoor educational place for students (Flouri et al. 2019). The 

ingenuity and imagination of students have been promoted by exposure to the urban 

green space. 

Urban green space can not only avoid the costs of the establishment of more 

rainwater retention basins but also reduce healthcare costs due to a reduction in air 

pollution (Song et al. 2018b). Besides, the accessibility of urban green space in most 

urban areas has been recognized as an important variable for property values (Liebelt 

et al. 2018). Urban areas close to urban green spaces are aesthetically pleasing and 



 

56 

 

attractive to urban dwellers. In addition, urban green space plays an important role in 

cooling buildings.  

(3) Physical and psychological benefits 

Urban green spaces have a positive influence on people's physical health. 

(Kothencz et al. 2017; Teixeira 2021). According to previous studies, urban green 

spaces can help reduce cardiovascular disease symptoms and improve respiratory 

health (de Jalón et al. 2021). Access to urban green space not only reduces the risk of 

chronic diseases but also avoids the risk of obesity. Increasing access to green space 

and increased levels of physical exercise have been linked. When access to an urban 

park was enhanced, the percentage of inactive and moderately active people who used 

it rose.  

In addition, urban green spaces can provide psychological benefits for urban 

residents (Wang et al. 2019a). In today's fast-paced culture, mental illness becomes a 

huge source of concern when rest is devalued. Every year, eight million people die as a 

result of mental illness throughout the world. Limited access to urban green space in 

metropolitan settings, as well as the low quality of green space that is accessible, may 

lead to poor mental health outcomes (Callaghan et al. 2021). Individual life distance 

from a green space or park, as well as the fraction of land designated as open 

space/parks, are negatively connected to communal anxiety/mood disorder treatment 

numbers (Gascon et al. 2018). Even when physical activity rates do not rise as a result 

of increased access to green space, it has been proven that having more green space 

reduces stress and improves social cohesiveness (Jennings and Bamkole 2019). 
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2.3.2 Impact of urban land use on urban green space 

Studies have shown that the impacts of urbanization on urban green space are 

mainly manifested in the distributions, compositions, and configurations (Ricci et al. 

2022; Woldesemayat and Genovese 2021). Distribution presents the patterns and 

structures of urban green space patches, such as the fragmentation, connectivity, and 

equity of the patches. Configuration refers to the shape, size, and structure of urban 

green spaces (Çoban et al. 2021), while composition represents different urban green 

space types (e.g., grass, trees, shrubs, flowers). Among them, the analysis of urban 

green space distribution is of great significance since it is directly impacted by 

urbanization. 

Previous studies have focused on the impact of urbanization on green space 

distribution by utilizing certain methods (Schetke et al. 2010). For example, Masoudi 

et al. 2021 compared the interrelationships among land use, spatial pattern, and cooling 

effect of urban green space between 2005 and 2015 in Singapore. The urban green space 

patterns were analyzed by using the landscape metrics. Liu et al. (2021) analyzed the 

landscape patterns of urban green space in Shanghai from 1990 to 2015 through 

integrated approaches (e.g., green space ratio, transition metrics, dynamic change 

degree, and landscape metrics). Wang et al. (2020) proposed an analytical framework 

including rank-size analysis, gradient analysis, and hotspot analysis to investigate the 

spatial and temporal dynamics of urban green space. Liang et al. (2017) evaluated the 

landscape patterns of urban green space by utilizing landscape metrics, correlation 

analysis, and factor analysis. Jiao et al. (2017) characterized the green space 

fragmentation in 1989, 2001, and 2013 through an improved gradient partitioning 
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method and six landscape metrics, which further quantified the relationships between 

green space fragmentation and urbanization.  

Urban land use exert a complicated influence on urban green space distribution by 

changing the urban land use patterns (Caspersen et al. 2006; Kong and Nakagoshi 2006). 

The analysis of urban green space distribution in response to urban land use changes 

will help improve the urban green space system (Wang et al. 2020). Several methods 

have been utilized to investigate the spatial and temporal patterns of urban green space 

dynamics. For example, quantifying the proportion of urban green space areas could 

reveal the distribution of green spaces (Li et al. 2015). Meanwhile, the landscape 

analysis could relate the urban green space distribution to urban land use and explore 

the ecological characteristics of the green spaces (Liang et al. 2017). Moreover, 

identifying the hotspots of urban green space change could reveal the spatial 

heterogeneity of urban green space, and investigate the effect of urban land use on urban 

green space (Wang et al. 2020). However, few studies have sought to combine these 

methodologies to investigate the spatial-temporal patterns of urban green space and its 

response to urban land use changes. 

Furthermore, the resolutions of the urban land use maps and urban green space 

maps used in related studies are relatively low, and will thus result in untrustworthy 

analysis results (Kong and Nakagoshi 2006; Li et al. 2017a; Teixeira 2021; Wang 2009; 

Wu et al. 2019). Very-high-resolution (VHR) RS images provide new opportunities for 

urban green space mapping with detailed and updated information. 

2.4 Summary 

In this chapter, the lessons learned from the literature are briefly summarized: 
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The above examination of the relevant literature highlighted several areas worthy 

of further research. Chief among these is the need to generate high-performance urban 

land use maps, largely because high-quality land use maps can provide socio-economic 

information of inner-city rather than urban land cover maps. The examination result of 

this is that integrating RS and GBD provides new opportunities for delineating urban 

land use patterns. However, the integration strategies are still poorly understood and 

require significant research to explore. 

Urbanization is one of the most important factors profoundly affecting the urban 

ecological systems, especially urban green spaces. The impact of urban land cover 

change (e.g., physical aspects of urbanization) on urban green space variations already 

has a long history. However, existing efforts on urban land use change (e.g., socio-

economic aspects of urbanization) and related impact analysis are still based on urban 

planning maps from local governments, which have a very low resolution or inaccurate 

units. The urban land use change is highly related to the green space distributions 

according to related studies. It is thus necessary to provide urban land use change 

analysis with finer resolution so that more detailed information on urban green space in 

response to urban land use changes can be explored. 

Urban land use exert a complicated influence on urban green space distribution by 

changing the urban land use patterns. The analysis of urban green space distribution in 

response to urban land use changes will help improve the urban green space system. 

Several methods have been utilized to investigate the spatial and temporal patterns of 

urban green space dynamics. However, few studies have sought to combine these 

methodologies to investigate the spatial-temporal patterns of urban green space and its 

response to urban land use changes. 
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The research in this thesis seeks to address the challenges and opportunities 

uncovered by the literature review. Research in all of these areas will contribute to the 

growing field of urban land use mapping, and the impact of urban land use changes on 

urban green space distribution, investigating analysis methodology to better map the 

urban land use, and investigate the influence of urban land use changes on urban green 

space. 
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Chapter 3: Methodological approach 

3.1 Introduction 

This chapter introduces the methodology workflow in this Ph.D. research (Figure 

3-1). The workflow mainly includes four parts related to four research chapters. In the 

first part (Chapter 4), the integration strategies of urban land use mapping were 

categorized into decision-level integration (DI) and feature-level integration (FI) 

methods. The second part (Chapter 5) proposed a methodology framework based on 

DI and FI methods. The impervious surface mapping method was used for extracting 

impervious surfaces in the DI method, and the Points of Interest (POIs) calculation 

procedure was utilized to categorize urban parcels. The random forest (RF) model 

adopted this research for classifying urban land use types, as well as evaluating the 

importance of classification features. The optimization analysis was used for improving 

classification results in the third part (Chapter 6). The fourth part (Chapter 7) 

classified urban green space by using the Normalized Difference Vegetation Index 

(NDVI) calculation method. The impact analysis methods were used for investigating 

the distribution of urban green space in response to urban land use changes. 
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Figure 3-1 Methodology workflow. 

3.2 DI-based mapping method 

For categorizing urban land use, DI-based classification combines RS-based 

classification results with GBD-based classification results. To be more specific, RS 

and GBD features are evaluated independently before being integrated for urban land 

use mapping utilizing various modes and methods (Figure 3-2). 

 

Figure 3-2 DI-based categorization strategies. 
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The DI-based classification method in Chapter 5 was proposed based on the 

review of the integration strategy in Chapter 4. The DI-based classification method 

integrated the results of the RS-based classification (e.g., Sentinel-2) and GBD-based 

classification (e.g., POIs) by certain rules.  

During the DI-based classification process, the quality of POIs was manually 

checked in terms of the data quantity and data location in the study site. The Baidu Map 

was used to check the POIs after reclassification. Around 95% of POIs were relatively 

accurate. Some of the wrong POIs were also manually corrected based on ArcGIS 10.2 

Software.  

In the DI-based method, the Sentinel-2 image was classified for producing the 

impervious and pervious classes by using the RF classifier based on the Google Earth 

Engine (GEE) platform. GEE combines a multi-petabyte catalog of satellite imagery 

and geospatial datasets with planetary-scale analysis capabilities. The training samples 

identified by visual interpretation through Google Earth and a field survey were put into 

the RF classifier for the classification of the impervious and pervious surfaces.  

Finally, the type of each built-up parcel (e.g., urban parcels with impervious 

surfaces) was determined according to the POI frequency density calculation, and the 

weight calculation. 

3.3 FI-based mapping method 

In FI-based classification, RS features (e.g., spectral, textural, temporal, and 

spatial features), and GBD features (e.g., spatial, temporal, semantic, sequence features) 

are first extracted. These features are fused into integrated feature sets for urban land 

use classification (Figure 3-3).  
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Figure 3-3 FI-based categorization strategies. 

 

The FI-based classification in Chapter 5 extracted 18 features from the Sentinel-

2 images and POIs. The RF model was trained to categorize urban land use parcels by 

using all the features on the GEE platform. The code I used is attached below (Figure 

3-4).  

 

Figure 3-4 RF classification code in GEE 
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3.4 Accuracy assessment 

The accuracy assessment method is used in several chapters of this Ph.D. thesis. 

In Chapter 5, it is used for evaluating urban land use classification performance, as 

well as the impervious surface classification result. Chapter 6 utilized the accuracy 

assessment to evaluate the urban land use classification results. Chapter 7 evaluated 

the performance of urban green space maps by using the accuracy assessment.  

In this research, it might not be appropriate to use the area proportion to estimate 

the accuracy of parcel-based urban land use maps. The reason is that the size of urban 

parcels varies, and the larger urban parcel cannot stand for a larger proportion of urban 

land use. Therefore, the area proportion of urban land use parcels should not be utilized 

for the estimation. To solve this problem, the quantity proportion of urban parcels can 

be used to evaluate the confusion matrix instead of the area proportion. This research 

evaluated the urban land use classification results by computing the overall accuracy 

(OA), user's accuracy (UA), and producer's accuracy (PA) based on the confusion 

matrix (Foody 2002). Also, approximate 95% confidence intervals of OA, UA, and PA 

were calculated based on the equations proposed by Card (1982). It should be noted 

that the training parcels used for FI-based classification in 2019 were selected by using 

stratified random sampling. While other training parcels and testing parcels were 

selected randomly. 

As for the impervious surface mapping and urban green space mapping, I utilized 

the area proportion to estimate the classification accuracy. The confusion matrix 

including OA, UA, and PA was computed and approximate 95% confidence intervals 
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of OA, UA, and PA were calculated. In addition, the testing and training samples were 

selected randomly. 

The training and testing parcels were identified by using the Baidu map, Baidu 

street view, and a field survey. The hybrid satellite map of Baidu map presents a top 

view of the urban landscape with high-resolution satellite imagery and names of ground 

features, which were further inspected or confirmed using the Baidu street view as it 

contains high-resolution photos and allows multiple perspectives (Hoffmann et al. 2019; 

Kang et al. 2018). I determined the parcel type while different types of street views 

were observed for the same parcel, and there is no predominant characteristic referring 

to the rules in essential urban land use categories in China (EULUC-China) (Gong et 

al. 2020). To be more specific, I recorded a list of items, including the geolocations, 

classification types, landmark buildings and facilities, and mixed land use situation and 

their estimated proportions for each urban parcel. The training and testing parcels were 

selected by using simple random sampling from the list of parcels, except the training 

parcels used in the 2019 urban land use mapping. I used the stratified sampling strategy 

to select training parcels in 2019. For each parcel, the land use class was determined by 

visual interpretation based on the Baidu map. The training parcels were used for training 

the RF classifiers in FI-based classification, while testing parcels were used for 

accuracy assessment in both DI-based and FI-based classification, respectively. 

3.5 Attribute importance analysis 

In Chapter 6, the FI-based classification proposed in Chapter 5 was improved 

using the “Variable Selection Using Random Forests for interpretation” (VSURF) 
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approach proposed by Genuer et al. (2015). RF models were built using different 

combinations of categories, resulting in two models using three categories (Table 3-1).  

Table 3-1 Summary of RS and GBD features used in parcel-level urban land use 

mapping. 

Data 

source 
Features Variables 

Sentinel-

2A/B 

Spectral features 

Mean, standard deviation, kurtosis, skewness of 

the near-infrared band 

EVI, NDBI, NDVI, NDWI 

Textural features 

Angular second moment, contrast, dissimilarity, 

and entropy based on GLCM of the near-infrared 

band 

POIs 

Density features 
Minimum, maximum, range, sum, mean and 

standard deviation 

Frequency 

features 

Total number of all POIs 

Total number of each type of POIs  

The proportion of each type of POIs 

 

Table 3-2, Table 3-3, and Table 3-4 showed the classification accuracy of each 

urban land use type via different feature combinations of features. 
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Table 3-2 Confusion matrix of classification results in the combination of  

spectral, texture, and frequency 

a I R B O 

I 0.896 0.418 0.499 0.390 

R 0.620 0.837 0.611 0.478 

B 0.522 0.636 0.854 0.406 

O 0.332 0.510 0.540 0.736 

 

Table 3-3 Confusion matrix of classification results in the combination of  

spectral, texture, and density.  

b I R B O 

I 0.683 0.455 0.350 0.446 

R 0.478 0.621 0.435 0.340 

B 0.373 0.438 0.674 0.378 

O 0.368 0.391 0.378 0.718 

Table 3-4 Classification accuracy of each urban land use type via different feature 

combinations of features. a: Spectral, texture, and frequency, b: Spectral, texture, 

and density. 

Land use type Accuracy  
Feature combination 

a b 

Institution 
UA 0.826 0.725 

PA 0.697 0.557 

Residence 
UA 0.760 0.684 

PA 0.974 0.826 

Business 
UA 0.960 0.783 

PA 0.729 0.685 

Open space 
UA 0.698 0.784 

PA 0.421 0.351 
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3.6 Urban green space mapping method 

Chapter 7 classified Gaofen images by calculating NDVI to obtain urban green 

space information. This research selected the testing samples by visual interpretation 

based on Google Earth. Following the approach discussed by Stehman and Foody 

(2019), this research randomly selected 1000 samples in 2017 and 1000 samples in 

2021 for testing from the list of parcels (Figure 3-5). Specifically, 1000 testing samples 

in 2017 were identified including 295 non-green space samples, and 705 green space 

samples, while 1000 testing samples in 2021 were identified including 243 non-green 

space samples and 757 green space samples. Table 3-5 and 3-6 showed the confusion 

matrix of the urban green space mapping results in 2017 and 2021. 

 

Figure 3-5 Testing samples of urban green space mapping: (a) urban green space 

samples in 2017; (b) urban green space samples in 2021. 
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Table 3-5 Confusion matrix of the urban green space mapping results in 2017. UA: 

users accuracy; PA: producers accuracy; OA: overall accuracy; π_j is the class 

proportion according to the classified map (N: Non-green space; G: Green space). 

  Map Category    

 Class N G Total PA OA 

True Category 
N 0.272 0.017 0.289 0.941±0.026 0.959±0.012 

G 0.023 0.688 0.711 0.967±0.012  

 Total(𝜋𝑗) 0.295 0.705 1.000   

 UA 0.921±0.031 0.975±0.011       

 

Table 3-6 Confusion matrix of the urban green space mapping results in 2021. UA: 

users accuracy; PA: producers accuracy; OA: overall accuracy; π_j is the class 

proportion according to the classified map (N: Non-green space; G: Green space). 

  Map Category    

 Class N G Total PA OA 

True Category 
N 0.226 0.031 0.257 0.878±0.037 0.952±0.013 

G 0.017 0.726 0.743 0.977±0.010  

 Total(𝜋𝑗) 0.243 0.757 1.000   

 UA 0.930±0.032 0.959±0.014       

 

The estimated areas of urban green space in 2017 and 2021 were analyzed based 

on the method proposed by Olofsson et al. (2014). Urban green space area estimated 

from the collected samples was 59.52 km2 with a SE of 4.73 km2 in 2017 (Table 3-7). 

While the estimation area of green spaces in 2021 was 81.29 km2 with a SE of 5.49 km2. 

The green space stratum in 2017 covered 22% of the total estimated soybean area. Its 

contribution to the total SE was also comparatively low. While the green space stratum 

in 2021 covered 30% of the total estimated soybean area.  
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Table 3-7 Urban green space area (km2) and uncertainty estimates based on 

sample data obtained for a random sampling design (N: Non-green space; G: 

Green space). 

Stratum 
2017 2021 

Area SE Area SE 

G 59.52 4.73 81.29 5.49 

N 205.67 16.15 183.91 14.63 

Total 265.2 20.88 265.2 20.12 

 

3.7 Impact analysis 

In Chapter 7, an integrated method was proposed to investigate the urban green 

landscape in response to urban land use changes. The integrated method mainly 

includes statistical analysis, geospatial analysis, and landscape analysis. 

Statistics (or statistical analysis) is the process of collecting and analyzing data to 

identify patterns and trends. In this research, I calculated the area ad proportions of 

urban green space within different urban land use changes based on the Tabulate area 

Tool in ArcGIS 10.2, which has the potential to understand the distribution of urban 

green space (Figure 3-6).  
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Figure 3-6 Operation of statistical analysis 

The landscape analysis could relate the landscape patterns of urban green space to 

urbanization and determine their influence on the ecological attributes of the urban 

environment (Daz et al. 2020; Grafius et al. 2018). The FRAGSTATS 4.2 was used to 

calculate the landscape metrics of urban green space patches. FRAGSTATS is a spatial 

pattern analysis program for quantifying the structure (i.e. composition and 

configuration) of landscapes. The rasters of urban green space within different urban 

land changes were extracted for the calculation. To understand the fragmentation, 

complexity, and aggregation of urban green space patches, I selected 6 landscape 

metrics including patch density (PD), largest patch index (LPI), Mean shape index 

(SHAPE_MN), and patch cohesion index (COHESION). The three landscape-level 

metrics include Contagion index (CONTAG) and Shannon's Evenness Index (SHEI). 

Among these, PD, LPI, and SHAPE_MN can represent the fragmentation and 

complexity of urban green space patches (Bosch et al. 2020; Zhang et al. 2020b); 

COHESION could reflect the connectivity (Inkoom et al. 2018); CONTAG presents the 

connectivity of the total landscape (Miller et al. 2020); SHEI presents the distribution 

of landscapes (Pindral et al. 2020). 
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Moreover, the geospatial analysis could reveal the spatial heterogeneity of urban 

green space, and further elucidate the effect of urban development on urban green space 

(Liu et al. 2020c). In this research, the hotspot analysis was adopted to investigate the 

increasing and decreasing regions of urban green space. The Getis-Ord Gi* Tool in 

ArcGIS 10.2 was used to produce the hotspot maps (Figure 3-7). 

 

 

Figure 3-7 Operation of hotspot analysis 
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Chapter 4: Integrating remote sensing and 

geospatial big data for urban land use mapping: 

A review 

Stage of publication - Accepted in International Journal of Applied Earth Observations 

and Geoinformation (20 August 2021).  

4.1 Introduction  

With the advent of the Anthropocene (Ellis and Ramankutty 2008; Steffen et al. 

2011), urbanization is accelerating and the urban population is predicted to grow from 

4.2 billion (57.5% of the world population) in 2018 to about 6.7 billion (69.1%) in 2050 

(Seto et al. 2011). Such increasing human-induced influences are changing urban land 

in different dimensions from physical aspects (urban land cover) to socioeconomic 

aspects (urban land use) (Elmqvist et al. 2019; Hersperger et al. 2018). A large number 

of high-accuracy urban land cover products (mainly physical characteristics) at the 

annual level with relatively high spatial resolution have been developed worldwide (Li 

et al. 2020b; Liu et al. 2018a; Zhou et al. 2018b). However, urban land governance and 

planning need more information on urban land use, which is particularly complex and 

includes both physical aspects and socioeconomic aspects. Unfortunately, high-quality 

urban land use products with timely and accurate information related to human 

activities are still limited (Gong et al. 2020). Understanding the start-of-the-art of 
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existing urban land use mapping efforts, considering both physical and socioeconomic 

functions, would enable better urban land management and monitoring (Martí et al. 

2019; Yammine et al. 2018).  

A wide range of satellite remote sensing (RS) data (e.g., Moderate-resolution 

Imaging Spectroradiometer (MODIS), Landsat TM/ETM/OLS, Defense 

Meteorological Satellite Program Operation Linescan System (DMSP-OLS)) have been 

used to study the structures, boundaries, and areas of cities (Gong et al. 2019; Huang et 

al. 2021; Schneider et al. 2010). Nevertheless, the complexity and diversity of 

functional patterns in urban areas cannot be captured well by using RS only due to 

limited information (e.g. spectral, textural, and temporal information) from RS 

techniques (Cao et al. 2020). Advances in information and communication technologies 

make it possible to get access to geospatial big data (GBD) (Li et al. 2016; Li et al. 

2021; Yin et al. 2021b). Fixed and mobile sensors such as environmental sensors, 

cameras, webcams, social media, or even urban residents through their regular activities 

(Wu et al. 2015) create tremendous GBD every day. These data such as mobile phone 

data (Gong et al. 2020), traffic trajectories (Yu et al. 2019), geo-tagged photos (Cadavid 

Restrepo et al. 2017; Krylov et al. 2018), Points of interest (POIs), and social media 

data (Huang et al. 2018c) provide an alternative approach to uncover how cities function 

(Ye et al. 2016). It is possible for examining the physical and socioeconomic 

characteristics of the urban land system by taking both the advantages of RS and GBD 

(Qi et al. 2019; Song et al. 2021; Xiong et al. 2021).  

Despite the great potential of integrating RS and GBD for providing better insights 

into urban land use, it is challenging to combine them due to the differences in the 

spatial data quality (e.g., semantic, timestamp, and scale), technical format, and data 
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structure (Liu and Long 2015). Summarizing the features of RS and GBD and 

integration strategies in the literature are needed for guiding future studies and help to 

understand more detailed urban functional patterns.  

In this context, this study examined the literature on the nature of RS and GBD, as 

well as their integration strategies in urban land use classification, and identified the 

opportunities and challenges for synthesizing RS and GBD (Table S1). The primary 

objective of this paper is to review the state-of-the-art in this field by considering (1) 

the key characteristics of RS and GBD and (2) the methods for integrating RS and GBD. 

We consider only satellite-based RS and do not consider RS data obtained from airborne 

platforms. This review is organized into six sections. Section 2 summarized the 

transformation from urban land cover to urban land use. In section 3, we summarized 

the commonly used RS and GBD features for urban land use categorization. In Section 

4, the integration strategies were analyzed systematically. In Section 5, we discussed 

the challenges and potential applications of the integration of RS and GBD on urban 

land use maps. Section 6 concluded the main findings and implications.  

4.2 Evolution from urban land cover to urban land use 

Using satellite data to map urban land cover has a long history (Howarth and 

Boasson 1983; Patino and Duque 2013; Reba and Seto 2020; Yang et al. 2003a). 

Examples of existing efforts for global urban land cover products that have been derived 

from RS are shown in Table 4-1. The data source, the nomenclature of urban land, 

spatial resolution, time period, and reference for each global urban land cover map were 

summarized. Most urban land cover maps were obtained from coarse spatial resolution 

images (100m-10km), such as MODIS and Advanced Very High-Resolution 
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Radiometer (AVHRR) (Friedl et al., 2002; Schneider et al., 2010). With the substantial 

progress of RS techniques, recent maps were derived from moderate spatial resolution 

images (10-100m), including Satellite Pour l' Observation de la Terre (SPOT) and 

Landsat images (Deng et al. 2019). The time period of these global urban land cover 

products has transformed from a single period to repeated observations, which could 

provide better quality and time series urban land cover information (Gong et al. 2019; 

Li and Chen 2018; Momeni et al. 2016; Reda and Kedzierski 2020). Overall, these 

global urban RS studies focused on the identification of physical urban attributes (e.g., 

impervious surface, built-up areas, artificial surfaces, and urban extent) that have 

provided opportunities for a better understanding of global urbanization's effects on 

human civilization and the environment (Defries and Townshend 2007; Li et al. 2020b; 

Schneider et al. 2009; Zhu et al. 2019). Despite the aforementioned extensive 

applications of RS data for mapping urban land cover, more specific information of 

inner-urban functions cannot be retrieved by using RS only (Li et al., 2020a; Liu et al., 

2015).  
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Table 4-1 Comparison of existing global urban land cover products. 

Products Data 

Nomenclatu

re of urban 

land 

Spatial 

resolutio

n 

Time 

period 
Reference 

GLCC AVHRR 
Built-up 

areas 
1km 

1992,199

3 

Loveland et 

al., 2000 

UMD1km AVHRR 
Urban and 

built 
1km 

1992,199

3 

Hansen et al., 

2000 

GRUMP 

VMAP, 

Census data, 

DMSP-OLS, 

Maps 

Urban 

extent 
1km 1995 

CIESIN et 

al., 2011 

GLC2000 

SPOT-

Vegetation, 

DMSP-OLS 

Artificial 

surfaces and 

associated 

areas 

1km 2000 

Bartholome 

and Belward, 

2005 

IMPSA DMSP-OLS 
Impervious 

surface 
1km 2000 

Elvidge et al., 

2007 

NTL-Urban DMSP-OLS 
Urban 

extent 
1km 

1992-

2013 

Zhou et al., 

2018 

MOD500 MODIS 

Non-

vegetated, 

human-

constructed 

elements 

500m 
2001-

2017 

Friedl et al., 

2002 

GHSL 

Fine-scale 

satellite 

imagery, 

Built-up 

areas 
500m 

1975, 

1990, 

2000, 

2015 

Pesaresi et 

al., 2013 
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census data, 

and OSM 

GlobCover 
SPOT-

Vegetation 

Artificial 

surfaces and 

associated 

areas 

300m 
2005, 

2009 

Arino et al., 

2007 

CCI-LC 
SPOT-

Vegetation 

Urban 

extent 
300m 

1992-

2015 

Defourny et 

al., 2018 

GlobaLand3

0 

Landsat 

TM/ETM+ 

Artificial 

surfaces 
30m 

2000, 

2010 

Ch

en et al., 

2015 

HBASE 
Landsat 

TM/ETM+ 

Built-up and 

settlement 

extent 

30m 2010 
Wang et al., 

2017 

GMIS 
Landsat 

TM/ETM+ 

Impervious 

surface 
30m 2010 

Colstoun et 

al., 2017 

FROM-

GLC 

Landsat 

TM/ETM+/O

LI 

Impervious 

surface 
30m 

2010, 

2015, 

2017 

Gong et al., 

2013 

Global 

Urban Land 

Landsat 

TM/ETM+ 

Impervious 

surface 
30m 

1990, 

1995, 

2000, 

2005, 

2010 

Liu et al., 

2018 

GUF 
TerraSAR-X, 

TanDEM-X 

Built-up 

areas 
12m 2011 

Esch et al., 

2012 

FROM-

GLC10 
Sentinel 

Impervious 

surface 
10m 2017 

Gong et al., 

2019b 
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Figure 4-1 Transformation of the need for urban land products from physical 

attributes to socioeconomic attributes due to enhanced anthropogenic activities. 

The three boxes above represent the transformation from urban land cover (e.g., 

impervious surface and pervious surface) to urban land use (e.g., traffic, 

institution, urban lake, residential green space, and others). It should be noted that 

the change of area proportions of different urban land use types is not reflected. 

The demands for urban land products have changed gradually, with increasing 

information needs on socioeconomic properties, emphasizing a transformation from 

urban land cover to urban land use (Figure 4-1). The multi-sourced GBD can contribute 

to the understanding of socioeconomic characteristics of urban land use, and identify 

how people use lands (Cadavid Restrepo et al. 2017; Krylov et al. 2018; Srivastava et 

al. 2018). Recently, GBD has been used in conjunction with RS data to extract urban 

land use information (Liu et al. 2015). Therefore, understanding characteristics derived 

from RS and GBD and their integration methods are necessary for urban land use 

mapping (Li et al. 2017b). 

4.3 RS and GBD features for urban land use mapping 

The extraction of RS and GBD features is the most essential procedure for urban 

land use recognition because the performance of urban land use maps relies heavily on 
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these features. The purpose of this section is thus to introduce several commonly used 

RS and GBD features for categorizing urban land use types (Figure 4-2). 

 

Figure 4-2 Summary of the features of RS and GBD. The dotted black box and red 

box in the middle show the commonly used RS data (e.g., MODIS, Landsat, 

Sentinel) and GBD (e.g., traffic, social media data, geo-tagged photos), respectively. 

The upper dotted black boxes represent the features (spectral, textural, temporal, 

and spatial) extracted from RS, while the dotted red boxes below represent the 

features (spatial, temporal, semantic, and sequence) extracted from GBD.  

4.3.1 RS-based features  

The features derived from RS images used in urban land use classification could 

be categorized into spectral, textural, temporal, and spatial features (Gong and Howarth 

1989; Zhu et al. 2017). Among them, spectral and textural features are common 

characteristics of RS data to extract urban land use information because different 
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textures and spectra could reflect different urban land use types (Zhu et al. 2019). The 

temporal features have proven beneficial for improving urban land use maps by 

providing valuable information (e.g., time series information) on urban land use types 

(Zhu et al. 2012). Recently, deep learning techniques provide new possibilities for 

extracting spatial features automatically from the very-high-resolution (VHR) satellite 

imageries such as WorldView-3, Gaofen-2, and SPOT-5 (Zhang et al. 2020a). Spatial 

features could help classify urban land use at a very detailed level (Zhao et al. 2019). 

The details of the RS features are specified as follows.  

1) Spectral features: Generally, the spectral features of urban land show lower 

reflectance in the near-infrared region (NIR), comparing to vegetation, which has 

higher reflectance in NIR (Herold et al., 2003; Herold et al., 2004). Additionally, the 

spectra for the visible, short-wave infrared region (SWIR), and microwave regions were 

also found to be suitable for characterizing urban objects (Heiden et al. 2007). Recently, 

spectral features from the increased number of bands (e.g., from Landsat to Sentinel-2) 

provide an opportunity for the acquisition of detailed information on the physical 

attributes of urban land use, but it also leads to data redundancy due to the high 

correlation between adjacent bands (Okujeni et al. 2018). Liu et al. (2020b) and Zhang 

et al. (2017b) extracted spectral features from RS imagery for classifying urban land 

use. Both the methods calculated the mean and standard deviation of each band by using 

a certain window. 

2) Textural features: Textural features contain rich information of the spatial 

distribution of tonal changes, as well as the structural arrangement of surfaces and their 

relationships to the surrounding environment (Gong and Howarth 1989; Haralick et al. 

1973). Different textures (e.g., coarse, smooth, rippled, irregular, and lineated) show 
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different image characteristics, such as homogeneity, linear structure, and contrast 

(Kuffer et al., 2016; Wurm et al., 2017). Therefore, textural features could help to 

increase the accuracy of land use categorization in heterogeneous landscapes (Jin et al. 

2014; Pacifici et al. 2009), where ground objects with different sizes, patterns, 

structures, and shapes co-exist (Lu and Weng 2006).  

3) Temporal features: Temporal features refer to the differences caused by the 

changes in the spectral and textural features of urban surfaces over time. Due to the 

seasonality of vegetation growth, it has proven to be effective in improving vegetation 

and other land cover mapping accuracy (Dong et al., 2019; Zurita-Milla et al., 2013). 

The extraction of urban land usually tends to be less accurate in the autumn and winter 

due to more bare land (Weng et al. 2009). However, it is still a challenge to distinguish 

the variety of processes that generate different time series, for example, due to climate, 

topography, and terrestrial vegetation (Pflugmacher et al. 2019). 

4) Spatial features: Along with spectral, textural, and temporal features, the most 

commonly used feature extracted from RS data is the spatial feature. Recent studies 

used deep learning techniques such as the supervised convolutional neural network 

(CNN) models and unsupervised autoencoders (AE) models to extract spatial 

information automatically from RS images (Reichstein et al. 2019). Deep learning 

algorithms, which extract high-level spatial information provided by hierarchical 

structures, demonstrate remarkable capacity in image representation and understanding 

in these studies. Traditional approaches such as Random forest models (RF), Support 

vector machine (SVM), and Decision tree (DT) can only process basic features (e.g., 

spectral, textural, and temporal features) from RS images. Due to the fine structural 

information (i.e., spatial details) of urban land use in VHR RS images, VHR RS images 
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were found to be commonly used by deep learning techniques for obtaining urban land 

use information (Ma et al. 2019). 

4.3.2 GBD-based features  

The development of mobile positioning, wireless communication, and the Internet 

of Things (IoT) provides opportunities for the rapid growth of big data (Kitchin, 2013). 

According to Kitchin and McArdle (2016), big data is defined in part by its large size 

and in part by its characteristics, such as volume, variety, and velocity. Liu et al. (2016) 

further defined the characteristics of big data as exhaustivity, relationality, veracity, 

value, and variability. In the IBM Annual Report, 2.5 terabytes of data are generated 

every day, with 80 % of these data (pictures, texts, and videos) being geo-referenced or 

capable of being geo-referenced (Munoz et al. 2016). Therefore, a large proportion of 

big data is likely to be the GBD (i.e., big data with geographical reference). GBD is 

generated every day mostly by fixed and mobile sensors such as environmental sensors, 

cameras, webcams, social media, or even residents’ daily activities (Brovelli et al., 

2015).  

The most commonly used GBD for land use mapping are social sensing (SS) (Liu 

et al. 2015), citizen sensing (CS) (Jiang et al. 2016), social media data (SMD) (Ilieva 

and McPhearson 2018), and volunteered geographic information(VGI) (Goodchild and 

Glennon 2010). The descriptions of SS, CS, SMD, and VGI are provided in Table 4-2. 

The contents and concepts of SS and CS are much broader than GBD. SS data is used 

in a variety of applications besides urban land use mapping. CS does not contain the 

data produced by companies and institutions and VGI focuses on user-generated data. 

However, the term GBD encompasses all of these above-mentioned geospatial data.  
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Table 4-2 Comparison of concepts related to GBD in previous studies. 

Concepts Refs. Description 

Social Sensing 

(SS) 
Liu et al., 2015 

A series of data sources with spatiotemporal 

information which record human activities, as 

well as the methods and applications based on 

such data source. 

Citizen Sensing 

(CS) 

Jiang et al., 

2016 

Datasets contributed by citizens provide 

benefits for themselves and policymakers. 

Social Media 

Data (SMD) 

Ilieva and 

McPhearson, 

2018 

Information of ‘big data’ from social media 

such as Facebook, Flickr, etc. 

Volunteered 

Geographic 

Information 

(VGI) 

Goodchild and 

Glennon, 2010 

Geographic data provided voluntarily by 

people use technologies to generate, assemble, 

and disseminate information. 

 

Each record of GBD contains spatial, temporal, semantic, and/or sequence 

information associated with individuals reflecting human behavior, although the quality 

of this information may vary in space and time (Figure 4-2 and Table 4-3). Due to the 

high correlation between human spatiotemporal activities and urban dynamic 

socioeconomic attributes, these emerging GBD can help to capture the growing 

complexity of urban functional patterns. Therefore, in order to better classify and 

understand urban land use, we add GBD to the identification of socioeconomic and 

human activities.  
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Table 4-3 Summary of the GBD and relevant features used in urban land use 

mapping. 

Data sources 
Spatial 

features 

Temporal 

features 

Semantic 

features 

Sequence 

features 

Mobile phone 

data 
√ √   

Traffic data √ √   

Social media 

data 
√ √ √ √ 

Geo-tagged 

photos 
√  √  

Maps  √   √ 

Search engine 

data 
√  √ √ 

Smart card 

data 
√ √   

 

1) Spatial features: Almost all GBD can provide spatial information (Table 4-3). 

For example, the OSM has proven to be a useful spatial data source including land use 

information like buildings, roads, and parks (Helbich et al. 2012), which could be used 

to extract training pixels from RS images for classifying urban land use types (Johnson 

and Iizuka 2016; Wan et al. 2017). Google maps, Gaode maps, and other maps have 

also been successfully applied to urban land use mapping (Xu et al. 2020; Zhang et al., 

2020). Furthermore, social media data can provide indirect spatial location data (Long 

et al. 2018; Yao et al. 2018), for example, Zhan et al. (2014) inferred the urban land use 

types in Now York city by using check-in social media data on Twitter. 

2) Temporal features: There are many examples of data sources (e.g., mobile phone 

data, traffic data, social media data, and smart card data) with temporal features that 



 

87 

 

could reveal the mobility patterns of human activities (Pan et al. 2013). For instance, 

Gong et al. (2015) analyzed the spatiotemporal characteristics of nine daily activity 

types referring to the trip purposes of taxi trajectory data. Shi et al. (2019) extracted the 

temporal variation in WeChat (i.e., WeChat is China’s most popular messaging app) 

user density from different land use categories for urban land use classification 

combined with RS data. The activities of human beings with temporal features can be 

determined to indicate the social function and patterns of urban land use (Chen et al. 

2017; Frias-Martinez and Frias-Martinez 2014; Pei et al. 2014). 

3) Semantic features: Photographs are an important element of GBD. Examples 

include street view photographs, crowd-sourced geo-tagged photos, and social media 

photos (Kang et al., 2018; Xu et al., 2017). Semantic features obtained from 

photographs have much in common with those obtained from RS data. However, there 

are also important distinctions that present challenges for analysis. RS is usually 

undertaken by national and international organizations following established scientific 

and engineering principles, including regular acquisition cycles. While crowdsourced 

photographs may be acquired by a range of organizations (e.g., Google Street View) 

and private individuals. They provide fine-resolution data, but the spatial and temporal 

sampling may be ad hoc, and the quality can be highly variable (Hu et al. 2015). 

Recently, with the development of image recognition and deep learning technology, 

extracting semantic features from photographs and applying them to the perception of 

places have become possible (Xu et al. 2017).  

4) Sequence features: Social media data and search engine data have become an 

important source of GBD in current research (Zheng et al. 2019). Studies utilizing 

sequence features mainly include the following three aspects (Cheng et al. 2018; Long 
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and Liu 2017): (a) to obtain the evaluation index or topic of a place; (b) to obtain 

information on emotions related to the place, such as happiness or depression (Yang 

and Mu 2015; Zheng et al. 2019); (c) to identify public attention to hot events, such as 

disasters, diseases, and accidents. Specific examples of sequence information include 

sentiment, opinions, locations, time, and places. For example, Mitchell et al. (2013) 

generated a method for analyzing the correlations between human being’s real-time 

expressions and others like emotional, geographic, and demographic characteristics.  

4.4 Integration of RS and GBD for urban land use mapping 

The RS and GBD features can be then combined using different approaches for 

urban land use categorization. According to the fusion mode between RS and GBD 

features, RS and GBD integration techniques in the literature could be divided into 

feature-level integration (FI) and decision-level integration (DI). 

4.4.1 Feature-level integration 

In FI-based classification, RS features (e.g., spectral, textural, temporal, and 

spatial features), and GBD features (e.g., spatial, temporal, semantic, sequence features) 

are first extracted. These features are fused into integrated feature sets for urban land 

use classification (Figure 4-3).  

 

Figure 4-3 FI-based categorization strategies. 
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Several efforts have been made for extracting urban land use information using the 

FI method (Bao et al. 2020; Chang et al. 2020; Hu et al. 2016). For the study unit of the 

FI-based classification, most studies utilized parcel-level or object-level as the study 

unit since object-level or parcel-level units are compatible with both RS features and 

GBD features (Liu et al. 2017). To be more specific, the format of the RS features is 

usually grid, while for the GBD features is various. It is thus necessary to unify the two 

kinds of features. Parcel-level classification units can be generated by using the OSM 

road network or other road data (Huang et al. 2020). The urban parcels are obtained by 

removing the road buffers from the study site. Sometimes, the study site should also 

exclude the rivers according to the actual situation. Furthermore, the elevated road in 

cities would interfere with the segmentation results and need to be considered. Pixel-

based and grid-based units are also used for FI-based urban land use classification 

(Dong et al. 2020).  

For the feature extraction stage, the FI-based classification method extracts RS and 

GBD features respectively. For example, Zhang et al. (2019) delineated physical 

features including spectral features (e.g., mean and standard deviation for each band), 

textural features (e.g., contrast, entropy, correlation, and homogeneity for each band) 

from RS for urban land use categorization by integrating GBD features (e.g., POI words 

and real-time Tencent users words ). Sun et al. (2020) extracted RS features (spectral 

and textural features), GBD features (POI frequency, POI spatial distribution), and other 

features to train the RF classifier for recognizing urban functions (e.g., residence, 

business, and industries).  

In the feature integration stage, the FI method usually classifies RS and GBD 

features by using machine learning techniques such as RF classifier, SVM, and DT. For 



 

90 

 

example, Gong et al. (2020) proposed a research method that is extracting several 

features from RS and GBD for training the RF classifier, which has proven to be a new 

way for mapping urban land use over large areas. Du et al. (2020) generated urban 

functional zones by removing road buffers, and then the functional zones were 

classified by coupling Latent Dirichlet Allocation (LDA) and SVM. The proposed 

method is promising for urban land use mapping over large areas. Recently, deep 

learning techniques such as CNN and AE models are also used for urban land use 

mapping, which could help improve the classification performance (Mao et al. 2020).  

4.4.2 Decision-level integration 

For categorizing urban land use, DI-based classification combines RS-based 

classification results with GBD-based classification results. To be more specific, RS 

and GBD features are evaluated independently before being integrated for urban land 

use mapping utilizing various modes and methods (Figure 4-4). 

 

Figure 4-4 DI-based categorization strategies. 

Compared to the FI method, the basic unit for the DI method is more diverse 

(Chang et al. 2015). The characteristic of DI-based classification is to combine the RS-

based classification and GBD-based classification for extracting urban land use 
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information. It is thus not necessary to unify the spatial units for RS-based classification 

and GBD-based classification, and the spatial units for the two classification methods 

will be different. For example, Jia et al. (2018) first classified Gaofen images and 

mobile phone positioning data by using a support vector machine, and then the two 

classification results were fused for mapping urban land use based on grid-level units. 

Tu et al. (2018) utilized the hierarchical cluster analysis to combine RS-based landscape 

metrics and GBD-based human activity metrics for investigating urban functional 

patterns in terms of object-based units. In addition, Zhao et al. (2019) delineated the 

geographical object by using OSM data to train the CNN model. Chen et al. (2018) 

identified urban green space by utilizing parcels generated by the OSM road networks 

as the basic units. 

There are several methods for the integration of the RS-based classification and 

GBD-based classification in the DI method based on certain decision fusion strategies 

such as hierarchical clustering, overlaying, and labeling (Anugraha et al. 2020). For 

example, Xu et al. (2020) proposed a framework that extracts spatial geographic 

characteristics from RS images by using deep neural networks and functional 

distribution characteristics from POIs, and further normalized the two results to identify 

urban functional regions. Song et al. (2018a) used an object-based approach to generate 

urban objects by using RS data. Then, the objects were further classified and aggregated 

using POIs. Furthermore, Zhong et al. (2020) presented a method by using the rule-

based category mapping (RCM) model to integrate RS-oriented results and GBD-

oriented results for extracting urban functional zones. In Zhong et al. (2020)’s work, 

POIs data and RS images were classified through different machine learning methods 
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based on the parcel-level unit, then the two results with different classification systems 

were combined by weighting the word frequency within each parcel.  

4.5 Discussion 

4.5.1 Advantages and disadvantages of FI-based and DI-based 

classification 

The FI method lies in the realization of considerable information compression of 

RS data and GBD, which is conducive to real-time processing. This method has the 

advantages of a low level of human intervention and short processing time. In addition, 

feature optimization and deep interactions between RS and GBD features can be 

achieved. Several studies have been analyzed to quantify the relative importance of 

independent features in the FI method (Zhang et al. 2019). Furthermore, heterogeneity 

may occur from variations in data quality, time periods, data formats, and data scales, 

between RS and GBD, resulting in different representations, descriptions, and 

interpretations of the goal. 

The DI-based classification method has been a fundamental contribution of 

integrating RS and GBD to urban knowledge (Cai et al. 2017; Zhao et al. 2019). RS 

and GBD features could be calculated and processed respectively in the DI method, 

which avoids the feature integrating and conflicting issues. Specifically, RS and GBD 

with various features could be processed by different methods, and then integrated by 

certain models. However, the accuracies of DI-based classification are affected by the 

two kinds of processing procedures because the mapping results are obtained by 

overlapping RS-based classification and GBD-based classification. It is thus important 
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to control the procedures for both RS and GBD classification for high accuracy and 

better performance. 

4.5.2 Limitations and future consideration for RS and GBD integration  

The main limitation is that the modality gap (data structure, data format, and data 

quality) between RS data and GBD, which brings difficulty for the integration. GBD 

has different sources (modern sensors, geo-tagged web, ground surveying, mobile 

mapping, and social media platforms), spatiotemporal resolution, and structures from 

that of RS data (Ali et al. 2017). For example, the data formats of GBD include the 

image, geo-tagged text, video, and vector. Comparatively, the most commonly used RS 

data is a raster (Zhu et al. 2019). Furthermore, GBD is not collected evenly across space 

because the composition of participation (i.e., sensors, platforms, and social habits) in 

GBD varies across political, cultural, demographics, and commercial factors, while RS 

data usually has spatially consistent observation frequencies (Chen et al. 2020b; Yu et 

al. 2018). Some areas might have the data sparsity issue of GBD, which might present 

problems for mapping based on the integration of RS and GBD owing to the lack of 

GBD. More specifically, social networking platforms such as WeChat, Sina Weibo, and 

Tencent are widely used in China, while Twitter, Facebook, and Instagram are more 

popular in Western countries (Li et al. 2018b; Wang et al. 2016; Zhou and Zhang 2016). 

The emergence of deep learning technologies provides an opportunity to bridge the gap 

between different data modalities. 

The advances in classification algorithms, computing platforms, and data sources 

are beneficial for mapping urban land use by integrating RS and GBD. Deep learning, 

as a novel branch of machine learning, establishes fundamental parameters about the 

data and trains the computer to learn on its own by detecting patterns using a multi-
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layered approach (Reichstein et al. 2019; Zhu et al. 2017). Several studies have shown 

that deep learning is particularly effective in integrating RS and GBD for urban region 

function recognition (Ma et al. 2019; Qin et al. 2018). Furthermore, the fast growth of 

cloud computing platforms offers a promising solution for processing large amounts of 

RS data and GBD. For example, Yin et al. (2021b) processed the Sentinel images and 

POIs data for urban land use classification by using the Google Earth Engine (GEE). 

GEE could provide a range of data processing methods as well as RS images at various 

temporal and spatial scales, which is beneficial for improving data computing 

difficulties (Gorelick et al. 2017). In addition to GEE, other platforms such as Earth 

Observation Data Center and the Amazon Web Services have also been used for 

analyzing RS data and GBD on urban land use classification. Furthermore, it is 

necessary to consider auxiliary data (e.g., census data, statistical data, weather data, 

hydrological data, and digital elevation data) for more space- and time-referenced 

information on urban land use classification that integrates RS and GBD (Taubenböck 

et al. 2009). 

4.5.3 Potential applications of urban land use maps derived from RS and 

GBD integration  

Urban land use maps integrating RS and emerging GBD provide more potential in 

urban management such as urban planning, urban environment assessment, urban 

disaster monitoring, and urban traffic analysis (Figure 4-5). 
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Figure 4-5 Urban land use map integrating RS and GBD for urban management. 

A more scientific and efficient urban planning system will benefit from the urban 

land use map integrating RS and GBD. For example, Xing and Meng (2018) extracted 

urban land use information by integrating landscape metrics from RS images and 

semantic features from GBD, which plays as an indicator in urban planning and 

management. Chen et al. (2018) identified urban green space (e.g., municipal park, 

community park, etc.) by extracting land cover features from RS data and land use 

features from POIs for the urban green space planning, which could assist government 

departments in urban green space planning. In general, integrating RS and GBD would 

help to improve the city function from the “hard” physical environment and the “soft” 

services. The addition of GBD for urban land use maps with adequate and timely 

information could enhance the feedback loops of urban insights for urban governors 

and panners. 

The current advances of urban land use maps that integrate RS data and GBD make 

it capable of monitoring urban environments such as urban heat island and air pollution 
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(Masoudi et al., 2021Halim et al., 2020Venter et al., 2020; Wang et al., 2021a). For 

example, Song et al. (2019) analyzed the relationship between urban functional regions 

and air pollutant emissions and presented a cost-effective way of mapping 

spatiotemporal patterns of air pollution by utilizing the urban land use map that 

integrates RS images and POIs. Luan et al. (2020) quantified the impacts of urban 

natural surfaces and non-surface human activities on urban heat islands by using RS 

data and GBD, and explored the relationships between urban heat islands and urban 

land use patterns. This evidence demonstrated that air pollution concentrations are 

associated with RS-based urban land cover (e.g., industrial layout) as well as GBD-

based urban land use (e.g., travel behavior). Other applications have also proved that 

the spatial patterns of the urban environments have strong relationships with the urban 

land use patterns (Pan et al. 2013). 

Massive information from urban land use maps that integrate RS and quick-

updated GBD is generated continuously and dynamically, providing resources to aid in 

disaster analysis of historical and future occurrences (earthquakes, fires, or floods) 

(Huang et al., 2017; Li et al., 2017c). For instance, Li et al. (2019b) reviewed recent 

research that utilized RS and GBD for urban disaster information detection including 

the suffering area, suffering location, and suffering pattern, which provided a useful 

method for disaster management. Furthermore, Cervone et al. (2015) proposed a novel 

framework for urban damage assessment under severe weather by using RS images and 

real-time Twitter data, which were then combined with other GBD in order to get 

abundant information in disaster areas. Quickly updated urban land use maps that 

integrate RS and GBD with fine spatial resolution could support urban disaster 

management by providing unprecedented reference data. 
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Up to date, urban traffic conditions have become serious problems that threatening 

human’s daily living quality. Several studies have been made on the comprehensive 

analysis of urban traffic by taking advantage of RS data and GBD on urban land. 

Applications in traffic quality analysis, for example, classifying Shanghai city into six 

traffic “source-sink” areas according to the pick-ups and drop-offs of traffic data and 

LandScan product (Liu et al. 2012). Improved urban land use maps could also provide 

technical support for the transportation of the Smart Cities (Zanella et al. 2014). A 

thorough perception of urban traffic conditions could be achieved through the 

integration of RS and GBD.   

4.6 Conclusion 

This study examined the applications of RS and GBD features in urban land use 

categorization, as well as methods for RS and GBD integration. The analysis of the 

existing literature concludes that the emerging GBD provides opportunities for the 

transformation from urban land cover (physical environment) to urban land use (living 

environment). Applications on the urban land use maps integrating RS and GBD for 

urban management mainly include urban planning, urban environment assessment, 

urban disaster monitoring, and urban traffic analysis. Deeper understandings of the 

urban surface can be acquired by adding GBD values to the traditional urban RS works. 

As the integration of RS and GBD has become more generalized, significant progress 

can be already seen for urban management. Also, integrating RS and GBD on urban 

land use provides an opportunity for putting people at the center of processes of 

knowledge and management of the urban planet. 
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Chapter 5: Decision-level integration and 

feature-level integration of remote sensing and 

geospatial big data for urban land use mapping 

Stage of publication - Accepted in Remote Sensing (15 April 2021).  

5.1 Introduction 

China has undergone rapid urbanization since the early 1980s, shown as 

substantial urban expansion and dynamics in urban land use and structure (Gong et al. 

2019). The timely and accurate urban land use information is important for guiding 

urban planning and land use management (Zhu et al. 2019). Remote sensing (RS) 

techniques were widely used to update urban land use information over the past few 

decades, by referring to the differences in aspects of texture, spectrum, and context 

among urban land use categories (Liu et al. 2018a; Reba and Seto 2020). However, due 

to the high similarity among urban land use categories in physical attributes, it is hard 

to identify the complexity and diversity of urban internal structures (Qi et al. 2019), 

especially in cities with high-density populations and buildings, such as Hangzhou, 

Beijing, Shanghai, and Shenzhen (Cai et al. 2017). Mixed-use land and shadows from 

high-rise buildings also pose great challenges for the RS data classification (Zhuo et al. 

2019). Big data are defined partly by their large size and their characteristics, in 

particular their volume, variety, and velocity. Much of this big data are geo-referenced, 
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or can be geo-referenced, leading to geospatial big data (GBD). The emergence of GBD 

(Li et al. 2016), such as mobile phone positioning data (Ratti et al. 2016; Wu et al. 2020), 

points-of-interest (POI), social media data (Ilieva and McPhearson 2018; Yammine et 

al. 2018; Ye et al. 2016), traffic trajectory data (Niu et al. 2017), and geotagged 

photographs (Cadavid Restrepo et al. 2017; Krylov et al. 2018; Srivastava et al. 2018), 

provides new opportunities to delineate human dimensions in an urban environment 

(Liu et al. 2015). These multi-sourced data contain abundant human activity 

information, compensating for the lack of socioeconomic attributes of the RS data (Li 

et al. 2017b). 

The integration of the space-based RS data and the time-based GBD can improve 

the existing urban land use maps by providing more detailed socioeconomic 

information and finer spatio-temporal resolution (Dong et al. 2019; Sarmin and Ismail 

2016). Promising progress was made on the applications of integrated RS and GBD on 

urban land use mapping at different scales and regions (Goffi et al. 2020; Shi et al. 2019; 

Zhang et al. 2020c; Zhang et al. 2019). For example, Liu et al. (2017) collected six 

features (spatial, texture, spatial envelope, rotation-invariant from RS images, Tencent 

real-time user density, and POI) to identify the urban land use type within each land use 

parcel. Jia et al. (2018) classified RS data and mobile phone positioning data separately 

and then fused the two results by using a decision fusion strategy for categorizing urban 

land use. However, it is still challenging to integrate RS and GBD for urban land use 

mapping because of the modality gap (i.e., the differences in spatial data quality, 

technical format, and data structure) and heterogeneity in the data.  

In this context, the main goal of this study is to propose the general framework by 

summarizing the RS and GBD integration approaches used in urban land use mapping 
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and illustrate the advantages and disadvantages by applying them to map the urban land 

use situation in Hangzhou city, China. To our knowledge, this is the first study to 

summarize the existing efforts of integrating RS and GBD for urban land use mapping 

and analyzing their differences. 

5.2 Related Work of RS and GBD Integration Used in Urban 

Land Use Mapping 

Based on the literature review of previous studies, we categorize the various 

methods of RS and GBD integration used in urban land use mapping into decision-level 

integration (DI) and feature-level integration (FI) by considering the data integration 

modes (e.g., integration timing or integration method). A general framework is 

proposed, as shown in Figure 5-1, to demonstrate and differentiate the two approaches. 

Briefly, the main difference between DI-based and FI-based urban land use mapping is 

that DI combines the classification results of the RS and GBD, whereas FI integrates 

the features extracted from the RS and GBD for classification.  
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Figure 5-1 A general framework of the two integration strategies: Decision-level 

integration (DI), and Feature-level integration (FI). 

5.2.1 DI-based Urban Land Use Mapping 

The DI-based urban land use mapping processes the RS and GBD independently 

with different models and methods and combines the RS-based and GBD-based results 

for further generating the urban land use map. The DI-based method was first 

introduced by Chang et al. (2015) and provides an efficient way for mapping urban land 

use in Kunming City by integrating POI data and Landsat images. Since then, a series 

of studies have followed that method. For example, Song et al. (2018a) further 
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developed the method by fully exploring GBD (Weibo POI, Baidu POI) for more in-

depth information and combining them with RS data (Landsat images, Gaofen). Tu et 

al. (2018) fused landscape metrics (i.e., total class area, patch density, number of 

patches, and Shannon’s diversity index) taken from RS and human activity metrics (i.e., 

the density of human activities in different functional zones) extracted from mobile 

phone positioning data for classifying urban functional zones by hierarchical clustering. 

Jia et al. (2018) integrated RS-based urban land cover maps and GBD-based urban land 

use maps for mapping urban land use through decision fusion strategy (i.e., certain 

fusion rules for classifying different urban land use categories). Zhao et al. (2019) 

generated land cover types by training RS images with the semantic elements derived 

from OpenStreetMap (OSM) data, then identified each building through semantic 

classification by using POI. Xu et al. (2020) extracted geographic information from RS 

and functional distribution from GBD (Gaode POI), then combined them by assigning 

different weights for urban land use mapping in China. In the DI-based method, the RS 

and GBD features are calculated and processed separately, avoiding the feature 

conflicting issues. Furthermore, it has the advantage of easy implementation. In 

summary, the RS and GBD features reflecting disparate attributes and dimensions are 

processed through independent methods, then fused by certain models (e.g., cross-

correlation, decision fusion strategy). 

5.2.2 FI-based Urban Land Use Mapping 

In the FI-based method, the features are first extracted from the RS and GBD and 

are then fused into the integrated feature sets and put into a classifier for urban land use 

classification. For example, Zhang et al. (2017b) extracted the features from the RS and 

GBD (i.e., spectral features, texture features, landscape metrics, density, spatial patterns 
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of POI, and the density of geotagged Weibo posts), based on which urban land use types 

were determined and fused to train the classifiers for final mapping. Zhang et al. (2019) 

evaluated the performances of the RS and GBD features and their cross-correlations for 

classifying urban functions by using a Random Forest (RF) model. Shi et al. (2019) 

extracted RS features from ZY-3, Landsat8, Sentinel-1A, and GBD (e.g., Wechat user 

density) for identifying urban land use. Cao et al. (2020) proposed a novel framework 

that extracted the RS-based and GBD-based features (e.g., temporal features from user-

visit data) for recognizing urban land use through deep learning. Zhang et al. (2020c) 

extracted the RS and GBD features to construct a sparse topic model for identifying 

representative zones with distinct patterns, then trained these zones to recognize urban 

functional zones using the deep forest model. Compared to the DI-based approach, the 

FI-based approach provides a more integrative way of processing the features derived 

from both RS data and GBD. The RS-based and GBD-based features were fully used 

for the mining of the urban land use information. However, the modality gap (i.e., 

differences in data quality, data formats, scales, and timestamps between RS data and 

GBD) between the RS and GBD features is still a challenging issue. 

5.3 Case study 

5.3.1 Study Site 

Based on the general framework, a detailed methodological framework was 

designed for testing the two approaches (DI and FI) by using Hangzhou city as a case 

study. The case study was carried out in Hangzhou city, the capital of Zhejiang Province 

in China, which is one of the representative cities of urban expansion, population 

growth, economic development, and land use changes (Li et al. 2017a; Mao et al. 2020). 
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We selected the area surrounded by the third ring (i.e., the Hangzhou belt highway) as 

our study site, which is located in the northeast of Hangzhou city (Figure 5-2c). Besides, 

the green spaces in the West Lake ecological zone and the croplands in the northeast 

region were removed to ensure that our study site had the main functional areas related 

to urban human activities, including institutions, residences, businesses, and open space.  

 

Figure 5-2 The study site (a) Sentinel-2 true-color composition image with OSM 

river network; (b) Spatial distribution of Point-of-interests (POI); (c) Road 

network extracted from OpenStreetMap (OSM). 

5.3.2 Data Source and Preprocessing 

Sentinel-2 is a high-resolution (10 m), multi-spectral, remote-sensing satellite 

(Drusch et al. 2012; Zhu et al. 2015). In this paper, the data were integrated from 1 

January to 31 December 2019 as mean composites after removing clouds using the 

Sentinel-2 Quality Assurance (QA) band (Adiri et al. 2020).  
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OpenStreetMap (OSM) is a collaborative project providing free editable maps 

across the world (https://www.openstreetmap.org, accessed data:14, December, 2019). 

The creation and growth of OSM data have mainly been promoted by users and GIS 

experts (Liu 2021; Weiss et al. 2018). The high accuracy and free accessibility of OSM 

in urban areas have been confirmed by many researchers so far (Helbich et al. 2012). 

The weekly updated OSM data is very important for capturing the rapid development 

of urban areas. The OSM road network data are in vector format and contain different 

classes of roads with different road sizes (Liu et al. 2020a; Wan et al. 2017). It was 

proposed as a promising candidate for quick and robust delineations of urban structures 

and socioeconomic patterns since it is gradually being used to understand Chinese cities 

(Liu and Long 2015). Thus, it is reliable to generate urban land use parcels using the 

OSM road network data.  

As a prominent example of the GBD that attracts the most users, POI contain 

abundant information including land use category, geographic location, and other 

features (e.g., address, telephone, and postcode) (Xu et al. 2020). A total number of 

28,898 available records of POI within Hangzhou city in 2019 was collected via 

application programming interfaces (APIs) provided by Gaode Map Services. The 

urban land use classification system used for aggregating initial POI types were shown 

in Table 5-1 (https://lbs.amap.com, accessed data:14, December, 2019). Moreover, 

according to previous research, the urban area could be divided into six categories, 

including institution, residence, commercial land, industrial land, open space, and 

transportation (Xu et al. 2020; Zhang et al. 2020c). Since we have excluded the road 

and river layers for generating urban parcels, there are five categories left. We further 

combined the commercial and industrial land into business as both have the nature of 

https://lbs.amap.com/
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the business, and the business level meets the classification requirements of this paper. 

Therefore, the urban classification system used in this study consists of four categories: 

institution, residence, business, and open space. 

Table 5-1 The framework used for aggregating initial Gaode POI types. 

Gaode POI classification Urban land use classification 

Governmental organization 

Institution 

Medical service 

Finance and Insurance service 

Sports and Recreation 

Culture and Education 

Daily life service 
Residence 

Commercial house 

Commercial service 

Business 

Shopping 

Food and Beverages 

Enterprises 

Accommodation service 

Tourist attraction Open space 

5.3.3 Methods 

The case study was carried out with the assumption that a parcel divided by urban 

road networks is homogeneous in terms of urban land use function (Helbich et al. 2012; 

Rozenfeld et al. 2011). Quantitatively illustrating the differences between DI-based and 

FI-based methods requires the following steps: (1) extracting urban land parcels based 

on the road network and river data (Figure 5-3a) and preparing training and validation 

parcels (Figure 5-3b); (2) generating urban land use maps by using DI-based (Figure 5-

3c) and FI-based methods, respectively, (Figure 5-3d) and evaluating the two based on 

validation datasets; (3) analyzing the differences between the two methods in terms of 
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quantitative and qualitative assessment of resulting maps and their data processing 

modes. The detailed procedures are presented below. 

 

Figure 5-3 This is a figure. Schemes follow the same formatting. Research 

methodological framework of mapping urban land use with decision-level 

integration (DI) and feature-level integration (FI). (a) Urban parcel generation 

based on the road network and river data; (b) Collection of testing and training 

parcels; (c) DI-based urban land use mapping (DI); (d) FI-based urban land use 

mapping. 

3.3.1. Urban Parcel Generation 

The study area was segmented into urban parcels based on the method of the 

automated identification and characterization of parcels (AICP) (Liu and Long 2015). 

Specifically, roads less than 100 m and roads inside communities were considered as 

redundant information and manually removed. The road network and river layer were 

then used for generating road buffers and river buffers. The buffer widths of the road 

and river were determined based on their respective classes according to the Ministry 

of Housing and Urban-Rural Development (MoHURD) (Ministry of housing and 
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urban-rural development (MoHURD) 2012) and the actual situation in Hangzhou city 

(Table 5-2). The river layer was delineated by visual interpretation based on Google 

Earth, and the preprocessing of the road network and buffer generation were conducted 

by using ArcMap 10.2. 

Table 5-2 The road and river levels and their corresponding buffer sizes used in 

this study. 

Classes Road descriptions 
Road widths 

(meters) 

River 

descriptions 

River widths 

(meters) 

Level 1 
Trunk, primary, motorway, 

railway 
40 Main rivers 50 

Level 2 Secondary 20 
Intermediate 

rivers 
20 

Level 3 
Tertiary, unclassified, 

residential, service, others 
10 Small rivers 10 

3.3.2. Training and Testing Parcel Collection 

We selected parcels for preparing the training and testing parcels, of which the 

land use types were identified by using the Baidu map, Baidu street view, and a field 

survey (Figures 5-4 and 5-5). The hybrid satellite map of Baidu map presents a top view 

of the urban landscape with high-resolution satellite imagery and names of ground 

features, which were further inspected or confirmed using Baidu street view as it 

contains high-resolution photos and allows multiple perspectives (Hoffmann et al. 2019; 

Kang et al. 2018). An example was presented in Figure 5-4 to illustrate the top view of 

an institution and residence in the Baidu map and their corresponding Baidu street 

views. We determined the parcel type while different types of street views were 

observed for the same parcel, and there is no predominant characteristic referring to the 

rules in essential urban land use categories in China (EULUC-China) (Gong et al. 2020). 
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To be more specific, we recorded a list of items, including the geolocations, 

classification types, landmark buildings and facilities, and mixed land use situation and 

their estimated proportions for each urban parcel. Finally, a total of 700 training parcels 

were identified, including 175 institution parcels, 175 residence parcels, 175 business 

parcels, and 175 open space parcels. These parcels were selected using stratified 

random sampling, with an equal sample size (175) for each land use class. Following 

the approach discussed by Stehman and Foody (2019), we selected 550 parcels for 

testing. These 550 parcels were selected using simple random sampling from the list of 

parcels. For each parcel, the land use class was determined by visual interpretation 

based on the Baidu map. The 550 parcels included 85 institution parcels, 225 residence 

parcels, 156 business parcels, and 84 open space parcels. The training parcels were used 

for training the RF classifiers in FI-based classification, while testing parcels were used 

for accuracy assessment in both DI-based and FI-based classification, respectively. 
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Figure 5-4 Illustration of the institution and residence parcels in Baidu map and 

Baidu street view: (a) represents the institution parcel in Baidu map; (b), (c), (d) 

and (e) represent the four perspectives of institution parcel in Baidu street view; 

(f) represents the residence parcel in Baidu map; and (g), (h), (i) and (j) represent 

the four perspectives of residence parcel in Baidu street view. The Chinese labels 

for (a) and (f) represent the name of POIs. 
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Figure 5-5 Spatial distribution and illustration of training and testing parcels for 

the four urban land use types. (a) represents the spatial distribution of training 

and testing parcels; (b), (d), (f), and (h) represents the Baidu map image for 

institution, residence, business, and open space, respectively; and (c), (e), (g) and 

(i) represent the Baidu street view for the institution, residence, business, and open 

space, respectively. The Chinese labels for (b), (d), (f), and (h) represent the name 

of POIs. 

3.3.3. DI-based Urban Land Use Mapping 

The DI-based urban land use mapping integrated the results of the RS and GBD 

classification based on integration rules (Figure 5-3c). First, the Sentinel-2 image was 

classified for producing the impervious and pervious classes (Figure 5-6a). Specifically, 

the training samples identified by visual interpretation based on Google Earth and a 

field survey were put into the RF classifier for the classification of the impervious and 

pervious surface. The impervious surface is characterized by the artificial structures that 

are covered by water-resistant materials, while the pervious surface is the opposite 

(Wang et al. 2015; Weng 2012; Xu 2010). The classification result was then overlaid 

with the urban parcels to generate the built-up and non-built-up parcels (Figure 5-6b). 

In this study, urban parcels with impervious surfaces were defined as built-up, otherwise, 



 

113 

 

the parcels were labeled as non-built-up. This step was carried out under the assumption 

that built-up parcels require at least partially impervious surfaces (Breiman 2001). The 

non-built-up parcels were further classified as open space, while built-up parcels were 

used for further analysis. 

 

Figure 5-6 (a) Distribution of the pervious and impervious classes; (b) Distribution 

of the built-up and non-built-up parcels. 

Finally, the type of each built-up parcel was determined according to a modified 

method (Zhao et al. 2011). The method consists of two parts: the frequency density 

calculation, and the weight calculation. In general, the main type in each parcel was 

determined after comparing the final frequency density ratios of four types of the POI, 

and the highest ratio of POI is considered as the final type. The final frequency density 

ratios were determined by multiplying the initial frequency density ratio and the weight 

of each types’ POI. Specifically, the initial frequency density ratios of the four types’ 

POI were calculated by using Equation 1, Equation 2, and Equation 3.  

𝐹𝑖 =
𝑛𝑖

𝑁𝑖
, 𝑖 = 1,2,3,4 (1) 

 

 

where 𝑖 represents the type of POI, which are institution, residence, business, or 

open space. 𝑛𝑖 demonstrates the quantity of type 𝑖 in a parcel. 𝑁𝑖 represents the total 
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quantity of type 𝑖 in all parcels. 𝐹𝑖 demonstrates the frequency density which equals 

the ratio of 𝑛𝑖 to 𝑁𝑖.  

𝐶𝑖 =
𝐹𝑖

∑ 𝐹𝑖
4
1

× 100%, 𝑖 = 1,2,3,4 (2) 

where 𝐶𝑖 represents the initial ratio of type 𝑖’s frequency density to the sum of 

all four types’ frequency density.  

The initial frequency density ratios of the four types’ POI were then respectively 

multiplied with their weights since various types of POI have different recognition 

degrees. The weight of institution, residence, business, and open space POI was defined 

as 2, 1, 1.5, and 2.5, referring to the construction area and the actual situation. The type 

in each parcel was determined as the one with the highest ratio and the final urban land 

use map was obtained. The open space parcels produced by the calculation of POI were 

further combined with the non-built-up parcels as the final open space parcels. 

𝐷𝑖 = 𝐶𝑖 × 𝑊𝑖 × 100%, 𝑖 = 1,2,3,4 (3) 

where 𝐷𝑖 represents the final frequency density ratio which equals the initial ratio 

of type 𝑖’s frequency density multiplying the weight of each types’ POI. 𝑊1 = 2, 𝑊2 =

1, 𝑊3 = 1.5, 𝑊4 = 2.5. 

3.3.4. FI-based Urban Land Use Mapping 

Many RS and GBD features were computed for urban land use mapping in the FI-

based classification approach. However, a large proportion of these features were 

inherently highly correlated and redundant because they are all dependent on similar 

metrics for the classification. This kind of dataset could result in an underperforming 

and unnecessarily complex classification model. To solve this problem, this research 

performed a feature selection procedure before the FI-based classification step to 

construct smaller, more predictive, and parsimonious models. The “Variable Selection 
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Using Random Forest” (VSURF) algorithm was used for the RS and GBD feature 

selection and categorized the features into three types: (i) removing useless features, (ii) 

finding the most predictive set of features which may contain a great amount of 

redundancy, and (iii) retaining the accuracy while removing redundant features through 

a stepwise search.  

84 RS and GBD features including spectral features, textural features, density 

features, and spatial features were utilized for the feature selection (Table 5-3). Textural 

features indicate the adjacency relationships between the gray levels of pixels to 

characterize the texture of an image (Puissant et al. 2006; Zhang et al. 2017b). In this 

study, the textural features (i.e., mean, standard deviation, homogeneity, correlation, 

angular second moment, contrast, dissimilarity, entropy, and variance) were extracted 

by computing Gray Level Co-Occurrence Matrix (GLCM) that contain rich information 

on spatial structure and landscapes (Lu and Weng 2006). The Red, Blue, Green, and 

near-infrared (NIR) bands from the Sentinel image were used for computing the spectral 

and textural features (Deng et al. 2019; Heiden et al. 2007). Moreover, density features 

from POIs help to present the differences in spatial patterns among different types of 

parcels. The Kernel Density Estimation (KDE) tool in ArcMap 10.2 was utilized to 

generate 4 layers of kernel density of the four land use types of POIs respectively. The 

spatial features of POIs refer to the POI number of each urban land use type, and the 

proportion of POI number of each urban land use type to the total number of urban land 

use types. 
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Table 5-3. Features selected by feature selection using “VSURF”. These are the 

remaining features at the “prediction” step. 

Feature types Indices 

Spectral features 
Mean, Standard deviation, Kurtosis, Skewness, EVI, 

NDBI, NDVI, NDWI 

Textural features 

Mean, Standard deviation, Homogeneity, Correlation, 

Angular second moment, Contrast, Dissimilarity, Entropy, 

Variance 

Density features 
Minimum, Maximum, Range, Sum, Mean, Standard 

deviation 

Spatial features Spatial distribution of POIs 

 

Feature selection was performed on the initial set of features computed and 

resulted in an impressive reduction of 81.9% (from an initial set of 84 features to 36 

remaining features) for the study area (Figure 5-7, Table 5-4). The list of selected 

features is presented in Table 1. After the feature selection procedure, the RF model was 

trained using all the above-mentioned selected features 100 times to attenuate the 

uncertainties and get more stable accuracies. All the operations in the FI-based 

classification were realized using Google Earth Engine (GEE) platform.  
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Figure 5-7 Ordered attribute importance for the whole classification. 

Table 5-4 Spectral and textural features from RS, and density features from GBD 

used in FI-based classification. 

Feature Types Indices 

Spectral features 

Enhanced Vegetation Index (EVI), Normal Difference Built-up 

Index (NDBI), Normal Difference Vegetation Index (NDVI), 

Normal Difference Water Index (NDWI), mean_NIR, standard 

deviation_NIR, kurtosis_NIR, skewness_NIR 

Textural features 
Angular second moment_NIR, contrast_NIR, dissimilarity_NIR, 

and entropy_NIR 

Density features Minimum, maximum, range, sum, mean and standard deviation 

 

3.3.5. Analysis of the DI-based and FI-based Classification 

To understand the differences between DI-based and FI-based urban land use 

mapping and describe their advantages and disadvantages, we first evaluated the results 

derived from the two methods by computing the overall accuracy (OA), user’s accuracy 

(UA), and producer’s accuracy (PA) based on the confusion matrix (Foody 2002). 
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Approximately 95% confidence intervals of OA, UA, and PA were also calculated 

based on the equations proposed by Card (1982) (Supplementary Materials). In the 

estimation procedure for DI and FI methods, we used a proportion of the number of 

parcels in each category, relative to all categories in the DI and FI classification results, 

and denoted this as 𝑤𝑗 , following Olofsson et al. (2014), and Stehman and Foody 

(2019). The column refers to the classified map category while the row refers to the true 

category based on the reference data (see the Supplementary Materials). For DI, No 

Data parcels refer to the parcels without POI values that were not involved in the 

confusion matrix. We then implemented the visual analysis of the DI-based and FI-

based urban land use maps. Furthermore, we evaluated the implementation of the two 

methods by discussing their advantages and disadvantages.  

5.4 Results 

5.4.1 Quantitative Performance of DI-based and FI-based Urban Land Use 

Mapping 

Table 5-5 showed the confusion matrix of the pervious and impervious map. The 

estimated OA (±95% confidence interval) is 0.971±0.007. The estimated UA and PA of 

the impervious surface are 0.975±0.008 and 0.986±0.005. Table 5-6 presents the 

confusion matrix of DI-based classification. The estimated OA for DI-based urban land 

use map is 0.635±0.049. Note that the residence and open space were classified 

relatively well, with the estimated UA of 0.728±0.069 and 0.714±0.140, respectively. 

For institution and business, they have relatively lower UA (0.512±0.140 and 

0.522±0.095). Table 5-7 presents the confusion matrix of FI-based classification. The 
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estimated OA for FI-based classification results is 0.569±0.041. It can be noted that the 

residence and open space in FI-based classification can be classified relatively well, 

with the UA of 0.631±0.059 and 0.640±0.111, respectively.  

Table 5-5 Confusion matrix of the impervious and pervious surface extraction 

results. UA: users accuracy; PA: producers accuracy; OA: overall accuracy; π_j 

is the class proportion according to the classified map. 

  Map Category    

 Class Pervious Impervious Total PA OA 

True Category 
Pervious 0.240 0.018 0.258 0.928±0.022 0.971±0.007 

Impervious 0.010 0.732 0.742 0.986±0.005  

 Total(𝜋𝑗) 0.250 0.750 1.000   

 UA 0.958±0.018 0.975±0.008    

Table 5-6 Confusion matrix of DI-based classification results (I: Institution; R: 

Residence; B: Business; O: Open Space). UA: users accuracy; PA: producers 

accuracy; OA: overall accuracy; π_j is the class proportion according to the 

classified map. 

  Map category    

 Class I R B O Total PA OA 

T
ru

e 
C

at
eg

o
ry

 I 0.071 0.029 0.042 0.014 0.156 0.453±0.107 0.635±0.049 

R 0.015 0.326 0.072 0.008 0.421 0.774±0.055  

B 0.034 0.065 0.157 0.010 0.265 0.591±0.082  

O 0.019 0.029 0.029 0.081 0.158 0.514±0.102  

 Total(𝜋𝑗) 0.138 0.448 0.300 0.113 1.000   

 UA 0.512±0.140 0.728±0.069 0.522±0.095 0.714±0.140    
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Table 5-7 Confusion matrix of FI-based classification results (I: Institution; R: 

Residence; B: Business; O: Open Space). UA: users accuracy; PA: producers 

accuracy; OA: overall accuracy; π_j is the class proportion according to the 

classified map. 

  Map category    

 Class I R B O Total PA OA 

 T
ru

e 
C

at
eg

o
ry

 I 0.071 0.030 0.025 0.016 0.142 0.496±0.092 0.569±0.041 

R 0.020 0.291 0.108 0.019 0.439 0.663±0.045  

B 0.036 0.112 0.124 0.012 0.284 0.436±0.062  

O 0.008 0.028 0.015 0.084 0.135 0.620±0.094  

 Total(𝜋𝑗) 0.135 0.462 0.272 0.130 1.000   

 UA 0.523±0.114 0.631±0.059 0.453±0.080 0.640±0.111    

5.4.2 Qualitative Performance of DI-based and FI-based Urban Land Use 

Mapping 

Figure 5-8 presents the urban land use maps derived from DI-based and FI-based 

methods in Hangzhou city. Overall, there is a difference in the number of each urban 

land use type, and the spatial distribution of the four land use types is not similar. In the 

DI-based map, the residence parcels were mainly distributed in the city center, while 

the open space parcels were distributed around Hangzhou city. The distribution of urban 

land uses in the DI-based map was visually consistent with the actual urban land use 

referring to the Baidu map. In the FI-based resulting map, the distribution of each land 

use type was more widely spread out across the study area than that in the DI resulting 

map. No-value parcels only exist in the resultant map from the DI-based classification, 

where the built-up parcels determined from the RS images are further labeled based on 

POI (see Section 5.3.3). No-value parcels arise where there is no POI data within the 

built-up parcel to support this labeling. On the contrary, the FI-based classification 
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integrates features from both RS and GBD before land use classification could be 

classified, as each parcel contains features at least from RS data.  

 

Figure 5-8 Illustration of the (a) DI-based and (b) FI-based urban land use maps 

in Hangzhou city. 

Figure 5-9 presents a visual comparison of the urban land use maps derived from 

DI-based and FI-based methods and the corresponding Baidu map in four subareas. The 

four subareas A, B, C, and D are dominated by institution, residence, business and opens 

space, respectively. Overall, the visual comparison indicates a generally better 

performance of the DI-based classification than the FI-based classification. For 

example, some institution parcels were classified as residence for the FI-based 

classification in subarea A. In subarea B, some residence parcels were misclassified as 

business by the FI-based classification. The FI-based result map misclassified business 

parcels as residence parcels in subarea C. For subarea D, the open space parcel was 

wrongly classified as a residence parcel. 
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Figure 5-9 Classification results of DI and FI methods and testing samples in the 

test regions. Subareas A, B, C, and D were selected randomly in Hangzhou city, 

and each region was shown with DI-based classification, FI-based classification, 

and Baidu map. The Chinese labels for the subfigure of right column represent the 

name of POIs. 

5.5 Discussion 

This study implemented the DI-based and FI-based methods for mapping urban 

land use types in Hangzhou city, based on the same urban land use classification system 

(Table 5-1), the same data sources (i.e., Sentinel-2A, OSM road networks, and POI), 

and the same training and validation urban parcels (Figure 5-5). In our study, the only 

difference between these two approaches is the manner and timing for integrating the 
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RS features and GBD features (Figure 5-1 and Figure 5-3). It should be noted that the 

objective of this study is not to quantitatively compare the performance of the two 

methods but to illustrate their advantages and disadvantages by applying them to the 

mapping of the urban land use situation in Hangzhou city. The results in this study, 

which show that DI-based classification performs better than FI-based classification, 

may not apply to other circumstances (Xu et al. 2020; Yu et al. 2019). Given that our 

study area is located in eastern China, where the diversity of urban land use types has a 

higher level of complexity than other regions in China, our mapping result is probably 

not representative of other regions. It should be noted that different data sources, 

selected features, classifiers, training samples, or land use types may also lead to 

different results. According to the process of the integration methods, these differences 

can be summarized into four types: 1) different urban road networks in different regions 

might lead to different urban parcel unit; 2) The variety of GBD in different regions 

lead to different mapping results; 3) The number of mixed parcels in different regions 

varies depending on the tiers of cities; 4) The availability of RS data greatly varies in 

different cities due to the coverage of clouds and cloud shadows that might be another 

factor affecting the application of the proposed methods. 

5.5.1 Summary of the Advantages and Disadvantages of the Two Methods 

In our study, for the DI-based method, the pervious and impervious surfaces map 

was overlaid with urban parcels for generating built-up and non-built-up parcels, and 

then they were classified into the four urban land use types by calculating the frequency 

density and weight of the four types of POI. For the FI-based classification, the RS and 

GBD features were combined to train the RF model for urban land use mapping based 
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on the training parcels. Some advantages and disadvantages could be identified through 

the analysis of classification results and the above-mentioned process: 

DI-based urban land use mapping is easy to implement, avoids feature integration, 

and accompanies conflicting issues. However, it depends largely on the quality and 

quantity of the GBD in each urban parcel (it depended on POI data in our case study) 

which might cause the missing value and misclassification for some urban parcels 

(Figure 5-8 and Figure 5-9). For example, Zhao et al. (2019) indicated that inaccurate 

POI will produce incorrect labels, as the classification results are directly generated 

from POI. Furthermore, the classes used in this paper might not match well with the 

POI classes considering that DI-based classification is based on labeling parcels based 

on POI. Reclassifying POI classes according to the nomenclature of land use types can 

result in some uncertainties of urban land use classification. For example, certain POI 

could be associated with more than one type of urban land use;  

The FI-based land use mapping enables the mixture of features from RS and GBD, 

however, the implementation has challenges due to the modality gap (Cao et al. 2020; 

Liu et al. 2015) between the RS and GBD, such as the spatial data quality, technical 

format, and data structure. Moreover, both feature selection and feature integration in 

the FI-based classification can contribute to different mapping results. In this study, 

spectral features and textural features derived from the Sentinel-2 image were 

integrated with the density features derived from POI for mapping urban land use (Table 

5-3). Accordingly, these features have multiple backgrounds and thus can have various 

understandings of urban land use mapping, leading to different classification results (Su 

et al. 2020). The performance of the FI-based classification is probably related to the 

complexity of urban parcels. To be more specific, a single urban parcel can comprise 
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different urban land uses, such as office buildings, residential buildings, and shopping 

centers. Therefore, the differences in features among urban parcels might be hard to 

distinguish.  

5.5.2 The improved Method for Urban Land Use Mapping 

Given the framework (Figure 5-1), quantitative and qualitative assessments of the 

two methods, it is possible to highlight some points for improving the DI-based and FI-

based urban land use mapping. First, very-high-resolution (VHR) satellite images 

provide abundant information about geographical objects in terms of geometrical 

features and spatial patterns (Zhao et al. 2019), which can provide more detailed RS 

information (e.g., textual, contextual, and spectral information) (Zhang et al. 2017b). 

Second, the generation of urban parcels relied on the OSM road network, which 

contains unbalanced classes that are unevenly distributed, leading to heterogeneous 

urban land use parcels in terms of parcel area and spatial pattern (Johnson and Iizuka 

2016). The accuracy of the urban parcels created based on OSM can be further 

improved by combining different data sources, and the veracity of urban parcels should 

be validated. Third, different GBD features have different contributions to the 

classification of different land use types according to Zhang et al. (2017b). Evaluating 

the optimal size of the GBD set is a topic for future research. Fourth, the training and 

testing parcels used in this study were identified through the Baidu map, Baidu street 

view, and a field survey, which are promising to validate urban land use parcels (Hu et 

al. 2016). However, it is inevitable for parcels to contain multiple land use types. A 

better classification performance would be expected from the adoption of an 

independent land use map from the local government and urban planners (Pan et al. 

2020). Fifth, the RF model was used for mapping built-up in DI-based classification 
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and training urban land use parcels in the FI-based classification. However, we need to 

improve the RF model with transfer learning capability for mapping the urban land use 

of any region with high accuracy and a different data source. To be more specific, the 

transfer learning model can be used as a pre-trained model, which might help increase 

the classification accuracy. Furthermore, how to integrate GBD into the RF model is a 

worthwhile question to discuss, since there is a significant difference between RS and 

GBD (Mao et al. 2020). Sixth, the two methods can be used together to improve urban 

land use maps as they have different performances in classifying different types of land 

use. For example, the FI-based method can be used for classifying very different urban 

land use types, such as open space land and industrial land, while the DI-based method 

can be utilized for classifying urban land use types with very little difference in the RS 

features but have a significant difference in GBD features, such as commercial land and 

industrial land. 

5.6 Conclusions 

With the increase in RS and GBD, integrating the two types of data was widely 

used in urban land use mapping in recent years as it provides an opportunity to 

characterize both physical and socioeconomic attributes of urban land. For the first time, 

this study summarized the diverse methods of RS and GBD integration used in essential 

urban land use mapping and categorized them into two types, including the DI-based 

and FI-based methods. A general framework was proposed for explaining the main 

differences in the process of the two methods. Taking Hangzhou city, China as a case 

study, we then applied the two methods to produce the urban land use maps consisting 

of the institution, residence, business, and open space, based on the OSM road network, 
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Sentinel-2 data, and Gaode POI, and highlighted the differences in classification results 

and the process of the DI-based and FI-based methods. On this basis, future studies 

should pay more attention to the integration methods, and further apply the methods to 

more specific classification-type scenarios, data sources, and other regions. 
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Chapter 6: Quantifying spatiotemporal patterns 

of urban land use change: A case study in 

Hangzhou, China 

Stage of publication - First draft prepared. Awaiting feedback from co-authors before 

submission to the journal Cities.  

6.1 Introduction 

Since the early 2000s, China has been experiencing the most dramatic 

transformations of urbanization (Gong et al. 2019), especially in cities with high-

density populations such as Beijing, Shanghai, Guangzhou, Shenzhen, and Hangzhou 

(Cai et al. 2017). Rapid urbanization not only alters urban land cover structures (e.g., 

physical attributes of urban environment) but also change urban land use patterns 

significantly (e.g., socio-economic attributes) (Yao et al. 2022). The changing patterns 

of physical and socio-economic aspects of the urban planet further impact the urban 

environment as well as the physical and psychological health of urban dwellers (Gong 

et al. 2019; Wu et al. 2021a). Previous studies have demonstrated the spatial and 

temporal patterns of the urban land cover process (e.g., impervious surfaces, green 

space, water bodies, and bare land) at different scales (Pan et al. 2020; Zhang et al. 

2020a). However, urban land use change and the underlying socioeconomic process are 

still less understood. 
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With the increasing population and expanding urban areas, the complexity and 

diversity of inner-urban functions have changed significantly at spatial and temporal 

scales (Pan et al. 2020; Zhang et al. 2020a). Characterizing the changing patterns of 

urban land use is thus critical, given that urban land use plays an important role in 

citizens’ welfare (Tu et al. 2021; Yao et al. 2022). Many of the related studies used 

municipal cadastral data or urban land use data from the urban planning bureau to 

understand the urban land use dynamics (Woldesemayat and Genovese 2021), which 

might introduce large errors due to the low quality and uncertainty of the urban land 

use data. Recently, the integration of remote sensing (RS) data and geospatial big data 

(GBD) provide new opportunities for mapping urban land use (e.g., institutional land, 

commercial land, and residential land) (Dong et al. 2019; Sarmin and Ismail 2016). 

Promising progress has been made in the applications of integrated RS and GBD on 

urban land use mapping at different scales and regions (Goffi et al. 2020; Shi et al. 2019; 

Zhang et al. 2020c; Zhang et al. 2019). While accurate and reliable urban land use 

change product (e.g., the transformation from institutional land to business land) is still 

limited. 

In this context, the main purpose of this paper is to investigate the spatial and 

temporal patterns of urban land use changes by integrating GBD and RS data. Taking 

Hangzhou city as the study site, we first classified the urban land use maps in 2017 and 

2021 using Sentinel-2 images, OpenStreetMap (OSM) road network data, and Points 

of Interest (POI) data. The obtained maps were then used to analyze the changing 

patterns of urban land use from 2017 to 2021. This paper is organized into five sections. 

In section 6.2, the study site, data source, and methods used in the research were 

presented. In Section 6.3, this research classified urban land use maps in Hangzhou for 
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2017 and 2021, and understand the urban land use dynamics from 2017 to 2021. Section 

6.4 discussed the issues related to urban land use changes. Section 6.5 concluded the 

main findings and implications. 

6.2 Materials and methods 

6.2.1 Study site 

Hangzhou is located in the northwestern part of Zhejiang province, which plays 

an important role in the Yangtze River Delta Urban Agglomerations. It comprises 10 

districts, 1 county-level city, and 2 counties. In this paper, we only focused on the most 

central urban districts, which are Shangcheng District, Gongshu District, and part of 

Xihu District. The population in this region accounts for 45% of the total population in 

Hangzhou city. Hangzhou city is one of the representative cities of urbanization, 

population growth, and economic development in China (Li et al. 2017a; Mao et al. 

2020).  

In addition, this research selected the area surrounded by the third ring (i.e., the 

Hangzhou belt highway) as the study site (Figure 6-1). The urban areas can be divided 

into three units including 1st ring belt, 2nd ring belt, and 3rd ring belt. To be more specific, 

the 1st ring represents Huancheng North Road, Huancheng East Road, Jiangcheng Road, 

Zhongshan South Road, Wansongling Road, Nanshan Road, Hubin Road, and 

Huancheng West Road. The 2nd ring refers to Desheng Road, Qiutao Road, Fuxing Road, 

Old Fuxing Road, Hupao Road, Manjuelong Road, Wulaofeng Tunnel, Jiqingshan 

Tunnel, Jiulisong Tunnel, Lingxi Tunnel, Zijinghua Road, and Wenyi Road. The 3rd ring 

is the Hangzhou belt highway. 
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Figure 6-1 The study site. 

6.2.2 Data 

Sentinel-2 carries an optical instrument payload that includes 13 spectral bands 

(e.g., 4 bands at 10m, 6 at 20m, and 3 at 60m) (Drusch et al. 2012; Zhu et al. 2015). 

The Sentinel-2A Level 1C dataset has been processed with radiometric and geometric 

corrections, including orthogonal rectification and spatial registration on a global 

reference system, which is available from the Google Earth Engine (GEE) cloud 

computing platform. This research selected Sentinel-2A level-1C images, from 1 

January 2017 to 31 December 2017 and from 1 January 2021 to 31 August 2021 for 

urban land use mapping.  
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Figure 6-2 Sentinel-2 images. (a) 2017 Sentinel image; (b) 2021 Sentinel image. 

OpenStreetMap (OSM) has started as a road network, which was depicted by users 

voluntarily (http://www.openstreetmap.org). It's a dataset composed of vectors, and it 

mainly includes point, polygon, and polyline formats. Recently, the OSM road network 

has been utilized as a promising dataset for capturing urban functional patterns (Liu and 

Long 2015). This research manually checked the OSM road network data to guarantee 

the accuracy of the mapping results. 

 

Figure 6-3 OpenStreetMap road network data. (a) 2017 OSM data; 2021 OSM 

data. 

Points of interest (POIs) are the basis for most of the data supporting location-

based applications. POIs contain abundant information including land use category, 

http://www.openstreetmap.org/
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geographic location, and other features (e.g. address, telephone, and postcode) (Xu et 

al. 2020). This research utilized POIs in 2017 and 2021 for mapping urban land use 

maps in Hangzhou city. The categories of POIs were further combined into four urban 

land use types (e.g., Institution, Residence, Business, and Opens pace) according to Yin 

et al. 2021b’s work. 

 

Figure 6-4 Spatial distribution of Points-of-interest (POIs). (a) 2017 POIs; (b) 2021 

POIs. 

6.2.3 Methods 

A methodology framework was proposed referring to Yin et al. 2021b’s work to 

map urban land use in 2017 and 2021 (Figure 6-5). However, new data sources have 

been emerged and used in urban land use classification. In order to improve the 

classification performance of the existing urban land use maps, an importance analysis 

of parcel attributes was conducted. 
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Figure 6-5 Methodology framework. (a) Urban parcel generation; (b) Accuracy 

assessment; (c) DI-based classification; (d) FI-based classification. 

(1) Methodology framework 

The urban areas were first segmented into several urban parcels by using OSM 

road network data based on the method of the automated identification and 

characterization of parcels (AICP) (Liu and Long 2015). It should be noted that the 

urban parcels used in 2017 were the same as the urban parcels in 2021 in order to unify 

the basic units. The reason for this is because the 2021 OSM road network was 

developed based on the 2017 OSM road network according to the OSM operating 

system. To be more specific, The road network after 2017 is gradually added on the 

basis of the 2017 road network. In addition, the road network in many areas was missing 

due to technical reasons In 2017. Therefore, using a more refined road network in 2021 

is more conducive to extracting heterogeneous urban parcels. Based on the urban 

parcels generated from the OSM road network, the urban land use was then classified 

by using both DI and FI methods (shown in Figure 6-5).  
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The FI-based classification method proposed by Yin et al. (2021b) was used for 

classifying urban land use. However, new RS and GBD features have emerged and 

applied in urban land use classification. In order to evaluate the performance of different 

RS and GBD features in urban land use mapping, an importance analysis of parcel 

attributes was conducted for the improvement of classification performance. Four 

categories of parcel attributes were evaluated, including spectral features, textural 

features, density features, and frequency features (Table 6-1). The random forests (RF) 

model was built to fulfill this purpose, with the dependent variables being respectively 

the four urban land use types. Specifically, the importance evaluation of parcel 

attributes was conducted by generating the rankings by using the “Variable Selection 

Using Random Forests for interpretation” (VSURF) approach proposed by Genuer et 

al. (2015). RF models were built using different combinations of categories, resulting 

in two models using three categories. Each model was run 50 times to attenuate the 

uncertainties associated with RF models so that more stable accuracies can be derived 

from the error matrix.  
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Table 6-1 Summary of RS and GBD features used in parcel-level urban land use 

mapping. 

Data 

source 
Features Variables 

Sentinel-

2A/B 

Spectral features 

Mean, standard deviation, kurtosis, skewness of 

the near-infrared band 

EVI, NDBI, NDVI, NDWI 

Textural features 

Angular second moment, contrast, dissimilarity, 

and entropy based on GLCM of the near-infrared 

band 

POIs 

Density features 
Minimum, maximum, range, sum, mean and 

standard deviation 

Frequency 

features 

Total number of all POIs 

Total number of each type of POIs  

The proportion of each type of POIs 

 

(2) Training and testing parcel collection 

This paper selected the training and testing parcels by using the Baidu map, Baidu 

Street View, and a field survey. Following the approach discussed by Stehman and 

Foody (2019), this research randomly selected 800 parcels in 2021 for training and 

testing from the list of parcels (Figure 6-6, 6-7). A total of 300 training parcels were 

identified including 23 institution parcels, 148 residence parcels, 85 business parcels, 

and 44 open space parcels. The 500 testing parcels included 55 institution parcels, 235 

residence parcels, 134 business parcels, and 76 open space parcels.  

Furthermore, 300 training parcels in 2017 were identified including 24 institution 

parcels, 134 residence parcels, 85 business parcels, and 57 open space parcels. The 500 



 

137 

 

testing parcels in 2017 included 36 institution parcels, 238 residence parcels, 142 

business parcels, and 84 open space parcels. Specifically, the testing and training 

parcels in 2021 were identified by using the Baidu map, Baidu Street View, and a field 

survey, while the parcels in 2017 were identified through Google Earth and Baidu map. 

The training parcels were used for training RF classifiers in the FI-based method, while 

testing parcels were used for accuracy assessment in both DI-based and FI-based 

approaches, respectively. 

 

Figure 6-6 Spatial distribution of training and testing parcels in 2017. (a) Spatial 

distribution of parcels selected randomly; (b) Testing parcels; (c) Training parcels. 
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Figure 6-7 Spatial distribution of training and testing parcels in 2021. (a) Spatial 

distribution of parcels selected randomly; (b) Testing parcels; (c) Training parcels. 

(3) Accuracy assessment 

In order to evaluate the results derived from the two methods (e.g., DI and FI), this 

research calculated the confusion matrix of the results with an approximate 95% 

confidence interval (Card 1982; Foody 2002). However, it should be noticed that the 

area proportion in parcel-based urban land use classification cannot represent the 

proportion of urban land use types. Therefore, we utilized the quantity proportion of 

urban parcels instead of the area proportion in the confusion matrix. The map category 

is in the column and the true category is in the row referring to the contingency table 

(Table 6-2).  
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Table 6-2 Contingency table for accuracy assessment 

   Map category(j)   

   1 2 . . . r Total 

True 

category(i) 

1 n11 n12  n1r n1. 

2 n21 n22  n2r n2. 

. 

. 

. 

       

r nr1 nr2  nrr nr. 

Total n.1 n.2  n.r n 

 

Marginal distributions of map category, which is the area in category j according 

to the map. However, the mapping in this research is done on parcel units instead of the 

pixel unit. This research, therefore, used the ratio between the number of each category 

𝑁.𝑗  and the total number of parcels 𝑁  according to the resultant land use maps as 

𝜋𝑗  for the DI and FI classification (Olofsson et al. 2014; Stehman and Foody 2019). 

While for impervious surface mapping, the 𝜋𝑗  is calculated based on the area in 

category 𝑗 according to the resultant map. Some parcels are missing in the DI based 

classification result because there is no POI data within the built-up parcel to support 

this labeling. 

6.3 Results 

6.3.1 Urban land use map in 2021 

Table 6-3 showed the confusion matrix of the pervious and impervious maps. The 

estimated OA (±95% confidence interval) is 0.903±0.033. The estimated UA and PA of 

the impervious surface are 0.944±0.031 and 0.917±0.032, which are both over 90%. It 
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can be noted that the impervious and pervious surfaces can be classified relatively well. 

Table 6-4 presents the confusion matrix of DI-based classification. The estimated OA 

for the DI-based urban land use map is 0.670±0.039. Note that the residence and 

business were classified relatively well, with the estimated UA of 0.892±0.048 and 

0.709±0.082, respectively. For the institution and open space parcels, they have 

relatively lower UA (0.364±0.093 and 0.522±0.125). Table 6-5 presents the confusion 

matrix of FI-based classification. The estimated OA for FI-based classification results 

is 0.802±0.034. It can be noted that the institution, residence, and business in FI-based 

classification can be classified relatively well, with the UA of 0.826±0.108, 

0.760±0.048, and 0.960±0.038, respectively. However, the open space has a relatively 

lower UA (0.698±0.139). 

Table 6-3 Confusion matrix of the impervious extraction results in 2021. UA: users 

accuracy; PA: producers accuracy; OA: overall accuracy; π_j is the class 

proportion according to the classified map. 

  Map Category    

 Class Pervious Impervious Total PA OA 

T
ru

e 
ca

te
g
o

ry
 

Pervious 0.258 0.038 
0.29

6 

0.871±0.06

4 

0.903±0.03

3 

Imperviou

s 
0.058 0.645 

0.70

4 

0.917±0.03

2 
 

 Total (𝜋𝑗) 0.317 0.683 
1.00

0 
  

 UA 
0.816±0.07

8 

0.944±0.03

1 
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Table 6-4 Confusion matrix of DI-based classification results in 2021(I: Institution; 

R: Residence; B: Business; O: Open Space). UA: users accuracy; PA: producers 

accuracy; OA: overall accuracy; π_j is the class proportion according to the 

classified map. 

  Map category    

 Class I R B O 
Tot

al 
PA OA 

T
ru

e 
C

at
eg

o
ry

 

I 0.084 0.007 0.002 0.020 
0.1

13 

0.741±0

.11 

0.670±0

.039 

R 0.058 0.326 0.068 0.036 
0.4

88 

0.667±0

.046 
 

B 0.051 0.019 0.188 0.010 
0.2

68 

0.702±0

.068 
 

O 0.037 0.014 0.007 0.072 
0.1

30 

0.555±0

.108 
 

 
Total 

(𝜋𝑗) 
0.231 0.365 0.265 0.139 1   

 UA 
0.364±0

.093 

0.892±0

.048 

0.709±0

.082 

0.522±0

.125 
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Table 6-5 Confusion matrix of FI-based classification results in 2021 (I: Institution; 

R: Residence; B: Business; O: Open Space). UA: users accuracy; PA: producers 

accuracy; OA: overall accuracy; π_j is the class proportion according to the 

classified map. 

  Map category    

 Class I R B O Total PA OA 

T
ru

e 
C

at
eg

o
ry

 

I 0.078 0.029 0.000 0.005 0.111 
0.697±0

.102 

0.802±0

.034 

R 0.002 0.471 0.004 0.006 0.484 
0.974±0

.019 
 

B 0.008 0.050 0.194 0.014 0.266 
0.729±0

.062 
 

O 0.006 0.070 0.004 0.058 0.139 
0.421±0

.086 
 

 
Total 

(𝜋𝑗) 
0.094 0.620 0.202 0.084 1.000   

 UA 
0.826±0

.108 

0.760±0

.048 

0.960±0

.038 

0.698±0

.139 
   

 

Figure 6-8 presented the urban land use maps derived from DI-based (Figure 6-8a) 

and FI-based (Figure 6-8b) methods in Hangzhou city. Overall, there is a difference in 

the number of each urban land use type, and the spatial distribution of the four land use 

types is not similar. In the DI-based map, the residence parcels were randomly 

distributed in the city, while the open space parcels were distributed around Hangzhou 

city. As for the institution parcels, they were concentrated in several areas in the city. 

Large business patches were found mainly around the city, while small patches were 

mainly distributed in the city center. The distribution of urban land uses in the FI-based 

map was visually consistent with the actual urban land use referring to the Baidu map. 

In the FI-based resulting map, the connectivity of each urban land use type is higher 
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than the DI-based classification result. Especially for the residence parcels, they were 

mainly distributed in the city center. The business and open space parcels were 

distributed around Hangzhou city. 

 

Figure 6-8 Illustration of the (a) DI-based and (b) FI-based urban land use maps 

in Hangzhou city in 2021. 

6.3.2 Urban land use map in 2017 

The FI-based classification result in 2021 performed better than the DI-based 

classification result according to the quantitively and qualitatively analysis in 

Hangzhou city. This research thus utilized the FI method to classify urban land use types 

in 2017. The only difference between the 2017 FI-based classification and the 2021 FI-

based classification is the reference map. This research selected parcels for preparing 

the training and testing parcels of which the land use types were identified by using the 

Baidu map, Baidu Street View, and a field survey in the 2021 urban land use map. 

However, the Baidu map and Baidu Street View are not available for 2017. This 

research thus utilized the OSM map and Google map as the reference maps to identify 

the training and testing parcels. 

Table 6-6 presents the confusion matrix of FI-based classification. The estimated 

OA for FI-based classification results is 0.817±0.032. It can be noted that the residence, 
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business, and open space in FI-based classification can be classified relatively well, 

with the UA of 0.872±0.043, 0.758±0.067, and 0.981±0.035, respectively. However, 

the institution has a relatively lower UA (0.587±0.133). 

Table 6-6 Confusion matrix of FI-based classification results in 2017 (I: Institution; 

R: Residence; B: Business; O: Open Space). UA: users accuracy; PA: producers 

accuracy; OA: overall accuracy; π_j is the class proportion according to the 

classified map. 

  Map category    

 Class I R B O Total PA OA 

T
ru

e 
ca

te
g
o

ry
 

I 0.062 0.002 0.016 0.000 0.080 
0.776±0

.118 

0.817±0

.032 

R 0.016 0.408 0.036 0.002 0.462 
0.883±0

.037 
 

B 0.025 0.023 0.238 0.000 0.286 
0.831±0

.053 
 

O 0.002 0.035 0.024 0.111 0.172 
0.645±0

.079 
 

 
Total 

(𝜋𝑗) 
0.106 0.468 0.313 0.113 1.000   

 UA 
0.587±0

.133 

0.872±0

.043 

0.758±0

.067 

0.981±0

.035 
   

 

In the 2017 FI-based resulting map (Figure 6-9), the residence parcels were 

randomly distributed in the city. It can be noted that the number of the residence parcels 

was larger than the other urban land use types (e.g., institution, business, and open 

space). Furthermore, the residence parcels were more concentrated in the city center, 

while more spread out around the city. Most business and open space parcels were 

distributed around Hangzhou city. Also, the size of the business and open space parcels 
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around the city was larger than the parcels distributed in the city center. The number of 

institution parcels was smaller than the other urban land use types (e.g., institution, 

business, and open space). The institution parcels were mainly concentrated in several 

areas in the city center. 

 

Figure 6-9 Illustration of the FI-based urban land use map in Hangzhou city in 

2017. 

6.3.3 Urban land use changes from 2017 to 2021 

Although the accuracies of the 2017 and 2021 urban land use maps were relatively 

well, the maps should be post-processed for obtaining high accuracy products and 

analyzing the impact of urban land use on green space. The post-processed urban land 

use map in 2017 was shown in Figure 6-10(a). The large open space parcels were 

distributed around Hangzhou city, while small parcels were distributed in the city center. 

The institution parcels were concentrated in several areas. As for the residence parcels, 

they were randomly distributed in the city. The large business parcels were mainly 
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distributed in the northern city, while the small parcels were distributed in the southern 

city. The distribution of the 2021 urban land use map (Figure 6-10(b)) was visually 

consistent with the 2017 urban land use map. However, parcels of each urban land use 

type were more concentrated in the 2021 urban land use map. To be more specific, the 

institution, business, and open space parcels were distributed more concentrated in the 

city.   

 

Figure 6-10 Post-processing of the urban land use map in 2017 (a) and 2021 (b). 

Table 6-7 showed the numbers of urban land use types within different rings in 

2017 and 2021. In general, the number of institution and residence parcels increased, 

while the number of business parcels and open space parcels decreased from 2017 to 

2021. Furthermore, the number of the residence parcels was larger than the others (e.g., 

institution, business, and open space), and the institution has the lowest number of 

parcels. In the 1st ring area, the number of the institution and business parcels changed 

significantly. For example, the number of institution parcels increased from 18 in 2017 

to 39 in 2021. It can be noted that the residence and business parcels changed obviously 

from 2017 to 2021 in the 2nd ring area. The number of parcels within the 3rd ring was 

the largest, while the number of parcels within the 1st ring belt was the lowest.  
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Table 6-7 Quantitative in urban land use types in 2017 and 2021. 

Class 
1st ring 2nd ring 3rd ring Total 

2017 2021 2017 2021 2017 2021 2017 2021 

Institution 18 39 52 55 132 193 202 287 

Residence 120 119 225 235 826 895 1171 1249 

Business 114 94 98 79 583 544 795 717 

Open space 6 6 32 38 432 341 470 385 

Total 258 258 407 407 1973 1973 2638 2638 

 

Figure 6-11 presents the spatial patterns of urban land use changes from 2017 to 

2021. It can be noted that the main changes in the 1st ring area were residence and 

business parcels (Figure 6-11). A large number of residence and business parcels was 

transformed into institution parcels, which happened in the southern city. To be more 

specific, these changes include the transformation from residence to the institution, the 

business to the institution, and business to the residence. In the 2nd ring area, the main 

changes were also from the residence and business parcels. However, fewer changes 

happened in the 2nd ring area compared with the 1st ring area. The biggest change 

occurred within the 3rd ring as shown in Figure 6-11. A large number of open space 

parcels were transformed into residence and business parcels. This is probably because 

there are a lot of farmlands in the periphery city and these farmlands were occupied 

with impervious surfaces due to the urbanization process. 
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Figure 6-11 Urban land use changes from 2017 to 2021. I:Institution; R: Residence; 

B:Business; O:Open space. 

Table 6-8 shows the quantitative analysis of urban land use changes from 2017 to 

2021 in Hangzhou city. In general, the business and open space parcels changed 

significantly. It can be noted that a large number of business parcels were transformed 

into residence and institution parcels in the 1st ring area. To be more specific, 15 

business parcels changed to institution parcels, and 12 business parcels changed to 

residence parcels. Also, 9 of the residence parcels were transformed into institution 

parcels. In the 2nd ring area, 17 business parcels were transformed into residence parcels. 

The other urban land use types have no obvious change. 140 business parcels in the 3rd 

ring area were transformed into open space, while 148 open space parcels were 

transformed into business parcels.  
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Table 6-8 Quantitative analysis of different urban land use changes from 2017 to 

2021 

Type 
1st ring 2nd ring 3rd ring Total 

Quantity Ratio Quantity Ratio Quantity Ratio Quantity Ratio 

1-1 15 0.38 47 0.82 113 0.59 175 0.61 

2-1 9 0.23 2 0.04 11 0.06 22 0.08 

3-1 15 0.38 8 0.14 39 0.20 62 0.21 

4-1 0 0 0 0 30 0.16 30 0.10 

1-2 3 0.03 2 0.01 6 0.01 11 0.01 

2-2 104 0.87 213 0.90 735 0.82 1052 0.84 

3-2 12 0.10 17 0.07 65 0.07 94 0.08 

4-2 0 0.00 4 0.02 89 0.10 93 0.07 

1-3 0 0.00 0 0.00 8 0.01 8 0.01 

2-3 7 0.07 7 0.09 49 0.09 63 0.09 

3-3 86 0.91 72 0.90 339 0.62 497 0.69 

4-3 1 0.01 1 0.01 148 0.27 150 0.21 

1-4 0 0.00 5 0.13 5 0.01 10 0.03 

2-4 0 0.00 6 0.15 31 0.09 37 0.10 

3-4 1 0.17 2 0.05 140 0.41 143 0.37 

4-4 5 0.83 27 0.68 165 0.48 197 0.51 

6.4 Discussion 

The results from the urban land use changes highlight three key points.  

The uncertainty of urban land use changes should be considered during the urban 

land use mapping process. The emergence of GBD provides new opportunities for 

urban functional patterns due to GBD containing abundant socioeconomic 

characteristics that could compensate for the lack of anthropogenic information of RS 

data (Yao et al. 2022). However, the uncertainty of GBD makes the integration process 

challenging and also brings difficulties to the quality of urban land use products. In this 
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regard, the different time periods of GBD used in this research might cause uncertainties 

in the investigation of spatial and temporal patterns of urban land use change. To be 

more specific, this research utilized POIs in 2017 and 2021 to classify urban land use 

types, while the data quality (e.g., data quantity, data attributes, and data accuracy) of 

POIs in 2017 and 2021 might different. To solve this problem, we manually checked 

the quality of POIs in terms of the data quantity and data accuracy on our study site. In 

addition, our study site is located in the central area of Hangzhou city, which avoids the 

data missing issues. Therefore, the different time periods of POIs might not affect the 

analysis result in this research. 

According to the analysis of urban land use changes in Hangzhou city, it can be 

noted that the change in land use around the city is more obvious than that in the city 

center. Furthermore, the change in land use inside the city is mainly concentrated on 

commercial and institutional land, while the urban periphery is focused on residential 

land and open space. The development of urban land use in Hangzhou city is consistent 

with urban planning and management. The “Hangzhou Urban Master Plan (2001–2020)” 

has published the layout of urban land use to realize the reorganization, differentiation, 

and reaggregation of the functions of Hangzhou city (Lou et al. 2019). The central and 

south parts of the city should be the commercial regions, and the northern city could 

play as the industrial areas. Also, the eastern part is zoned for municipal and 

transportation land, while the western region is zoned for educational and residential 

land. Since the West Lake tourist area is located in the southern part of Hangzhou city, 

the lakeside area is planned as tourist and business areas. Therefore, the change in urban 

land use was significantly affected by the urban planning and management in Hangzhou 

city. 
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The experience of urban land use change in Hangzhou city is valuable for small 

cities with a low development pace of urbanization. This study addressed the problem 

that how urban functional patterns change in developed cities in China. Although 

different cities have different patterns of urban utilization change due to different scales, 

different economic sources, and different geographical locations. The experience of 

urban land use change in Hangzhou city still has reference value for other cities. The 

reason is that urban land use change in China is mainly regulated by relevant policies 

and laws and the urban land use changes thus correspond to different regulations and 

different development goals. Hangzhou city is now in an advantageous position in terms 

of policy support, and economic investment. The practical research in Hangzhou city is 

valuable for urban planning and management.  

6.5 Conclusion 

This research classified the urban land use in 2017 and 2021 for Hangzhou city 

and investigated the spatial-temporal dynamics of urban land use from 2017 to 2021. A 

methodology framework was proposed to classify urban land use types (e.g., institution, 

residence, business, and open space), based on OpenStreetMap (OSM) road network 

data, 10 m Sentinel-2A images, and Gaode Points of interest (POIs). Specifically, 

certain RS and GBD features were improved referring to the importance analysis of 

parcel attributes. The results demonstrated that the FI-based result (overall accuracy: 

80.2%) in 2021 performed better than the DI-based classification result (overall 

accuracy: 67.0%) according to the quantitative and qualitative analysis. The FI-based 

approach was thus used to map 2017 urban land use in Hangzhou city, with an overall 

accuracy of 81.7%. The classification results were post-processed by visual 
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interpretation for obtaining highly accurate urban land use products. The results also 

showed that the number of institution and residence parcels increased, while the number 

of business and open space parcels decreased from 2017 to 2021. A large number of 

open space parcels were transformed into the residence and business parcels around the 

urban periphery. A few business parcels were changed into residence and institution 

parcels in the urban core area. The understanding of the spatial-temporal patterns of 

urban land use changes is valuable for guiding cities to improve their urban green space 

patterns and system. 
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Chapter 7: Investigating the urban green space 

distribution impacted by urban land use changes: 

A case study in Hangzhou, China 

Stage of publication - First draft prepared. Awaiting feedback from co-authors before 

submission to the journal Landscape and Urban Planning.  

7.1 Introduction  

Urban green spaces are considered the most important surface landscapes in urban 

settings (Haas and Ban 2014; Hepcan 2012; Wolch et al. 2014). It contains a variety of 

benefits including physical health benefits, psychological health benefits, socio-

economic benefits, and environmental benefits (Haas and Ban 2014; Kwon et al. 

2021(Kondo et al. 2018; Kwon et al. 2021)). The rapid urbanization in China 

significantly affects urban green spaces (Sperandelli et al. 2013; Yu et al. 2017), causing 

an increase in exposure to the ecosystem and environmental hazards (e.g., urban heat 

island, urban flooding, urban heat waves) (Aram et al. 2019; Heidt and Neef 2008). 

Recently, many developed cities, especially Beijing, Shanghai, Shenzhen, Guangzhou, 

and Hangzhou, are dedicated themselves to protecting urban green space to realize the 

sustainable development of cities (Kuang and Dou 2020; Song et al. 2021). Urban land 

use and greening policies such as “the old town transformation” and “urban green space 

system plan” are formulated to develop the distributions of urban green space (Liu et 
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al. 2021). As a result, it's critical to look at how urban green space distribution changes 

in response to urbanization. 

Previous efforts provide an improved understanding of the urban green space 

variations in response to urban land cover changes (e.g., physical aspects of 

urbanization) (Liu et al. 2021 Tang et al. 2018). However, few studies have examined 

the effects of urban land use changes (e.g., socio-economic aspects of urbanization) on 

urban green space. In addition, the ecological and socio-economic functions of urban 

green spaces have proven to be highly dependent on their spatial patterns (Hernández-

Moreno and Reyes-Paecke 2018; Wang et al. 2020; Woldesemayat and Genovese 2021; 

Xu et al. 2018). For example, the increasing area of urban green space is highly 

correlated with the reduction of urban heat island (Meng et al. 2018). Also, there is a 

strong correlation between urban green space quantity and gross domestic product 

(Chen et al. 2017). It is therefore important to understand the spatial characteristics of 

urban green space impacted by urban land use changes, which can guide future urban 

planning and management. 

Several approaches have been utilized to analyze the impact of urbanization on 

urban green space distributions (Chan and Vu 2017; Gavrilidis et al. 2019; Yang et al. 

2018). These efforts can be categorized into statistical analysis, landscape analysis, and 

geospatial analysis. Among them, the statistical analysis could reveal the spatial 

patterns of urban green space at the landscape level (Feng and Astell-Burt 2018; 

Wüstemann et al. 2017), which has the potential to understand the distribution of urban 

green space. Few studies, on the other hand, have sought to combine these 

methodologies to investigate the spatial-temporal patterns of urban green space and its 

response to urban land use changes. 
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In this context, this research analyzed the variations of urban green space 

distribution in response to urban land use changes (e.g., from open space to residence) 

by integrating statistical analysis, landscape analysis, and geospatial analysis in 

Hangzhou city from 2017 to 2021. The understanding of urban green space patterns 

influenced by urban land use changes is valuable for small cities to develop their urban 

green space system. This research is organized into five sections. In section 7.2, the 

study site, data source, and methods used in the research were presented. Section 7.3 

analyzed the urban green space distribution within different urban land use changes. 

Section 7.4 discussed the related issues and challenges. Section 7.5 concluded the main 

findings and implications. 

7.2 Materials and methods 

7.2.1 Study site 

Hangzhou is located in the northwestern part of Zhejiang province, which plays 

an important role in the Yangtze River Delta Urban Agglomerations. Hangzhou 

comprises 10 districts, 1 county-level city, and 2 counties. In this paper, we only focused 

on the most central urban districts, which are Shangcheng District, Gongshu District, 

and part of Xihu District. The population in this region accounts for 45% of the total 

population in Hangzhou city. Hangzhou city is one of the representative cities of 

urbanization, population growth, and economic development in China (Li et al. 2017a; 

Mao et al. 2020).  

In addition, this research selected the area surrounded by the third ring (i.e., the 

Hangzhou belt highway) as the study site (Figure 7-1). The urban areas can be divided 

into three units including 1st ring belt, 2nd ring belt, and 3rd ring belt. To be more specific, 
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the 1st ring represents Huancheng North Road, Huancheng East Road, Jiangcheng Road, 

Zhongshan South Road, Wansongling Road, Nanshan Road, Hubin Road, and 

Huancheng West Road. The 2nd ring refers to Desheng Road, Qiutao Road, Fuxing Road, 

Old Fuxing Road, Hupao Road, Manjuelong Road, Wulaofeng Tunnel, Jiqingshan 

Tunnel, Jiulisong Tunnel, Lingxi Tunnel, Zijinghua Road, and Wenyi Road. The 3rd ring 

is the Hangzhou belt highway. 

 

Figure 7-1 Study area 

7.2.2 Data 

(1) Gaofen-2 high-resolution images 

GF-2 satellite was designed and developed by CAST (China Academy of Space 

Technology) (Table 7-1). It employs the CAST-CS-L3000A bus and two PAN/MS 

cameras, capable of collecting images with a GSD (Ground Sampling Distance) of 0.81 

m in panchromatic and 3.24 m in the multispectral bands on a swath of 45 km (Han et 

al. 2020). The GF-2 spacecraft was launched on August 19, 2014 (03:15 UTC) with a 
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CZ-4B (Long March-4B) vehicle from TSLC (Taiyuan Satellite Launch Center) in the 

Shanxi Province of northern China (Tong et al. 2018). 

Table 7-1 Gaofen-2 Satellite Sensor Specifications 

Parameters Panchromatic Multispectral 

Spectral range (μm) 0.45-0.89 

 

B1/blue:0.45-0.52 

B2/green:0.52-0.59 

B3/red:0.62-0.69 

B4/NIR:0.77-0.89 

Swath width (km) 45 45 

Viewing angle 0°-25° 0°-25° 

Repetition Cycle (days) 5 5 

Spatial resolution (m) 0.8 3.2 

Global-mode Coverage Ability (days) 60 60 

This research used two scenes of GF-2 high-resolution images in Hangzhou 

(Figure 7-2), which were acquired on 10 October 2017, and 27 September 2021. Both 

scenes were preprocessed with a quick atmospheric correction method and geometrical 

rectification in ENVI 5.3. GF-2 imagery is an ideal data source for urban green space 

classification. 

 

 

Figure 7-2 Gaofen-2 images 
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(2) Urban land use data 

Notably, the difference between urban land use and urban land cover and their 

implications in ecology is often overlooked, because most traditional ecological 

research concern the biological features of land surface other than the socio-economic 

features. Urban land use maps were produced by using the feature integration (FI)  

approach (Yin et al. 2021b). Four urban land use types were selected, namely, institution, 

residence, business, and open space, for analysis because they represented the most 

important socio-economic activities of Hangzhou city, and the green spaces in these 

urban land use types played important social, environmental, and ecological roles for 

urban residents. 

 

Figure 7-3 Urban land use maps in 2017 and 2021 

7.2.3 Methods 

This research integrated statistical analysis (e.g., green space ratio and proportion), 

landscape analysis (e.g., landscape metrics), and geospatial analysis (hotspot analysis) 

to investigate the variations of urban green space (Figure 7-4).  
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Figure 7-4 Methodology framework 

(1) Urban green space mapping 

This research mapped urban green space by calculating the normalized difference 

vegetation index (NDVI). NDVI is one of the most commonly used indices for 

extracting vegetation greenness. According to previous studies, vegetation surfaces 

absorb most of the red light that hits them while reflecting much of the near-infrared 

light. On the contrary, non-vegetation surfaces reflect more red light and less near-

infrared light. The NDVI index was calculated using equations as follows.  

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 𝑅𝑒𝑑)
 

where NIR represents the near-infrared channel and Red is the red channel. The 

result for the calculation of NDVI generally ranges from minus one (-1) to plus one 

(+1). Results close to +1(0.8-0.9) indicate the highest possible of urban green spaces. 

(2) Green space area and ratio analysis 

This research calculated the urban green space area and ratio for each urban land 

use type (Institution, Residence, Business, and Open space) to capture the spatial-

temporal patterns of urban green space in Hangzhou city. To be more specific, the urban 

green space area and ratio for the total area, 1st ring belt, 2nd ring belt, and 3rd ring belt 
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were calculated respectively. The urban green space area and ratio for each urban land 

use type were also analyzed. 

(3) Linear regression 

Simple linear regression is a linear regression model with a single explanatory 

variable. That is, it concerns two-dimensional sample points with one independent 

variable and one dependent variable and finds a linear function that, as accurately as 

possible, predicts the dependent variable values as a function of the independent 

variables. The relationship between urban green space areas and patch areas of different 

urban land use types were calculated and analyzed through linear regression models 

with t-test at the 5% significance level. Simple linear regressions were carried out in 

the platform of SPSS. 

(4) Hotspot analysis 

This research utilized the Getis-Ord hotspot of ArcGIS tools to identify the 

hotspots and coldspots of urban green space patches within different in Hangzhou city. 

Hotspots analysis utilized a series of weighted features and identify statistically 

significant hot spots and cold spots using Getis-Ord Gi* statistics, which calculates the 

GiZScore and GiPValue for the selected parameters (Wang et al. 2021a). In general, hot 

spots and cold spots have very high or very low z-scores, with very small p-values, 

respectively. Here, this research used the percentage of confidence level above 90% to 

identify hot/cold spots. 

(5) Landscape analysis 

Landscape metrics are often used to detect and quantify the landscape patterns of 

urban green space patches (Herold et al. 2002; Kumar et al. 2018; Uuemaa et al. 2009). 

This research selected six landscape metrics including six class-level metrics and three 
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landscape-level metrics by referencing earlier work reported in many research (Table 

7-2). These metrics are used to reflect fragmentation, connectivity, and diversity of 

landscape patterns. The six class-level metrics include patch density (PD), largest patch 

index (LPI), Mean shape index (SHAPE_MN), and patch cohesion index (COHESION). 

The three landscape-level metrics include Contagion index (CONTAG) and Shannon's 

Evenness Index (SHEI). Among these, PD, LPI, and SHAPE_MN can represent the 

fragmentation and complexity of urban green space patches (Bosch et al. 2020; Zhang 

et al. 2020b); COHESION could reflect the connectivity (Inkoom et al. 2018); 

CONTAG presents the connectivity of the total landscape (Miller et al. 2020); SHEI 

presents the distribution of landscapes (Pindral et al. 2020).  

Table 7-2 Landscape metrics 

Metrics Description Equation 

Class-

level 

Patch Density 

(PD) 

PD measures the density patches for each 

class. 
① 

Largest Patch 

Index (LPI) 

LPI quantifies the percentage of the total 

landscape area comprised by the largest 

patch. 

② 

Mean shape 

index 

(SHAPE_MN) 

Average evaluates the complexity of urban 

green space patches. 
③ 

Patch Cohesion 

Index 

(COHESION) 

COHESION measures the connectedness 

of urban green space patches. 
④ 

Landsc

ape-

level 

Contagion Index 

(CONTAG) 

CONTAG measures the fragmentation in 

the entire landscape. 
⑤ 

Shannon's 

Evenness Index 

(SHEI) 

SHEI measures the dominance of urban 

green space patches in the entire 

landscape.  

⑥ 
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① 

𝑃𝐷 =
𝑛𝑖

𝐴
(10,000)(100) 

|
𝑛𝑖 = number of patches in landscape of patch type (class)𝑖.

𝐴 = total landscape area (m2).
 

② 

𝐿𝑃𝐼 =
max
𝑗=1

(𝑎𝑖𝑗)

𝐴
(100) 

|
𝑎𝑖𝑗 = area(m2)of patch 𝑖𝑗.

𝐴 = total landscape area (m2).
 

③ 

𝑀𝑁 =
∑ 𝑋𝑖𝑗

𝑛
𝑗=1

𝑛𝑖
 

|

𝑀𝑁 equals the sum, across all patches of the corresponding patch type,
of the corresponding patch metric values, divided by the number of patches 

of the same type.
 

 

④ 

𝐶𝑂𝐻𝐸𝑆𝐼𝑂𝑁 = [1 −
∑ 𝑃𝑖𝑗

∗𝑛
𝑗=1

∑ 𝑃𝑖𝑗
∗
√𝑎𝑖𝑗

∗𝑛
𝑗=1

] ∙ [1 −
1

√𝑧
]

−1

∙ (100) 

|
𝑃𝑖𝑗

∗ = perimeter of patch ij in terms of number of cell surfaces.

𝑎𝑖𝑗
∗ = area of patch 𝑖𝑗 in terms of number of cells; 𝑍 = total number of cells.

 

⑤ 

𝐶𝑂𝑁𝑇𝐴𝐺 = [1 +

∑ ∑ [𝑃𝑖 ∙
𝑔𝑖𝑘

∑ 𝑔𝑖𝑘
𝑚
𝑘=1

]𝑚
𝑘=1 ∙ [ln (𝑃𝑖 ∙

𝑔𝑖𝑘

∑ 𝑔𝑖𝑘
𝑚
𝑘=1

)]𝑚
𝑖=1

2 ln(𝑚)
] (100) 

|
𝑃𝑖 = proportion of the landscape of (class)𝑖; m = number of patch types.

𝑔𝑖𝑘 = number of adjacencies(joins)between pixels of patch types (clases)𝑖 and 𝑘.
 

⑥ 

𝑆𝐻𝐸𝐼 =
− ∑ (𝑃𝑖 ∙ 𝑙𝑛𝑃𝑖)𝑚

𝑖=1

ln 𝑚
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|
𝑃𝑖 = proportion of the landscape occupied by patch type(class)𝑖.

𝑚 = number of patch types(classes)present in the landscape, excluding the 
landscape border of present.

 

 

7.3 Results 

7.3.1 Urban green space distribution 

Figure 7-5 represents the urban green space maps in 2017 (7-5a) and 2021 (7-5b). 

In general, urban green spaces in the 2017 map were distributed mainly around the 

urban periphery, especially in the northwest regions and northeast regions of Hangzhou 

city. Compared with the urban green spaces in the urban periphery, the urban green 

spaces in the urban core areas were significantly less. As for the urban green space 

distribution in the 2021 map, the area of urban green spaces has increased significantly 

in the whole city. It should be noted that the urban green spaces in the urban core area 

have increased. While some urban green spaces in the urban periphery have decreased 

especially in the northeast regions. 

 

Figure 7-5 Urban green space distribution in 2017 (a) and 2021 (b).  
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7.3.2 Spatial distribution of urban green space  

(1) Hotspot analysis 

Hotspot analysis was used to identify the clusters of the increasing and decreasing 

urban green space patches in 2017 and 2021. Figure 7-6(a) presents the hotspot analysis 

of the urban green space ratio in Hangzhou city in 2017. In general, the high-value 

regions (e.g., hot spots) of urban green space coverage had a range of 5%-10%, while 

the low-value regions (e.g., cold spots) had about 20%. The distribution of spatial 

clustering differed by region in Hangzhou city in 2017. Specifically, the clusters of hot 

spots tended to occur in the urban periphery except for the southern part of the city. The 

hot spots were mostly distributed in the 3rd ring belt. The cold spots of low-value regions 

were mostly found in the city center and the northern city. Most of the cold spots were 

distributed in the 1st ring belt and 2nd ring belt. In Figure 7-6(b), the high-value regions 

of urban green space coverage had approximately 15%, while around 5% to 10% of 

urban land use parcels were low-value regions. Compared with the 2017 hotspots map, 

the number of high-value and low-value urban land use parcels in 2021 was more likely 

to undergo a greater change in urban green space. As for the distribution patterns, the 

hot spots of urban green space coverage were mostly concentrated in the urban 

periphery. The clusters of cold spots tended to occur in the city core and the northwest 

and northeast parts of the city. The hot/cold spots of urban green space coverage were 

distributed more spread out in Hangzhou city. In addition, the clusters of hot spots have 

increased in the 2nd ring belt, and cold spots have decreased in the 1st ring belt and 2nd 

ring belt. 
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Figure 7-6 Hotspot analysis of urban green space distribution at ring-level in 2017 

(a) and 2021 (b) 

Figure 7-7 presents the increase and decrease of urban green space coverage in 

Hangzhou city. It can be shown that approximately 5% of urban land use parcels 

decreased, while the increase in urban green space coverage had a range of 10%-15%. 

Furthermore, the changes in urban green space tended to be clustered in space. To be 

more specific, the clusters of increased urban green space coverage differed greatly by 

region from that of the decreased urban green space coverage. The cold spots mostly 

occurred in the urban periphery, while the hot spots were concentrated in the urban core 

and the west of the city. The clusters of the increased and decreased urban green space 

coverage mostly occurred in the 3rd ring belt, while some of the increased coverage was 

distributed in the 1st and 2nd ring belts. 
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Figure 7-7 Hotspot analysis of urban green space distribution at ring-level from 

2017 to 2021 

(2) Urban green space area and proportion analysis 

The areas and proportions of urban green space patches from the 1st ring belt to 

the 3rd ring belt are shown in Table 7-3. It can be shown that the overall area of urban 

green space increased significantly from 59.52 km2 (22%) in 2017 to 81.29 km2 (36%) 

in 2021. In the 1st ring belt, the area of urban green space has increased from 0.79 km2 

in 2017 to 1.99 km2 in 2021, and the proportion has increased from 10% to 23%. The 

area of urban green space in the 2nd ring belt has increased from 2017 to 2021, from 

5.16 km2 to 9.02 km2. The area of urban green space patches in the 3rd ring belt has 

increased from 53.56 km2 to 70.27 km2. Among the different ring belts, the growing 

proportion of urban green space patches in the 1st ring belt was the highest (13.7%), 

while the proportion of the increased urban green space in the 3rd ring belt was the 

lowest (8.2%). 
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Table 7-3 Analysis of urban green space area and proportion at ring-level in 2017 

and 2021 

Region 
2017 2021 

Area (km2) Proportion Area (km2) Proportion 

Total  59.52 0.22 81.29 0.36 

1st ring 0.79 0.10 1.99 0.23 

2nd ring 5.16 0.19 9.02 0.32 

3rd ring  53.56 0.28 70.27 0.37 

 

Accoring to Figure 7-8, Figure 7-9, Table 7-4, and Table 7-5, the areas of urban 

green spaces and areas of urban land use parcels are highly correlated. It can be noted 

that the urban green space areas within the urban parcels have increased from 2017 to 

2021, except for the open space parcels. Among them, the urban green spaces within 

the institution parcels has the largest growth, while the growth of urban green spaces 

within the institution parcels is less obvious. The reason for the loss of urban green 

spaces within the open space parcels is probably due to the transformation from 

farmland to impervious surfaces around the urban periphery. 
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Figure 7-8 Regression analysis of the relationship between urban green space areas 

and patch areas of different urban land use types in 2017. 
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Figure 7-9 Regression analysis of the relationship between urban green space areas 

and patch areas of different urban land use types in 2021. 

 

Table 7-4 Regression analysis of the relationship between urban green space areas 

and patch areas of different urban land use types in 2021. 

Types Equation P Value 

Institution_2017 y=2.2x+0.04 0.002 

Residence_2017 y=1.5x+0.06 0.001 

Business_2017 y=1.8x+0.05 0.004 

Open space_2017 y=1.6x+0.02 0.001 
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Table 7-5 Regression analysis of the relationship between urban green space areas 

and patch areas of different urban land use types in 2021. 

Types Equation P Value 

Institution_2021 y=1.7x+0.03 0.004 

Residence_2021 y=1.2x+0.04 0.001 

Business_2021 y=1.6x+0.04 0.002 

Open space_2021 y=2.1x+0.04 0.002 

 

(3) Landscape analysis  

The Fragstats 4.2 was utilized to calculate the class-level and landscape-level 

metrics of urban green space patches in Hangzhou city for 2017 and 2021 (Figure 7-

10). Specifically, PD in 2017 was higher than that in 2021, which indicates that the 

number of urban green space patches has decreased. However, the PD of urban green 

space in the 1st ring belt has increased. The LPI of urban green space decreased from 

2017 to 2021, which means the size of the largest urban green space patch is decreasing. 

However, the LPI in the 2nd ring belt and 3rd ring belt has increased. The SHAPE_MN 

increased during the period, indicating the shapes of urban green space patches became 

more complex. The COHESION of urban green space patches increased slightly from 

2017 to 2021, which represents that there are no obvious changes in the connectivity 

among urban green space patches. The CONTAG displayed a downward trend from 

2017 to 2021, indicating more interspersed and increasingly fragmented landscape 

patches. The SHEI increased, which presents the distribution of landscape patches 

become more even and equitable.  
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Figure 7-10 Landscape analysis of urban green space distribution at ring-level in 

2017 and 2021 

7.3.3 Spatial distribution of urban green space in different urban land use 

changes 

(1) Urban green space area and proportion analysis 

The areas and proportions of urban green spaces were calculated in different urban 

land use changes in 2017 and 2021. It can be noted from Figure 7-11 that the increase 

of urban green space is largely dependent on unchanged institution parcels, indicating 

well-planned urban green spaces within institution parcels. The unchanged institution 

parcels in the 1st ring belt have the largest proportion growth of urban green space, while 

it has relatively small urban green space areas. Also, urban green space areas within the 

institution parcels transformed from the residence and business parcels have increased. 

In the 2nd ring belt, there were fewer changes in urban green space areas within the 

institution parcels transformed from other land use parcels. 
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Figure 7-11 Areas and proportion analysis of urban green space in the institution 

parcels changed from the four urban land use types. (I: Institution; R: Residence; 

B: Business; O: Open space) 

 

Figure 7-12 showed the areas and proportions of urban green spaces in the 

residence parcels changed from the four urban land use types in 2017 and 2021. In 

general, the increase of urban green space areas is mainly dependent on unchanged 

residence parcels, and the increased area is significant. It can be noticed that the urban 

green space areas have increased from 0.26 km2 (0.08) in 2017 to 0.95 km2 (0.29) in 

2021, indicating the urban green space of the unchanged residence parcels has been 

greatly improved in the 1st ring belt. In addition, the urban green space areas within the 

residence parcels transformed from the open space parcels have decreased in the 2nd 

ring belt and 3rd ring belt. This is probably because these residence parcels were still 

under construction. 
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Figure 7-12 Areas and proportion analysis of urban green space in the residence 

parcels changed from the four urban land use types. (I: Institution; R: Residence; 

B: Business; O: Open space) 

Figure 7-13 presented the areas and proportions of urban green spaces in the 

business parcels changed from the four urban land use types in 2017 and 2021. 

Generally, the increase of urban green space areas is mainly dependent on unchanged 

business parcels, from 10.04 km2 (0.23) in 2017 to 17.25 km2 (0.38) in 2021. Though 

the proportions of business parcels transformed from the residence and open space 

parcels were relatively high, the changes in urban green space areas were less obvious. 

The proportion growth of urban green space within unchanged business parcels was 

significant in the 1st ring belt and the 2nd ring belt.  
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Figure 7-13 Areas and proportion analysis of urban green space in the business 

parcels changed from the four urban land use types. (I: Institution; R: Residence; 

B: Business; O: Open space) 

Figure 7-14 presented the areas and proportions of urban green spaces in the open 

space parcels changed from the four urban land use types in 2017 and 2021. In this 

research, the open space parcels mainly include bare land, parks, squares, and unused 

land. In general, the urban green space area has decreased from 0.15 km2 in 2017 to 

0.11 km2 in 2021 within the unchanged residence parcels, which is related to the 

decrease of farmland in the 3rd ring belt. The urban green space area also has decreased 

in 2021 within the residence parcels transformed from the institution parcels. It should 

be noted that the proportion growth of urban green space within unchanged open space 

parcels was significant. 
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Figure 7-14 Areas and proportion analysis of urban green space in the open space 

parcels changed from the four urban land use types. (I: Institution; R: Residence; 

B: Business; O: Open space) 

(2) Landscape analysis 

Table 7-6 represented the landscape analysis of urban green space in the institution 

parcels changed from the four urban land use types in 2017 and 2021. Among them, PD 

can be used to evaluate the fragmentation of urban green space patches. It can be noted 

that the PD values for the institution parcels changed from the four urban land use types 

have all decreased, suggesting the fragmentation reduced. In addition, the SHAPE_MN, 

COHESION, and SHEI values for all patches have increased, indicating the more 

complex, more aggregated, and less dominant urban green space patches in the 

institution parcels in 2021. The CONTAG values for all green space patches have 

decreased, which means the patches become uneven across the landscape. The LPI 

values for all patches have increased except for the institution parcels changed from the 
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residence parcels. In summary, urban green space patches for the institution parcels in 

2021 are less fragmented, more complex, and more aggregated, which indicates the 

distribution of urban green space patches is more reasonable. 

Table 7-6 Landscape analysis of urban green space in the institution parcels 

changed from the four urban land use types. (I: Institution; R: Residence; B: 

Business; O: Open space) 

Change types 
Class-level Landscape-level 

PD LPI SHAPE-MN COHESION CONTAG SHEI 

I-I 
2017 388.00 2.14 1.37 96.23 31.28 0.89 

2021 292.18 2.61 1.47 97.21 25.53 0.97 

R-I 
2017 441.25 6.67 1.28 95.19 41.67 0.77 

2021 372.97 3.94 1.42 95.40 29.45 0.91 

B-I 
2017 477.52 1.16 1.33 92.83 39.66 0.78 

2021 366.05 2.07 1.43 95.04 30.04 0.92 

O-I 
2017 324.82 5.43 1.34 96.97 32.61 0.94 

2021 283.55 6.06 1.41 97.14 27.70 1.00 

 

Table 7-7 represented the landscape analysis of urban green space in the residence 

parcels changed from the four urban land use types in 2017 and 2021. The landscape 

results for the residence parcels were similar to the institution parcels. It can be noted 

that the LPI, SHAPE_MN, COHESION, and SHEI values for all patches have increased 

except for the residence parcels changed from the open space parcels, indicating the 

more complex, more aggregated, and less dominant urban green space patches in the 

institution parcels in 2021. The PD and CONTAG values for all green space patches 

have decreased except for the residence parcels changed from the open space parcels, 

which means the patches become uneven across the landscape. The urban green space 

patches within the residence parcels changed from the open space parcels becoming 



 

177 

 

more fragmented, more even, and more dominant. This is probably because the 

residence parcels transformed from the residence parcels were still in the demolition 

stage. 

Table 7-7 Landscape analysis of urban green space in the residence parcels 

changed from the four urban land use types. (I: Institution; R: Residence; B: 

Business; O: Open space) 

Change types 
Class-level Landscape-level 

PD LPI SHAPE-MN COHESION CONTAG SHEI 

I-R 

2017 476.21 4.00 1.37 92.47 39.30 0.77 

2021 421.84 10.17 1.45 95.59 26.73 0.92 

R-R 
2017 503.95 0.22 1.31 93.50 40.45 0.75 

2021 355.74 0.29 1.46 96.28 25.33 0.95 

B-R 

2017 428.76 1.47 1.31 93.85 44.16 0.73 

2021 383.14 1.51 1.39 94.97 33.70 0.87 

O-R 

2017 280.90 2.13 1.35 97.31 28.86 0.99 

2021 306.09 1.69 1.43 96.30 31.10 0.93 

 

Table 7-8 represented the landscape analysis of urban green space in the business 

parcels changed from the four urban land use types in 2017 and 2021. According to the 

landscape analysis, the urban green space distribution within the business parcels was 

more complex, less fragmented, more evenly, less aggregated, and less dominant. In 

addition, the urban green space distribution in the unchanged business parcels showed 

less evenly. The business parcels changed from the institution and residence parcels 

showed less aggregated distribution of urban green space. As for the business parcels 

changed from the open space parcels, the PD and SHEI values of urban green space 

patches were decreased, which means the patches become less fragmented and less 

dominant. The green space patches within the business parcels in 2021 showed 



 

178 

 

relatively high complexity and low fragmentation. Unlike the institution and residence 

parcels in 2021, the urban green space patches within the business parcels in 2021 

showed less dominance. 

Table 7-8 Landscape analysis of urban green space in the business parcels changed 

from the four urban land use types. (I: Institution; R: Residence; B: Business; O: 

Open space) 

Change types 
Class-level Landscape-level 

PD LPI SHAPE-MN COHESION CONTAG SHEI 

I-B 
2017 488.29 9.01 1.37 95.16 31.49 0.85 

2021 377.00 5.00 1.38 93.76 31.56 0.90 

R-B 
2017 348.63 14.64 1.29 99.00 28.95 0.98 

2021 202.79 18.52 1.40 98.97 29.77 1.00 

B-B 
2017 370.47 4.42 1.32 97.58 36.54 0.86 

2021 276.38 3.84 1.41 97.82 31.91 0.94 

O-B 
2017 273.12 2.33 1.39 97.39 27.70 1.00 

2021 194.85 3.37 1.43 97.66 30.94 1.00 

 

Table 7-9 represented the landscape analysis of urban green space in the open 

space parcels changed from the four urban land use types in 2017 and 2021. The green 

space distribution within open space parcels changed from the residence and business 

parcels showed less fragmented, more complex, less evenly, and less dominant. While 

the green space distribution within unchanged open space parcels and open space 

parcels changed from the institution parcels showed more fragmented, less complex, 

more evenly, and more dominant. It should be noted that the urban green space 

distribution in the open space parcels changed from the institution parcels showed more 

fragmented. 
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Table 7-9 Landscape analysis of urban green space in the open space parcels 

changed from the four urban land use types. (I: Institution; R: Residence; B: 

Business; O: Open space) 

Change types 
Class-level Landscape-level 

PD LPI SHAPE-MN COHESION CONTAG SHEI 

I-O 
2017 411.56 15.45 1.34 97.00 28.98 0.95 

2021 446.24 6.93 1.37 94.47 33.70 0.86 

R-O 
2017 510.16 2.19 1.27 94.46 37.71 0.82 

2021 253.34 5.26 1.37 96.77 36.20 0.91 

B-O 
2017 351.58 1.42 1.34 95.86 38.72 0.82 

2021 251.63 3.16 1.43 97.02 34.20 0.92 

O-O 
2017 250.58 3.65 1.38 97.81 29.31 1.00 

2021 243.89 2.10 1.42 97.04 31.30 0.98 

 

7.4 Discussion 

7.4.1 Differences in the distribution of urban green space 

According to the analysis of urban green space distribution given in Section 7.3, 

diverse urban land use changes (e.g., human activities) had significantly different 

effects on urban green space distribution in Hangzhou from 2017 to 2021.  

Generally, the percentage of urban green space coverage was 29% in 2017 and 38% 

in 2021, respectively, suggesting that the urban land use changes have important 

impacts on the urban green space system. Among them, the green space contribution 

from different urban land use changes was varied. It should be highlighted that 

residence and business parcels have the potential to have a greater impact on the urban 

green space system than other urban land use categories. To be more specific, the 

contribution of urban green space from residence parcels accounted for the lowest 
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proportion (24%) of total green space coverage in 2017, lower than that of institution 

parcels (31%), business parcels (26%), and open space parcels (46%), which is due to 

the lack of green infrastructure in the residence parcels. However, the urban residents 

have a strong willingness to access urban green space, which indicates the increase of 

the urban green space coverage in the residence parcels in 2021. The proportion of 

urban green space coverage in business parcels has increased from 26% in 2017 to 41% 

in 2021. The design of green space layout in business parcels focused on ornamental 

and entertainment functions rather than on ecological values. While the growth of urban 

green space coverage in institution parcels from 2017 to 2021 accounted for 9%, lower 

than that of residence parcels (12%) and business parcels (14%). Institution parcels 

usually have more space for urban green space construction compared with other urban 

land use types, indicating that they have more potential for urban green space 

development. As for the open space parcels, the proportion of urban green space 

coverage decreased from 46% to 36%. The contribution of open space parcels to total 

urban green space area was limited because the large proportion of open space in the 

urban periphery transformed into other land use types.  

The distribution of urban green space among different urban land use changes 

varies, which has significant consequences for urban green planning and management. 

From the 1st ring belt to the 3rd ring belt, the overall proportion of urban green space 

coverage gradually increased in 2017, from 10%, 20%, to 31%. The percentage of green 

space cover from the 1st ring belt to the 3rd ring belt has also increased in 2021, from 

25%, 34%, and 39%. It can be noted that the urban green space development in the 

urban environment especially the urban core is relatively well. This is not only due to 

the horizontal greenery management, but also relate to the vertical greenery including 
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green roofs, skyscraper farms, and sky gardens (Larkin and Hystad 2019; Ricci et al. 

2022). The implementation of vertical greenery solved the problem of the lack of space 

for greenery in some developing countries. In addition, the distribution of urban green 

space among different urban land use types was spatially changed at the ring level for 

2017 and 2021. For instance, the total percentage of urban green space in institution 

parcels increased significantly from 1st ring belt to 3rd ring belt both in 2017 and 2021. 

This suggests that the closer to the urban periphery, the greater contribution of 

residential green space to the environment. A large number of the residence and 

business parcels are located in the urban periphery and the size of these business parcels 

is larger than that in the urban core. This is also related to the reason that the contribution 

of green space in the 3rd ring belt is greater than that in the 1st ring belt. However, the 

percentage of residential green space in the 1st ring belt increased from 2017 to 2021, 

indicating that greenery management is effective. By contrast, the proportion of green 

space in the open space parcels in the 3rd ring belt has decreased from 2017 to 2021, 

revealing the green space around the city periphery contributes to the construction of 

the other land use types. Accordingly, the urban green space in the business parcels 

should consider more environmental and ecological values, not aesthetic values only. 

In addition, the urban green space coverage from the four urban land use types showed 

an increasing trend from the 1st ring belt to the 3rd ring belt. This result revealed that the 

new regions in the urban periphery should have more green space coverage for the four 

urban land use types, while the old regions in the urban core should pay more attention 

to ecological urban green space design. 
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7.4.2 The development of urban green space distribution in China 

Based on literature review and empirical evidence, this Ph.D. research explored 

the characteristics of the development of urban green space distribution in different 

stages (Li et al. 2017a; M’Ikiugu et al. 2012). Urbanization and socio-economic change 

affect the development of urban green space distribution in different ways by urban 

planners or spontaneously formed based on people's real lifestyles (Qian et al. 2015; 

Zhou et al. 2018a). As a result, the development stage of urban green space in different 

cities might also be different according to the urban hierarchy, the urban scale, or the 

economic status (Wang et al. 2020). In summary, the urban green space development in 

China can be divided into three stages in terms of urban green space distribution and 

patterns. An improved understanding of the development of urban green space 

distribution can guide urban planning and prioritize designs that fit current and future 

demands. 

The level of urban green space development in Stage 1 is relatively high. 

According to Wang et al. (2020)’s work, the development of urban green space 

distribution in most first-tier cities can be categorized into Stage 1. In the beginning, 

the urban green spaces decrease with the enlargement of the city-scale under the 

background of accelerated urbanization and industrialization. The urban economy of 

cities in Stage 1 mainly depends on secondary industry (e.g., extensive manufacturing). 

During this period, a large number of urban green spaces have been converted into 

business land in the city periphery. In the meantime, the demand for residential land 

increases because of the massive increase in the urban population. After a period of 

development, the demand for urban green space increases gradually due to the 

transformation of the city's economic structure (e.g., from extensive manufacturing to 
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the service industry and high-tech industry) and the development of the optimization of 

the urban land use structure. Furthermore, the demand of urban residents for urban 

green spaces (public gardens, squares, and parks) has increased. As a result, urban green 

space began to increase in the main city, while the urban green space around the city 

still decreased with urbanization. Due to technical progress, although urban green space 

areas decrease continually, the decreasing rate is slowing. 

In Stage 2, the level of urban green space development is medium. The 

development of urban green space distribution in most second-tier cities can be 

categorized into Stage 2 (Haas and Ban 2014). In the beginning, the urbanization in 

Stage 2 is proceeding slowly, which leads to a decrease in urban green space, especially 

in the urban core area. During this period, a large number of rural populations swarmed 

into cities, thus stimulating the urban demand for residential land and commercial land. 

However, the rate of urban expansion is less obvious and the urban green space around 

the city remains a large proportion. Subsequently, with the acceleration of urbanization, 

local governments introduce many industries for their political achievements. Therefore, 

the loss of urban green space is accelerated both in the urban core and urban periphery. 

The urban economy of cities in this period still depends on secondary industry (e.g., 

extensive manufacturing such as mining, manufacturing, electricity, and gas industry). 

The next step of urban green space planning for Stage 2 can refer to Stage 1. 

The level of urban green space development in Stage 3 is relatively low. The 

development of urban green space distribution in most third-tier cities can be 

categorized into Stage 2 (Zhou et al. 2018a). In the beginning, the urbanization in Stage 

3 is relatively low and urban green spaces remain stable. The urban economy of cities 

in this period mainly depends on the husbandry industry, light industry, and service 
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industry. The development of urban land use expands gradually due to the low rate of 

urbanization. Correspondingly, benefiting from the low-carbon economic growth and 

green lifestyle, the change in urban green space is not obvious. With the further decline 

of the economy in urban areas, the loss of employment opportunities is setting off partial 

out-migration. Further urban shrinkage may lead to further increases in urban green 

space. 

7.5 Conclusion 

This research investigated the impact of various urban land use changes (e.g., from 

open space to residence) on urban green space distribution by integrating statistical 

analysis, landscape analysis, and geospatial analysis. The results demonstrated that the 

urban land use changes significantly affect the distribution of urban green space in 

Hangzhou city. In general, urban green spaces increased from 2017 to 2021, and the 

growth areas were mainly concentrated in the urban core, indicating the city has made 

remarkable achievements in the planning of green spaces in the city center. Specifically, 

the increasing urban green space patches were distributed in the parcels that 

transformed from the business parcels, which showed more evenly distributed, and less 

aggregation. In addition, the proportion of urban green space patches in the unchanged 

residence parcels presented a significant increase, especially in the 1st ring belt. A large 

number of open space parcels have changed to business parcels around the city, while 

the urban green space changes within them were less obvious. The understanding of 

urban green landscapes could help provide regulations and guidelines for current and 

future planning of urban development. 
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Chapter 8: Synthesis  

8.1 Research chapter summary 

The objective of this Ph.D. research is to improve the existing urban land use maps 

for investigating the dynamics of urban land use and assess the impact of urban land 

use changes on urban green space distribution. The main findings of the research 

chapters (Chapter 4, Chapter 5, Chapter 6, and Chapter 7) are summarized as 

follows. 

Chapter 4 has furthered the understanding of the integration of RS and GBD on 

urban land use mapping. The summarization of the existing literature concludes that the 

emerging GBD provides new opportunities for the transformation from urban land 

cover (e.g., physical environment) to urban land use (e.g., living environment). A deeper 

understanding of the urban surface can be acquired by adding GBD values to the 

traditional urban RS works. Specifically, the commonly used RS features (e.g., spectral, 

textural, temporal, and spatial features) and GBD features (e.g., spatial, temporal, 

semantic, and sequence features) were identified and analyzed in urban land use 

classification. In addition, this research categorized the various methods of RS and 

GBD integration used in urban land use mapping into decision-level integration (DI) 

and feature-level integration (FI). As the integration of RS and GBD has become more 

generalized, significant progress can be already seen in urban management (e.g., urban 

planning, urban environment assessment, urban disaster monitoring, and urban traffic 
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analysis). Integrating RS and GBD provides an opportunity for improving the existing 

urban land use maps. 

Chapter 5 proposed a general framework to demonstrate and differentiate the DI 

and FI approaches and then proposed a methodology framework based on the general 

framework. The methodology framework was applied in Hangzhou city in 2019 for 

mapping urban land use types (e.g., institution, residence, business, and open space), 

based on OpenStreetMap (OSM) road network data, 10 m Sentinel-2A images, and 

Gaode Points of interest (POIs). The corresponding classification results were validated 

quantitatively and qualitatively using the same testing dataset. Overall, the results 

quantified the performance of the DI and FI methods for urban land use mapping and 

illustrated their advantages and disadvantages. It also should be noted that different data 

sources, selected features, classifiers, training samples, or land use types may also lead 

to different results. The diversity of urban land use types in Hangzhou city has a higher 

level of complexity than other regions in China, the mapping result is probably not 

representative of other regions. This result provides an improved understanding of 

urban land use mapping in terms of the RS and GBD integration strategy. 

Chapter 6 classified the urban land use in 2017 and 2021 for Hangzhou city and 

investigated the spatial-temporal dynamics of urban land use changes from 2017 to 

2021. This research improved the methodology framework proposed in Chapter 5 by 

conducting an importance analysis of parcel attributes. The results demonstrated that 

the FI-based result (overall accuracy: 80.2%) performed better than the DI-based 

classification result (67.0%) in 2021 according to the quantitative analysis. Then the FI 

method was utilized to classify urban land use types in 2017, with an overall accuracy 

of 81.7%. The 2017 and 2021 maps were post-processed for obtaining high-accuracy 
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urban land use change products from 2017 to 2021. The results also showed that the 

number of institution and residence parcels increased, while the number of business and 

open space parcels decreased from 2017 to 2021. A large number of open space parcels 

were transformed into the residence and business parcels around the urban periphery. A 

few business parcels were changed into residence and institution parcels in the urban 

core area. This chapter analyzed the spatial-temporal patterns of urban land use changes 

in Hangzhou city, which could help investigate the urban green space distribution in 

response to urban land use changes. 

Chapter 7 investigated the impact of various urban land use changes (e.g., from 

open space to residence) on urban green space distribution by integrating statistical 

analysis, landscape analysis, and geospatial analysis. The results demonstrated that the 

urban land use changes significantly affect the distribution of urban green space in 

Hangzhou city. In general, urban green spaces increased from 2017 to 2021, and the 

growth areas were mainly concentrated in the urban core, indicating the city has made 

remarkable achievements in the planning of green spaces in the city center. Specifically, 

the increasing urban green space patches were distributed in the parcels that 

transformed from the business parcels, which showed more evenly distributed, and less 

aggregation. In addition, the proportion of urban green space patches in the unchanged 

residence parcels presented a significant increase, especially in the 1st ring belt. A large 

number of open space parcels have changed to business parcels around the city, while 

the urban green space changes within them were less obvious. The understanding of 

urban green landscapes could help provide regulations and guidelines for current and 

future planning of urban development. 
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8.2 Future work 

8.2.1 The improved method for urban land use mapping 

Given the methodology framework, quantitative and qualitative assessments of the 

DI-based and FI-based classification methods (shown in Chapter 5), it is possible to 

highlight some points for improving the integration methods of urban land use mapping 

in future work.  

(1) With the development of urban areas around the world increasing at an 

exponential rate, new images are needed for helping with efficient urban land use 

planning. VHR imagery from satellites is the most effective way to gain an accurate 

picture of landscapes of the urban environment's entirety and complexity (Xu et al. 

2021b). VHR satellite images provide abundant information (e.g., textual, contextual, 

and spectral information) about geographical objects in terms of geometrical features 

and spatial patterns (Du et al., 2021; Zhang et al., 2017bZhao et al. 2019). These images 

are so detailed that users have been using them to find abandoned warehouses and 

empty spaces inside cities (Morell-Monzó et al. 2021). In addition, more spatial details 

can be obtained from VHR images compared with medium and low-resolution satellite 

images such as AVHRR, Landsat, and SPOT images (Xu et al. 2021b). VHR imagery 

represents a significant advance in categorizing urban land use and will be of great use 

for urban planning and management. 

(2) OSM data contain multiple and finer information on urban land use, especially 

social functional information that is rarely captured from RS images (Wang et al. 

2021b). Each functional unit delineated by OSM data could serve as the most basic unit 

for urban land use analysis because of its greatest degree of functional homogeneity 
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and the greatest degree of functional heterogeneity with surrounding units (Vu et al. 

2021). The basic units make it possible to efficiently delineate urban land properties 

and discover the distribution characteristics of different land use types and further assist 

with urban spatial planning and urban management. However, the OSM road network 

might contain unbalanced classes that are unevenly distributed, leading to 

heterogeneous urban land use parcels in terms of parcel area and spatial pattern 

(Johnson and Iizuka 2016). Several studies have tried to improve the identification of 

urban land use parcels by adding other data sources such as transportation data, social 

media data, and so on (Vargas Muñoz et al. 2021). Furthermore, the accuracy of the 

urban parcels created based on OSM can be further improved by combining different 

data sources, and the veracity of urban parcels should be validated. 

(3) The training and testing samples are important for urban land use classification 

because different classifiers and machine learning algorithms highly depend on the 

input reference with varying qualities and quantities. Generally, these samples used for 

urban land use classification were visually identified through the Baidu map, Baidu 

Street View, and a field survey, which are promising to validate urban land use parcels 

(Hu et al. 2016). However, sample collection is the most time-consuming step and it is 

inevitable for urban land use parcels to contain multiple land use types. The automatic 

sampling method can label samples within urban scenes that consist of heterogeneous 

urban land uses that can hardly be resolved by classical sampling methods (Zhang et al. 

2020c). In this regard, sample labeling for urban land use classification should not only 

depend on visual interpretation but also consider automatic approaches to guarantee 

high accuracy. In addition, better classification performance would be expected from 
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the adoption of an independent land use map by local government and urban planners 

(Pan et al. 2020).  

(4) The RF model was used for mapping built-up in DI-based classification and 

training urban land use parcels in FI-based classification (Wu et al. 2021a; Wu et al. 

2021b). The RF model can be improved by using the transfer learning model as a pre-

trained model, which might help increase the classification accuracy (Kang et al. 2021). 

Furthermore, how to integrate GBD into the RF model is a worthwhile question to 

discuss since there is a significant difference between RS and GBD (Mao et al. 2020). 

Recently, great progress in deep learning techniques has been made in computer vision 

applications, and breakthroughs in semantic segmentation tasks especially facilitate the 

urban land use classification problem (Chen and Tsou 2021). Deep learning-based 

approaches have rapidly developed in the field of urban land use classification because 

of their capability of transforming the raw input imagery and low-level features into 

classes at a higher and abstract level (Xu et al. 2021a). The unique deep hierarchical 

structure of deep learning algorithms has proven its powerful capability of learning and 

generalization using deep convolutional neural networks (CNNs), which is suitable for 

urban land use classification. 

(5) The DI-based and FI-based classification methods can be used together for 

improving urban land use maps as they have different performances in classifying 

different types of land use (e.g., institution, residence, business, and open space) (Yin 

et al. 2021a; Yin et al. 2021b). To be more specific, the FI-based method can be used 

for classifying very different urban land use types. It can be noted from the 2021 DI-

based classification result that the institution and business in FI-based classification can 

be classified relatively well, with the UA of 0.826±0.108 and 0.960±0.038, respectively. 
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While the DI-based method can be utilized for classifying urban land use types with 

very little difference in RS features but have a significant difference in GBD features 

such as institution parcels and business parcels. According to the urban land use 

classification result in Hangzhou city for 2021, the residence and business were 

classified relatively well in the DI-based urban land use map, with the estimated UA of 

0.892±0.048 and 0.709±0.082, respectively.  

8.2.2 The mixed urban land use parcels 

Urban land use mix refers to a situation in which different urban land use types of 

land uses co-exist within the same space (e.g., residential commercial mix building) (Tu 

et al. 2021). Under the current shortage of land resources and the tight supply of urban 

land in areas of rapid urbanization (Li 2021), the proposed urban mixed space utilization 

is of great significance for improving the efficiency of urban land space use and 

reducing resource consumption. However, the mixing of urban land use parcels has also 

caused significant problems in cities all over the world, especially in China (Lang et al. 

2018). 

From a historical perspective of development, the idea of urban land use mix began 

to spring up in China in the 1990s to solve the problems of traffic congestions, the 

decline of city centers, and social isolation (Shi et al. 2022). The mixed-use of urban 

land has its inevitable requirements. First, the rapid pace of urbanization necessitates a 

diversity of urban building functions, and single land uses find it difficult to adapt to 

changing urban land requirements (Sun et al. 2022). Second, with the arrival of the 

Internet era, the original industrial structure has gained many new functions, resulting 

in the formation of several new industries as well as the deep integration of cross-

industry activities (Fang et al. 2021). Through the mixing of different urban land use 
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types, it gets rid of the traditional urban planning method and expands the urban space 

to various dimensions. 

Mixed land use has been a big challenge in mapping urban land use that integrates 

multiple functional uses (Bodhankar et al. 2022; He et al. 2021). The differentiation 

from the mixed land uses will be quite difficult if the spatial resolution of the input data 

sources and characteristics is not equal to or significantly lower than the spatial 

resolution of the targeted objects (Jiao et al. 2021). Previous research solely looked at 

"dominant land use" rather than "proportional land use," eliminating a wealth of 

information on the microstructure of urban land use (Yao et al. 2022).  

Future research can overcome the inadequacies of mixed urban land use 

recognition in two important directions. First, the basic units for urban land use 

classification should be generated with the greatest degree of functional homogeneity 

and the greatest degree of functional heterogeneity. In order to obtain fine-resolution 

urban land use parcels, more detailed road network data or image segmentation can be 

used to delineate the urban areas. Second, traffic data, cell phone data, social media 

data, and municipal data are among the new GBD that may be used to estimate mixed 

urban land use patterns. In addition, vertical mixed land uses continue to be a concern 

because of the restricted options of partitioning different land use categories inside 

building groups. 

8.2.3 The configuration and composition of urban green space 

The configuration and composition of urban green space were not considered 

accordingly in this research. Studies have shown that the ability of urban green spaces 

to provide their expected environmental and socio-economic benefits largely depends 
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on their distributions, compositions, and configurations (Woldesemayat and Genovese 

2021). 

The configuration generally refers to the shape, size, and structure of urban green 

spaces (Çoban et al. 2021). With the development of urbanization, the configurations 

of urban green space are likely to have a variety of changes in different urban functional 

zones (Threlfall et al. 2016). These changes in urban green spaces significantly 

influence the ecology of cities, yet they are generally poorly understood in urban 

landscapes. To be more specific, the configurations of urban green space are changed 

by various human activities within different urban functional regions, such as exotic 

plant invasion and the changed traits of native plants, which play important roles in 

urban ecosystem functions (Miralles-Guasch et al. 2019). The ecological sustainability 

and function of urban landscapes are strongly influenced by the configuration and 

structure of the urban green spaces. Therefore, further studies that investigate the urban 

green space configurations of different urban land use and their variations are needed.  

Urban green space composition refers to the identity of the species and types 

comprising the urban green spaces (e.g., grass, trees, shrubs, flowers). Numerous 

studies have analyzed the relationships between urbanization and urban green space 

composition (Ghosh and Das 2018; Grafius et al. 2018). However, it is still unclear 

what impact inner cities have on the urban green space compositions because of the 

increased complexity of the urban landscape. Further understanding of variations in the 

composition of urban green space within different urban land use types will greatly 

improve our ability to create urban landscapes that enhance biodiversity in the urban 

environment. 
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In addition, urban functional green spaces such as community gardens, parks, and 

greenways are highly correlated with socio-economic activities. Urban functional green 

space maps produced by using high-resolution images and deep learning techniques can 

be utilized to provide suggestions for future urban planning, design, and management. 

Furthermore, The accessibility of different urban functional green spaces can be 

considered in the future study.  

8.3 Concluding remarks 

This Ph.D. research improved the existing urban land use maps for investigating 

the dynamics of urban land use and assessed the impact of urban land use changes on 

urban green space distribution. Among them. the research confirms that the integration 

of RS and GBD provides new opportunities for urban land use mapping. RS data, 

coupled with GBD, can combine the socio-economic features with the spatial and 

temporal coverage afforded by RS. In addition, the urban green space distribution was 

significantly affected by the urban land use change in Hangzhou city. It is hoped that 

the practical research and experience of urban green space distribution in this thesis will 

provide valuable suggestions for small cities in developing their urban green space 

system for the city, and make the city achieve the SDGs. 
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geospatial big data for urban land use mapping: 

A review 



 

246 

 

 



 

247 

 

 



 

248 

 

 



 

249 

 

 



 

250 

 

 



 

251 

 

 



 

252 

 

 



 

253 

 

 



 

254 

 

 

 



 

255 

 

 



 

256 

 

 



 

257 

 

Appendix 2 ： Decision-level integration and 

feature-level integration of remote sensing and 

geospatial big data for urban land use mapping 
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