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Abstract

Passive control devices such as fluid viscous dampers (FVDs) are frequently

adopted to enhance energy dissipation capacity of civil engineering structures; how-

ever, seismic performance of many passive control devices with a nonlinear viscous

damping characteristic remains unclear, especially when they work in conjunction

with supporting elements. This thesis aims to investigate the effectiveness of different

nonlinear dampers with supporting elements on improving dynamic performance of

building structures; approaches to achieve effective designs of the dampers in certain

types of buildings are also presented. The investigated passive control configurations

include the conventional damper-brace system, and a novel truss-damper assembly

proposed for seismic vibration control of atrium buildings. In addition to the FVDs,

an inerter-based device termed nonlinear inertial mass damper (IMD) is also intro-

duced and studied. The observations made in this research are expected to provide

an insight into the practical design of the passive control systems with nonlinear

characteristics.

A numerical time-history method is first developed in this thesis to compute

the seismic response of a structure with nonlinear FVDs and supporting braces, of

which the correctness and accuracy are verified through comparative studies. Based

on the proposed numerical method, the effects of different design parameters of the

nonlinear damper-brace system are investigated. Results indicate that a minimum

brace stiffness is required to achieve a preset structural performance, and for a given

brace stiffness, the velocity exponent has an insignificant effect on the maximum

structural performance once the dampers are optimally designed. The robustness

and reliability of the optimal damper-brace systems are evaluated by incremental

dynamic analysis (IDA).

Buildings with atria can be commonly found in most cities. For seismic response

mitigation of an atrium building, this study develops an approach to utilize a truss-

damper configuration and a core structure inside the atrium to form a novel energy

dissipation mechanism. FVDs and nonlinear IMDs are adopted as the passive control

devices in the configuration; the effectiveness of these truss-damper systems is eval-

uated through parametric studies. Results indicate that the truss-damper systems

can effectively suppress the seismic vibration of atrium buildings, and the truss-IMD

systems generally outperform the truss-FVD systems.

A simplified truss-IMD-core structure model is also proposed in this thesis to

further investigate the effect of the core structure stiffness on the seismic performance
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of atrium buildings. A multi-objective optimization approach is developed for the

simplified model to minimize the peak interstory drift and story acceleration of a

building simultaneously under multiple earthquakes. Numerical results from a simple

structural model and a six-story building suggest superior performance of the truss-

IMD system in mitigating different dynamic responses of atrium buildings.
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ẍg ground acceleration, first used in Eq. (3.1)

∆ total deformation of a damper-brace system or a truss-damper system,

first used in Eq. (4.3)

δ interstory drift, first used in Eq. (5.1)

∆b brace deformation, first used in Eq. (4.1)

∆d damper deformation, first used in Eq. (1.1)

∆e(t) total deformation of truss and core structure, first used in Eq. (7.2)

∆I inerter deformation, first used in Eq. (1.2)

∆t truss deformation, first used in Eq. (6.4)

δy yielding interstory drift of bilinear structure, first used at Page 98

η equivalent stiffness ratio of truss and core structure, first used in Eq.

(7.10)

γ stiffness ratio of core structure, first used in Eq. (6.12)

1 unit vector, first used in Eq. (5.11)

A∗0 discrete system matrix, first used in Eq. (5.16)

A∗ system matrix, first used in Eq. (5.15)

Aj story absolute acceleration time-history under j-th earthquake, first

used in Eq. (5.20)

B∗0 instant discrete damper force distribution matrix, first used in Eq. (5.16)

B∗ damper force distribution matrix, first used in Eq. (5.15)

Ca damping matrix of atrium building, first used in Eq. (6.25)

Cc damping matrix of core structure, first used in Eq. (6.25)

Cs damping matrix of SDOF atrium building system, first used in Eq. (6.1)

C damping matrix, first used in Eq. (5.11)

E∗0 instant discrete ground acceleration distribution vector at step [k], first

used in Eq. (5.16)

17



E∗1 instant discrete ground acceleration distribution vector at step [k + 1],

first used in Eq. (5.16)

E∗ ground acceleration distribution vector, first used in Eq. (5.15)

Fd damper force vector, first used in Eq. (5.11)

Fd,s damper force vector of SDOF atrium building system, first used in Eq.

(6.1)

I identity matrix, first used at Page 88

Ka stiffness matrix of atrium building, first used in Eq. (6.25)

Kc stiffness matrix of core structure, first used in Eq. (6.25)

Ks stiffness matrix of SDOF atrium building system, first used in Eq. (6.1)

K stiffness matrix, first used in Eq. (5.11)

Ma mass matrix of atrium building, first used in Eq. (6.25)

Mc mass matrix of core structure, first used in Eq. (6.25)

Ms mass matrix of SDOF atrium building system, first used in Eq. (6.1)

M mass matrix, first used in Eq. (5.11)

Vj base shear force time-history under j-th earthquake, first used in Eq.

(5.21)

xa displacement vector of atrium building, first used in Eq. (6.25)

xc displacement vector of core structure, first used in Eq. (6.25)

xs displacement vector of SDOF atrium building system, first used in Eq.

(6.1)

x displacement vector, first used in Eq. (5.11)

Xj story displacement time-history under j-th earthquake, first used in Eq.

(5.18)

z0 structural response vector of SDOF model, first used in Eq. (3.2)

zs response vector of SDOF atrium building system, first used in Eq. (6.2)

z structural response vector, first used in Eq. (5.15)

∆t sampling period, first used at Page 44

k current time step, first used in Eq. (3.6)

w total number of earthquakes, first used in Eq. (5.18)

µ mass ratio of core structure, first used in Eq. (6.12)

18



ν velocity exponent, first used in Eq. (1.1)

ω circular frequency, first used in Eq. (1.3)

ω1 fundamental circular frequency of structure, first used in Eq. (5.4)

ωg fundamental circular frequency of ground surface soil deposit, first used

in Eq. (3.16)

ξ inherent structural damping ratio, first used at Page 73

ξg damping ratio of ground surface soil deposit, first used in Eq. (3.16)

a absolute story acceleration, first used in Eq. (3.13)

b inertance coefficient, first used in Eq. (1.2)

c damping coefficient of structure, first used in Eq. (3.1)

cc story damping coefficient of core structure, first used in Eq. (6.1)

cd damping coefficient of damper, first used in Eq. (1.1)

fd damper force, first used in Eq. (1.1)

fI inerter force, first used in Eq. (1.2)

K slope coefficient of Runge-Kutta recursion formula, first used in Eq.

(3.7)

k story lateral stiffness, first used in Eq. (3.1)

kb brace stiffness, first used in Eq. (4.1)

kc story lateral stiffness of core structure, first used in Eq. (6.1)

kE elastic stiffness of bilinear structure, first used at Page 98

ke equivalent stiffness of truss and core structure, first used in Eq. (7.1)

kt truss stiffness, first used in Eq. (6.5)

kPE post-elastic stiffness of bilinear structure, first used at Page 98

m mass, first used in Eq. (3.1)

mc story mass of core structure, first used in Eq. (6.1)

M1 model mass of the first vibration model of building, first used in Eq.

(7.10)

PIA performance index in story acceleration, first used in Eq. (3.13)

PIS performance index in story displacement, first used in Eq. (3.12)

PIV performance index in base shear force, first used in Eq. (5.5)

19



PID,c interstory drift performance index of a core structure, first used at Page

117

PID performance index in interstory drift, first used in Eq. (5.1)

PImD performance index in maximum story drift, first used in Eq. (5.7)

PImV performance index in maximum base shear force, first used in Eq. (5.8)

RRA response reduction in story acceleration, first used in Eq. (3.15)

RRD response reduction in interstory drift, first used in Eq. (5.2)

RRmD response reduction in maximum interstory drift, first used in Eq. (5.9)

RRmV response reduction in maximum base shear force, first used in Eq. (5.10)

RRS response reduction in story displacement, first used in Eq. (3.14)

RRV response reduction in base shear force, first used in Eq. (5.6)

RRD,c interstory drift response reduction of a core structure, first used at Page

117

S0 constant white-noise PSD of bedrock excitation, first used in Eq. (3.16)

Sa(T1, 5%) 5% damped spectral acceleration at structure’s fundamental period T1,

first used at Page 48

t time, first used in Eq. (1.1)

T1 fundamental period of structure, first used at Page 48

Vs base shear force, first used in Eq. (5.5)

x displacement in horizontal direction, first used in Eq. (3.1)

xc horizontal displacement of core structure, first used in Eq. (6.3)

A – system matrix of SDOF model, first used in Eq. (3.2)

– system matrix of SDOF atrium building system, first used in Eq. (6.2)

A0 – discrete system matrix of SDOF model, first used in Eq. (3.6)

– discrete system matrix of SDOF atrium building system, first used in

Eq. (6.3)

B – damper force distribution vector of SDOF model, first used in Eq.

(3.2)

– damper force distribution matrix of SDOF atrium building system,

first used in Eq. (6.2)

β – damping ratio of damper, first used in Eq. (5.4)

20



– damping ratio of equivalent model, first used in Eq. (7.10)

B0 – instant discrete damper force distribution matrix of SDOF model, first

used in Eq. (3.6)

– instant discrete damper force distribution matrix of SDOF atrium

building system, first used in Eq. (6.3)

E – ground acceleration distribution vector of SDOF model, first used in

Eq. (3.2)

– ground acceleration distribution vector of SDOF atrium building sys-

tem, first used in Eq. (6.2)

E1 – instant discrete ground acceleration distribution vector at step [k + 1]

of SDOF model, first used in Eq. (3.6)

– instant discrete ground acceleration distribution vector at step [k + 1]

of SDOF atrium building system, first used in Eq. (6.3)

E0 – instant discrete ground acceleration distribution vector at step [k] of

SDOF model, first used in Eq. (3.6)

– instant discrete ground acceleration distribution vector at step [k] of

SDOF atrium building system, first used in Eq. (6.3)
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Chapter 1 Introduction

1.1 Background

Excessive or undesirable dynamic response could cause human discomfort, ex-

treme deformations, fatigue, and immediate local or global collapse of structures

(Skinner et al. 1974, Ibarra et al. 2005). Therefore, the structural capability in resist-

ing the vibrations induced by different external disturbances, earthquakes in partic-

ular, is generally recognized as an important consideration in the design of building

structures. As the earthquake-induced structural damage and collapse is attributed

largely to the inadequate energy dissipation paths in a structure (Roque et al. 2019),

to suppress undesirable vibrations and enhance structural safety during earthquakes,

various types of seismic control systems have been developed to increase the damp-

ing of the structures. The seismic control systems can be broadly categorized into

four groups (Zuo et al. 2020), namely passive, active, semi-active and hybrid; among

which the passive control system is most widely used in civil engineering applications

due to its simplicity, low cost, high stability and independence of additional power

supply (Preumont 2011, Lazar et al. 2014, Wu et al. 2020, Ma et al. 2021b). When

properly designed and installed, high performance passive control devices, such as

viscous dampers, viscoelastic dampers, metallic yield dampers, friction dampers and

tuned mass dampers, can dissipate a considerable amount of input energy during

earthquakes and increase the resilience of the structures (Soong and Spencer Jr 2002,

Symans et al. 2008, Parulekar and Reddy 2009).

Fluid viscous dampers (FVDs) are well established passive energy dissipation

devices that have been frequently adopted in mechanical and civil engineering appli-

cations. The robustness and reliability of such devices have been proven after decades

of usage during the Cold War, especially in the fields of aerospace and military hard-

ware, which motivated the later applications of FVDs in the retrofitting or reinforcing

of buildings and infrastructures (Soong and Spencer Jr 2002, Taylor 2013). From the

late 1980s to the late 1990s, to prove the applicability of the viscous dampers in civil

structures, many research and engineering institutes, such as National Center for

Earthquake Engineering Research (renamed to Multidisciplinary Center for Earth-

quake Engineering Research in 1998), have conducted numerous experimental and

analytical investigations (Lin et al. 1988, Tsopelas et al. 1994, Reinhorn et al. 1995,

Constantinou et al. 1998). These studies became important references to produce

technical specifications for the practical application of the FVDs. With the world-
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wide promotion and development of the energy dissipation technology, research on

the analysis and design of viscous dampers in civil engineering is constantly evolving.

Piston rod
Accumulator

housing Compressible fluid

Piston head
Chamber 1 Chamber 2

Figure 1.1: Construction of a typical fluid viscous damper (Constantinou and Symans
1993).

A typical fluid viscous damper consists of a stainless-steel piston and an accu-

mulator housing, as shown in Figure 1.1. The housing is divided into two chambers

by the piston head; a compressible hydraulic oil (usually silicon oil) is filled in the

chambers and can pass from one chamber to the other through orifices (hydraulic

circuits) in the piston head. Once there is a relative motion between the two ends

of the viscous damper, the input energy will be transformed to heat during the ‘oil

flowing through orifices’ process and dissipates into the atmosphere (Constantinou

and Symans 1993, Symans and Constantinou 1998, Soong and Spencer Jr 2002). The

analytic model of a FVD can be expressed using a dashpot with damping coefficient

cd, as shown in Figure 1.2.

u1 (t) u2 (t)
f d  (t)f d  (t)

f d  (t) = cd |u2(t) u1(t)|vsgn(u2(t) u1(t)) = cd |Δd(t)|vsgn(Δd(t))

cd ,v

Figure 1.2: Analytic model of a fluid viscous damper.

The force in the FVD can be expressed mathematically as:

fd(t) = cd|∆̇d(t)|νsgn(∆̇d(t)) (1.1)

where ∆̇d(t) is the relative velocity between the two ends of the damper, namely

u̇2(t) − u̇1(t), and sgn(·) denotes the signum function. Notably, ν is a positive ex-

ponent for the damper velocity, of which the magnitude depends on the design of

hydraulic circuits (De Domenico and Ricciardi 2019), and the viscous dampers can

be classified into two groups based on the value of ν, namely linear and nonlinear.

When ν equals one, the dampers exhibit linear force-velocity relationship and can
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thus be categorized as linear ones; for nonlinear dampers the velocity exponents are

not equal to one.

Figure 1.3: Variation of damper force with piston velocity for dampers with different
velocity exponents (cd = 1 N·(s/m)ν)

Previous studies have reported that the nonlinear FVDs with a velocity exponent

less than one can limit the peak damper force generated at large structural velocities

during extreme events without reducing the supplemental damping provided to the

structure, as compared with linear dampers (Lin and Chopra 2002, Martinez-Rodrigo

and Romero 2003, Symans et al. 2008, Lin et al. 2008, Zhang and Xi 2012, Bahnasy

and Lavan 2013, Tubaldi and Kougioumtzoglou 2015). This could be demonstrated

using Figure 1.3, which shows the force-velocity curves of viscous dampers with the

same value of damping coefficient and different velocity exponents. It can be seen

from the figure that the nonlinear damper with the velocity exponent less than unity

provides the largest damper force among the three dampers when piston velocity is

smaller than 1 m/s. However, when the piston velocity is larger than 1 m/s, the

damper force is limited for the viscous damper with ν less than one, unlike a linear

increase in force for ν equals one or an exponential increase for ν larger than one.

Therefore, excessive damper force induced by intense velocity can be controlled by

this type of nonlinear damper, and possible structural damage due to large damper

force, especially at the connection regions and supporting braces, can be avoided or

reduced. In addition, as the manufacturing cost of a fluid viscous damper depends

heavily on the peak force in the damper during its operation (Pollini et al. 2018), using

dampers with a velocity exponent smaller than one may also have cost advantages.

Recognizing the benefits, considerable research interests in the seismic applications

of nonlinear viscous dampers have arisen in recent years (De Domenico and Ricciardi

2019, Moslehi Tabar and De Domenico 2020), and the velocity exponents frequently
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used in civil structures were summarized in some studies. In general, typical values

of velocity exponent for seismic applications are in the range of 0.35 − 1 (Lin and

Chopra 2002), with the most common range of 0.4 − 0.5 (Taylor 2013). For wind

applications, the frequently used velocity exponents are in the range of 0.5−1 (Taylor

2013).

Chevron brace

Diagonal brace
FVD

Figure 1.4: Fluid viscous dampers installed with diagonal and Chevron braces.

In building applications, interstory drift is the most commonly used structural

motion for activating the FVDs (Soong and Dargush 1997), and the dampers are often

installed between stories with supporting braces. Different configurations of braces

can be used to transmit the structural interstory drifts and convert them into axial

motions between the two ends of the FVDs, with the diagonal and Chevron (inverted-

V) configurations among the most common, as shown in Figure 1.4. The conventional

story-wise installed damper-brace systems have proven their effectiveness in practical

applications (Nakamura et al. 2014). In addition to the brace configurations that

utilize the relative motion between adjacent stories, some schemes of braces or other

supporting elements that adopt other structural motions to activate a passive control

system have been developed in the literature. For instance, Smith and Willford

(2007) introduced a damped outrigger system for alleviating wind response of high-

rise buildings, which utilized the relative vertical velocity between the perimeter

column of external tube structure and the core inside the tube structure to activate

the viscous dampers. Lai and Mahin (2015) proposed a strongback mast system

to facilitate the development of uniform story drift over the height of a multi-story

frame-type building. A damper connecting the strongback system and the ground

can thus dissipate energy using the uniform structural vibration during earthquakes.

The large relative motion through multiple stories, or between an upper floor and

the ground, has also been used in many passive control systems. Some examples

can be found in the literature, e.g., Pietrosanti et al. (2017), Kaveh et al. (2020)
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and Petrini et al. (2020). Therefore, using structural motion other than interstory

drift to activate the FVDs may also be a feasible way for using dampers in building

applications.

The damping performance of an energy dissipation device like a FVD can be en-

hanced when it has an inherent or extrinsic negative stiffness characteristic (Li et al.

2008, Ou and Li 2010, Høgsberg 2011, Di et al. 2021), as the negative stiffness allows

the device to generate a force to assist the motion instead of opposing it (Ma et al.

2021a), which amplifies the relative motions between the two ends of the system and

thus enhance the overall energy dissipation capacity. Negative stiffness is a com-

mon characteristic in active and semi-active vibration control systems (Iemura and

Pradono 2005, Ou and Li 2010); to introduce this useful feature to passive control sys-

tems, some passive negative stiffness devices that are independent of external energy

supply have been developed in the last decade (Pasala et al. 2013, Chen et al. 2015,

Nagarajaiah and Sen 2020, Zhou et al. 2020, Walsh et al. 2021), which can exhibit

negative-slope force-displacement behaviours during their operations. In addition to

the negative stiffness devices, previous research suggested that a mechanical element

named “inerter” can also increase the damping performance of an energy dissipation

device, as the force-displacement relationship of the inerter during cyclic motions has

a negative slope (Shi and Zhu 2019, Ma et al. 2021a).

bu1 (t) u2 (t)
f I (t)f I (t)

Figure 1.5: Analytic model of an ideal inerter.

Inerter, also termed “gyro-mass” in the literature (Saitoh 2012), is a two-terminal

massless mechanical element proposed by Smith (Smith 2002). The concept of inerter

was initially developed based on electrical capacitor, which completes the analogy

between “inductor-resistor-capacitor” electrical network and “spring-dashpot-inerter”

mechanical network (Smith 2002, Chen and Hu 2019). Figure 1.5 shows the analytic

model of an ideal inerter, in which the inerter force fI(t) can be mathematically

expressed as:

fI(t) = b(ü2(t)− ü1(t)) = b∆̈I(t) (1.2)

It can be seen from Eq. (1.2) that fI(t) is proportional to the relative acceleration be-

tween the two terminals of the inerter ∆̈I(t) with a constant proportionality b termed

“inertance” and measured in the unit of mass. Here, if we assume the deformation of
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(a) Ball-screw inerter developed by

Papageorgiou and Smith (2005)

at Cambridge University 

(b) Rack-and-pinion inerter developed by

Smith and Wang (2003)

at Cambridge University

(c) Hydraulic inerter developed by

Wang et al. (2011)

(d) Electromagnetic inerter developed by

Gonzalez-Buelga et al. (2015)

Figure 1.6: Examples of inerters.

the device ∆I(t) is a harmonic vibration with frequency ω0, the inerter force can in

turn be related to the inerter deformation by:

fI(ω) = −bω2
0∆I(ω) (1.3)

where fI(ω) and ∆I(ω) are the Fourier transforms of the force and deformation of

the inerter, respectively. From Eq. (1.3) it can be seen that, the inerter provides a

force that is negatively correlated with its cyclic deformation with a slope of −bω2
0

under the harmonic vibration. Therefore, the inerter may exhibit a negative-slope

force-displacement relationship during vibration. The ideal inerter can be physically

realized through different mechanisms, including rack-and-pinion (Smith and Wang

2003, Papageorgiou et al. 2009), ball-screw (Papageorgiou and Smith 2005, Li et al.

2012), hydraulic (Wang et al. 2011), helical fluid (De Domenico et al. 2019), elec-

tromagnetic (Gonzalez-Buelga et al. 2015) and living-hinge (John and Wagg 2019).

Some examples of the inerters are shown in Figure 1.6. Since the negative-slope

force-displacement relationship of a device can improve the damping capacity of an

energy dissipator, many inertial mass dampers (IMDs) that combine an inerter and a

viscous damper have been proposed in the literature. These IMDs generally outper-
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formed the conventional viscous dampers (Hwang et al. 2007, Nakamura et al. 2014).

Rheological representation of an ideal IMD can be made by an inerter arranged in

parallel with a dashpot (Ma et al. 2021a), in which different types of inerters were

adopted in the practically realization of the IMD, with the ball-screw inerters among

the most common. In addition to the IMDs that take advantage of the negative-slope

feature of the inerter, many inerter-based vibration control systems that utilize other

features of the inerter such as the mass amplification effect have been developed in

the last two decades (Ma et al. 2021a). When one terminal of an inerter is fixed

to the ground, the inerter provides an additional mass to the system that equals its

inertance, which can be several orders of magnitude larger than the actual mass of

the device (Pawlak and Lewandowski 2020, Cao and Li 2022). This feature allows

the inerter to be used as an alternative to the auxiliary mass in conventional vibra-

tion absorbers like tuned mass dampers (TMDs), and many inerter-based absorbers

have been developed in the last two decades, such as tuned inerter dampers (Lazar

et al. 2014), tuned mass damper inerters (Marian and Giaralis 2017) and nonlinear

energy sink inerters (Zhang et al. 2019). In addition to the vibration absorbers, base

isolation and some hybrid control techniques have also adopted inerters (Ma et al.

2020, De Domenico and Ricciardi 2018, De Angelis et al. 2019, Li, Chang, Cao and

Huang 2021).

1.2 Statement of research problems

In the past few decades, to evaluate the effectiveness of viscous dampers on en-

hancing seismic performance of building structures, numerous research has focused on

linear FVDs both analytically and experimentally (Constantinou and Symans 1992,

Ramirez et al. 2001, Hwang et al. 2005); different design procedures have also been

proposed for linear dampers (Lavan and Levy 2005, 2006, Levy and Lavan 2009, Shin

and Singh 2014, Del Gobbo et al. 2018). For nonlinear viscous dampers, although

relevant design approaches can be found in the literature (Lin et al. 2008, Lang et al.

2013, Fujita et al. 2014, Altieri et al. 2018, De Domenico and Ricciardi 2019), the

structural analysis involved in many approaches were based on equivalent lineariza-

tion technique, in which the nonlinear damping was replaced by an equivalent linear

one for the purposes of simplicity. Although the equivalent linearization methods

can simplify the design process, the accuracy of the analysis and design results may

be reduced; studies on the optimal design of nonlinear dampers that explicitly dealt

with their exponential force-velocity relationships remain limited, and some impor-

tant research, such as the influence of damper nonlinearity on the optimal structural

performance, still requires further investigation.

28



In practical applications, supporting braces are important auxiliary components

to connect fluid viscous dampers to a building. Since there are physical connections

between the dampers and the braces, it is crucial to incorporate the brace stiffness into

the analysis and design of the FVDs. However, in the literature, most of the design

methods for fluid viscous dampers, especially those for nonlinear ones, implicitly

assumed the braces to be rigid, as the brace stiffness has not been treated as a design

variable (Di Paola and Navarra 2009, Tubaldi and Kougioumtzoglou 2015, Xie et al.

2018, Liu et al. 2018, Moradpour and Dehestani 2019). Since the dimension of the

braces is often limited due to functional and/or aesthetic considerations, an infinite

brace stiffness is difficult to achieve in practice (Park et al. 2004, Losanno et al.

2019). Therefore, the assumption of rigid brace may result in an overestimation

of the damping capacity of a damper-brace system (Takewaki and Yoshitomi 1998,

McNamara et al. 2000, Singh et al. 2003, Ou et al. 2007, Huang 2009, Fujita et al.

2010). Previous studies showed that the hysteretic behaviour of a damper-brace

system with finite brace stiffness exhibited viscoelastic characteristic during external

excitation (Constantinou et al. 1998, Castaldo and De Iuliis 2014); however, studies

on the interaction between the structural dynamic behaviour and the flexibility of

the damper-brace assemblies, particularly those with nonlinear dampers, are still

limited. To achieve an optimal design of the nonlinear viscous dampers in building

applications, it is essential to investigate the effect of brace stiffness on the seismic

performance of structures.

Building with atrium is a common structural type in most of the urban areas in the

world; atrium building exhibits several advantages when compared with normal types

of buildings without a large interior open space, e.g., a properly designed skylight

can introduce natural lighting to the interior of the building (Hung 2003). Solar heat

can be retained within the structure, and natural ventilation can also be achieved

through solar-driven airflow inside the atrium (Hussain and Oosthuizen 2012). The

internal open space extending to the roof gives the atrium building a feeling of light

and space (Driscoll 2013), which also makes the internal prominent area particularly

suited for social and ceremonial purposes. All these features make atrium buildings

popular with users, architects and developers, hence large atrium designs have been

adopted in many commercial buildings like hotels, shopping malls and office buildings

(Hung 2003, Mohsenin and Hu 2015). When an atrium building is subjected to

an earthquake, to suppress undesirable vibration of the building, passive control

devices such as viscous dampers can be used, which may be installed between adjacent

stories using the conventional damper-brace configurations. However, the damper-

brace systems may occupy usable area at multiple floors and affect aesthetic appeal
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of the building. Since there is a vertical open space inside the atrium building,

an alternative arrangement of the damper-brace assembly that installs the dampers

inside the atrium may be feasible. The new arrangement is capable of better utilizing

the internal space provided by the atrium building, while maintaining the usable

space and aesthetic appeal of the building.

Previous studies have reported that inertial mass dampers that combines the

mechanical behaviours of inerters and dashpots generally surpassed conventional

dampers in seismic response mitigation of structures (Hwang et al. 2007, Nakamura

et al. 2014). The applicability of the IMDs in different civil infrastructure has also

been evaluated in the literature, including building structures (Ikago et al. 2012), ca-

ble bridges (Lu et al. 2017) and offshore structures (Ma et al. 2019). However, most

of the studies used a linear dashpot to simulate the damping characteristic of the

device, although the IMDs can exhibit nonlinear damping characteristic in practical

applications. The influence of nonlinearity of the IMDs on seismic performance of

building structures remains unclear and warrant further exploration.

1.3 Aims and objectives

This thesis aims to investigate the effectiveness of different nonlinear dampers

with supporting elements on enhancing seismic performance of building structures,

which can provide an insight of the optimal design of the passive energy dissipation

devices with nonlinear characteristics and the supporting elements. In addition to the

conventional damper-brace assembly for frame-type buildings, a novel truss-damper

configuration will be proposed specifically for the vibration control of atrium build-

ings. The dampers being investigated are the conventional fluid viscous dampers, and

inertial mass dampers with nonlinear viscous damping (termed nonlinear IMD in this

study). The effects of the stiffness of the supporting elements and the nonlinearity of

the dampers on dynamic performance of the buildings under earthquake excitation

will be the primary focuses of this study. The thesis also aims to present effective ap-

proaches to achieve robust designs of the brace-damper and the truss-damper systems

for mitigating the seismic responses of frame-type structures and atrium buildings,

respectively.

Due to the different structural forms of the primary buildings, the aims above

could be divided into two parts: (i) dynamic response mitigation of shear-type build-

ings, and (ii) seismic vibration control of atrium buildings. To achieve the first part,

the following objectives have been established:

• To develop a numerical time-history method for computing structural response

of a shear-type building equipped with one or multiple nonlinear viscous dampers
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Figure 1.7: A multi-story building equipped with multiple nonlinear damper-brace
systems.

with supporting braces, as shown in Figure 1.7, when subjected to an earth-

quake ground motion.

• To conduct parametric studies on the nonlinear damper-brace system and reveal

the effects of different design parameters on seismic performance of building

structures.

• To develop an optimization approach for the nonlinear damper-brace system to

maximize a specific structural performance under a prescribe earthquake input.

• To evaluate the robustness and reliability of the optimal design approach.

Inspired by the previous studies that adopted structural motion other than inter-

story drift to activate the passive control devices (Smith and Willford 2007, Lai and

Mahin 2015), a truss-damper configuration is proposed, as shown in Figure 1.8, which

utilizes the unsynchronized dynamic response between the tops of an atrium building

and a “core structure” inside the atrium to dissipate seismic energy (see Sections 6.1

and 6.2 for detailed truss-damper configurations). Therefore, for the second part of

the aims, the following objectives have been formulated:

• To propose a novel approach for vibration control of atrium buildings using a
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Figure 1.8: Proposed truss-damper configuration for an atrium building.

core structure inside the building in combination with a truss-damper system

(a truss-FVD system or a truss-IMD system).

• To develop numerical time-history approaches for calculating the seismic re-

sponse of an atrium building equipping with a truss-FVD system and a truss-

IMD system, respectively.

• To conduct parametric studies on the truss-damper systems and investigate

the influences of different design parameters on the seismic performance of the

atrium building.

• To develop an optimal design approach for the truss-damper systems to achieve

certain performance objectives in an atrium building.

• To evaluate the robustness and reliability of the optimal design approach.

1.4 Thesis outline

Chapter 2 provides detailed literature reviews on the dynamic analysis of struc-

tures with nonlinear viscous dampers, seismic design of damper-brace systems in

building applications, and the development of inerter-based passive control devices,

especially the inertial mass dampers. Seismic control of atrium buildings and some

energy dissipation configurations incorporating specific structural elements have also

been reviewed.

Chapter 3 introduces the methodologies involved in this research to analyse, de-

sign and evaluate the structural systems, including state-space technique and Runge-
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Kutta methods for time-history analysis, performance evaluation criteria adopted,

genetic algorithms for performance optimization, and earthquake ground motion rep-

resentations used in this study. Example demonstrations have been provided for the

state-space procedure and the spectrum representation method.

Chapter 4 presents the numerical time-history approach for a single-degree-of-

freedom (SDOF) structure with a Maxwell-type nonlinear damper-brace system based

on the state-space technique. The correctness and accuracy of the proposed ap-

proach is evaluated using first the fourth-order Runge-Kutta method, followed by a

frequency-domain approach for linear systems.

Chapter 5 investigates the influences of brace stiffness and damper nonlinearity

on seismic performance of shear-type buildings. Parametric studies are conducted to

assess the effectiveness of the damper-brace assembly on mitigating structural inter-

story drift and base shear force, using first a SDOF structure, followed by multi-story

buildings. Optimizations of the design parameters are performed to maximizing the

response reduction capabilities of the nonlinear damper-brace systems. Incremental

dynamic analysis is also conducted to evaluate the robustness and stability of the

optimal systems in a nonlinear eight-story building.

Chapter 6 introduces the analytic models of an atrium building and a core struc-

ture connected by a truss-damper system. Parametric studies are conducted on a

truss-FVD system and a truss-IMD system to evaluate their performances in seismic

vibration control of atrium buildings. Incremental dynamic analysis is performed to

assess the capability and robustness of an optimal truss-damper assembly in a nonlin-

ear SDOF structural system. A 6-story atrium building is also numerically evaluated

to compare the seismic performances of the truss-FVD and truss-IMD systems under

realistic earthquakes with different vibration characteristics.

Chapter 7 presents a simplified truss-IMD-core structure model that combines

a truss-IMD system and a core structure to further investigate the effect of lateral

stiffness of the core structure on seismic performance of atrium buildings. A multi-

objective optimization approach is developed based on a genetic algorithm to optimize

the design parameters of the simplified model for mitigating the interstory drift and

story acceleration of an atrium building simultaneously.

Chapter 8 provides an overall conclusion of the thesis and some future research

interests.
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Chapter 2 Literature review

2.1 Seismic analysis of structures with nonlinear viscous dampers

For seismic analysis of structures with nonlinear viscous dampers, linear ap-

proaches such as response spectrum analysis cannot be directly used due to the

nonlinear terms in the equations of motion, even with the assumption that the pri-

mary structure behaves linearly (Di Paola and Navarra 2009, Moslehi Tabar and

De Domenico 2020). Since the nonlinear damping arises mostly from the viscous

dampers, to estimate the structural response, approaches that adopted an equiva-

lent linear viscous damping ratio to represent the damping effects of the nonlinear

dampers can be found in the literature (Sadek et al. 2000, Lee et al. 2004). Com-

pared with using linear damping ratios, a more popular strategy to linearize the

equations of motion is to use equivalent linear viscous dampers to replace the non-

linear ones. For example, Lin and Chopra (2002) used an equivalent linear dashpot

to replace a nonlinear damper in a SDOF structure, of which the amount of energy

dissipated within one cycle of a harmonic motion is the same as that of the nonlinear

damper. The problem is thereby simplified, and linear approaches like frequency-

domain methods can be applied. Notably, the maximum displacement experienced

by the equivalent dashpot is essential to determine its equivalent damping coefficient,

thus iterative procedures are usually required during the linearization process. To

avoid the iterations, Diotallevi et al. (2012) proposed an approach to predict the

structural response and damper deformation directly. Furthermore, as the harmonic

motion cannot really describe earthquake-induced vibration, different stochastic lin-

earization approaches were developed (Di Paola et al. 2007, Di Paola and Navarra

2009, Tubaldi and Kougioumtzoglou 2015), which extended the harmonic motion to

random vibrations induced by earthquakes to compute more appropriate linearization

results. For instance, De Domenico and Ricciardi (2018) developed an equal-energy

non-Gaussian stochastic linearization method to estimate the damping coefficients

of the equivalent dampers; the method has been integrated into an optimal design

procedure of nonlinear dampers (De Domenico and Ricciardi 2019). A more recent

example is a modified stochastic linearization technique proposed by Asadpour et al.

(2022) for the analysis of bilinear hysteresis structures with nonlinear FVDs, which

linearized the nonlinear damper forces based on optimal non-Gaussian probability

density functions obtained using genetic algorithm. In general, the implementation

of equivalent linearization approaches can simplify the analysis process of structures
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with nonlinear viscous dampers; however, the accuracy of structural response results

is generally lower than those computed from numerical time-history methods that

explicitly dealt with the damper nonlinearity.

A precise analysis for the seismic response of a structure with nonlinear viscous

dampers can be achieved by integrating the nonlinear equations of motion directly

(Terenzi 1999, Craig and Kurdila 2006). However, due to the inherent stochastic na-

ture of earthquakes, the seismic-induced ground acceleration is hard to be expressed

with rigorous mathematical functions, thus closed-form solutions of the structural re-

sponse are difficult to obtain. In addition, as the equations of motion of a nonlinear

system are nonlinear differential equations, they are usually not possible to be solved

analytically (Chopra 2012). In that context, numerical time-history approaches (or

time-stepping approaches) that integrate an equation of motion within constant or

variable time intervals can be adopted to calculate the seismic response of struc-

tures with nonlinear dampers, and the frequently used approaches include Newmark’s

method (Newmark 1959), Wilson-θ method (Wilson et al. 1972) and Runge-Kutta

methods (Lindfield and Penny 2019). A recent example of the numerical approach

is that Moslehi Tabar (2019) applied an analytical approximation method, namely

perturbation technique, to convert the equation of motion of a nonlinear system into

infinite linear equations within each computational time interval, and the accuracy of

the presented method depends on the number of linear equations solved. A nonlinear

response spectrum analysis technique was also developed based on the perturbation

method (Moslehi Tabar and De Domenico 2020), in which a nonlinear spectrum for

structures with nonlinear viscous dampers was obtained to facilitate the design of

such structures. In general, the numerical time-history methods are considered high

precision approaches in the analysis of nonlinear systems and thus could be taken as

a baseline in the validation of other approaches.

It is also worth noting that, to simplify the design process of nonlinear viscous

dampers, instead of computing the seismic response of the primary structure directly

using the aforementioned techniques, some of the design approaches estimated the

response intensities of the structure based on the supplemental damping provided

by the dampers. For instance, the optimal design method proposed by Lang et al.

(2013) established a polynomial relationship between the damping coefficient of the

nonlinear dampers and the output frequency responses of the structure based on an

output frequency response function concept. The optimal direct displacement-based

design procedure developed by Moradpour and Dehestani (2019) adopted an equiva-

lent SDOF system to represent a multi-story structure, and the optimal parameters

of the nonlinear dampers can be determined iteratively using a displacement response
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spectrum scaled based on the equivalent damping of the dampers. Landi et al. (2014)

proposed a direct assessment method to estimate the seismic response of a nonlin-

ear structure with nonlinear viscous dampers based on an estimated damping ratio of

the whole structural system, and the method has been modified by Yaghmaei-Sabegh

et al. (2020) to analyse structures under pulse-type ground motions. Although these

approaches can estimate the structural responses, the complete response-history of

the structure is either unobtainable, or of limited accuracy.

2.2 Supporting braces for viscous dampers

In general, the use of a flexible brace will reduce damping performance of a vis-

cous damper especially when the damping coefficient is large, as part of the structural

motions will be wasted as brace deformations. Therefore, to ensure a proper damper

performance, different requirements on the minimum brace stiffness have been es-

tablished in the literature and seismic design standards (Silvestri et al. 2010, Zhou

et al. 2012, Palermo, Silvestri, Landi, Gasparini and Trombetti 2018, Kitayama and

Constantinou 2018, CMC 2010, ASCE 2017), and supporting braces with a stiffness

larger than the minimum requirements are considered adequate for ensuring efficiency

of the dampers. For instance, Fu and Kasai (1998) conducted parametric studies on

different dampers for frame-type structures; the authors reported that a ratio of brace

stiffness to story stiffness equals 10 and a ratio of damper loss stiffness to story stiff-

ness in the range of 1−1.5 are adequate for FVDs and viscoelastic dampers to achieve

their optimum performances under harmonic excitation. In the optimal design ap-

proach proposed by Singh et al. (2003), braces are considered to be “rigid” if their

stiffness is 10 times the story stiffness, and a brace stiffness that is 5 times the story

stiffness is considered appropriate to guarantee efficiency of the dampers. Chen and

Chai (2011) developed an optimal design procedure for shear-type structures with

linear damper-brace systems, and their results showed that as the stiffness of braces

equals the first-story stiffness, the optimally designed FVDs mitigated around 90%

of structural interstory drift and 80% of story acceleration of a 10-story building.

For better evaluation of the damping performance of viscous dampers in building

structures, many researchers suggested to consider the stiffness of supporting braces in

the structural analysis, i.e., incorporating the brace elements into the analytic model

of the dampers. For example, Hatada et al. (2000) studied the numerical approaches

for high-rise buildings with supplementary linear FVDs; the authors reported that

for the dampers with large damping coefficient, the equivalent horizontal stiffness of

the supporting braces should be incorporated into the analytic model. Park et al.

(2004) suggested that the actual peak response of a structure may be much larger
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than that estimated by numerical simulations if the flexibility of braces is excluded in

the analysis. Huang (2009) conducted parametric studies on a toggle-brace-damper

system and claimed that the magnification effect of the brace configuration may be

overestimated if the brace stiffness is neglected. Akcelyan et al. (2016) also sug-

gested to include the braces in the analytic model of the viscous dampers to avoid a

misestimation of the damper effectiveness.

A damper-brace assembly can be rheologically described using a Maxwell model,

which represents the assembly using a dashpot and a spring connected in series. Dif-

ferent design methods for such a damper-brace system have been proposed in the

literature to maximize dynamic performance of building structures (Viola and Guidi

2009, Londoño et al. 2013, Losanno et al. 2015, Lavan 2015, Losanno et al. 2018,

Pollini et al. 2017, Shen et al. 2020). Notably, to describe the dynamic behaviour

of a high-rise building with linear viscous dampers, Hatada et al. (2000) incorpo-

rated Maxwell models into a multi-degree-of-freedom (MDOF) structural model; a

numerical time-history method was also proposed to obtain the seismic response of the

model. Chen and Chai (2011) developed an approach to evaluate the dynamic perfor-

mance of a shear-type structure with Maxwell model-based brace-damper systems,

based on which the effect of brace stiffness on the optimal structural performance

was evaluated. Londoño et al. (2013) proposed a method to determine the minimum

brace stiffness or the minimum damping coefficient for linear damper-brace assem-

blies to achieve a target damping ratio in a building. The authors also extended the

method to determine the required brace stiffness for satisfying a desired damping

performance over a predefined frequency bandwidth (Londoño et al. 2014). To avoid

iterative calculations in the design process, Losanno et al. (2018) presented a non-

iterative approach to determine the parameters of braces and linear FVDs to achieve

a preset damping ratio of the structure. For nonlinear viscous dampers, Pollini et al.

(2017) proposed a design approach to minimize the cost of nonlinear dampers in a

multi-story structure while maintaining a specific interstory drift performance, and

the supporting braces were included in the performance evaluation of the structure.

Shen et al. (2020) developed a method for retrofit design of nonlinear damper-brace

systems in inelastic structures based on elastic-plastic response reduction curves.

Instead of conducting time-history analysis, they established relationships between

some proposed response reduction indices and the equivalent period and damping

ratio of an analytic model of the structural system. The relationships between the

nonlinear damper-brace systems and the achievable optimal performance of building

structures have also been investigated in some recent studies (Li et al. 2021).
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2.3 Inerter-based passive control devices

2.3.1 Inertial mass dampers

Since the analytic model of an ideal inertial mass damper consists of an inerter

and a dashpot, the physical realization of the IMD can be achieved based on different

mechanisms of the inerter. In the literature, ball-screw is the most commonly used

mechanism for IMDs. For example, Hwang et al. (2007) proposed a rotational inertia

viscous damper based on the ball-screw mechanism to transform the interstory drift

of a structure into rotary motion of a flywheel, which is immersed in silicon oil to

dissipate input seismic energy. The proposed damper has been numerically evaluated

using a SDOF structure, and it was reported that the performance of the damper

depended heavily on the length of the ball screw lead. Ikago et al. (2012) developed

a tuned viscous mass damper that consists of an IMD and a spring connecting the

IMD to the structure. The proposed damper exhibited better performance than

fluid viscous dampers in shaking table tests of a SDOF structure. Nakamura et al.

(2014) proposed an electromagnetic inertial mass damper consisting of a ball-screw

inerter and an electric generator, and the inertial force and damping force can be

simultaneously generated during external excitation. The seismic performance of

the electromagnetic inertial mass damper has been evaluated by shaking table tests,

and the damper surpassed conventional types of dampers especially in mitigating the

acceleration response of a structure. A recent example of the IMD is the adaptive

tuned viscous inertance damper proposed by Ali Sadeghian et al. (2021), of which

a continuously variable transmission device has been integrated into the ball-screw

inerter to allow adjustment of its inertance. Numerical evaluations showed that the

proposed device can significantly increase the damping of a SDOF structure in a vast

range of excitation frequency.

Although the above-mentioned studies generally used SDOF structures to assess

IMDs, their results nonetheless proved the effectiveness of the IMD in mitigating

dynamic response of normal types of buildings. In addition to the building struc-

tures, investigations have been made to evaluate the performance of the IMD or its

variants on the vibration control of other types of structures in civil engineering. Ma

et al. (2019) proposed a hydraulic rotational inertia damper for vibration control of

semisubmersible platforms in shallow sea, which churned seawater through rotation

of a ball screw device and generated damping force from fluid resistance. The de-

vice has been physically manufactured and has proven to be capable of providing

a large damping force in the water. Lu et al. (2017) developed a control-oriented

model to describe the in-plane motions of a cable-IMD system, based on which the
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effectiveness of the IMD on suppressing cable vibration in cable-stayed bridges have

been investigated, and their results showed that the IMD reduced a greater amount

of root-mean-square response of the cable displacement than FVDs. Lu et al. (2021)

assessed the performance of the IMD in the response mitigation of coupled adjacent

buildings and proposed some useful guidelines for positioning of the IMDs in such

buildings.

2.3.2 Other inerter-based passive control devices

In addition to the inertial mass dampers, extensive research has also been con-

ducted on the development of other types of inerter-based seismic control systems in

the last two decades, and those systems can be broadly categorized into two groups,

namely inerter-based vibration absorbers and inerter-based vibration isolators (Ma

et al. 2021a). The conventional vibration absorbers, typified by the tuned mass

damper, usually require a large secondary mass to be installed in the primary struc-

ture to obtain a desirable dynamic performance, and the effectiveness of the absorber

depends greatly on the mass ratio between the secondary mass and the target struc-

ture. In that context, inerters can be used to reduce the auxiliary mass and enhance

the control effectiveness. Based on the conventional TMDs, Hu and Chen (2015) pro-

posed some inerter-based dynamic vibration absorbers with different configurations,

and most of them can achieve a significant improvement in structural performance

compared with the traditional TMDs. Marian and Giaralis (2014) proposed a tuned

mass damper inerter that can either improve the performance of a TMD with a given

mass ratio or reduce the auxiliary mass without a degradation in structural perfor-

mance. Lazar et al. (2014) developed a tuned inerter damper that can be seen as a

special case of the tuned mass damper inerter, i.e., the auxiliary mass equals zero,

thus the physical mass of the damper can be reduced, and the workspace may be

saved. Other examples of the inerter-based vibration absorbers include the tuned

liquid inerter system developed by Zhao et al. (2019) and the nonlinear energy sink

inerter proposed by Javidialesaadi and Wierschem (2019). These inerter-based ab-

sorbers have proven to be effective vibration supersession devices not only for build-

ings (Pietrosanti et al. 2017, De Domenico et al. 2019, Shen et al. 2019, Petrini et al.

2020, Wang et al. 2021, Djerouni et al. 2021, Shen et al. 2021), but also for other

structures like vehicle suspension (Shen et al. 2016), fluid piping (Duan et al. 2021),

and marine shafting systems (Dai et al. 2022).

In addition to the absorbers, many inerter-based vibration isolators have also

been presented in the literature to upgrade the conventional base isolation systems.

For instance, Hu et al. (2015) proposed five configurations of inerter-based isolators
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and demonstrated their superior performances to the conventional isolator. Ma et al.

(2020) developed an inerter-based vibration isolation system to control heave motions

for semisubmersible platforms, and Shi et al. (2022) proposed an inerter-based non-

linear isolator with geometry nonlinearity produced by incorporating a linear inerter

into a diamond-shaped linkage. The effectiveness of different inerter-based isolators

has been assessed in some studies (Saitoh 2012, Yang 2016, Yang et al. 2017, Moraes

et al. 2018, Yang et al. 2020, Dong, Yang, Zhu, Chronopoulos and Li 2022); some

hybrid systems that combined different inerter-based vibration control systems have

also presented in recent years (De Domenico and Ricciardi 2018, De Angelis et al.

2019, Li, Chang, Cao and Huang 2021, Cao and Li 2022). Moreover, the applica-

tions of inerters in some specific engineering structures have been investigated. For

example, Li et al. (2017) evaluated the performance of different shimmy-suppression

layouts with inerters in vibration control of aircraft landing gear systems, and Dong,

Shi, Yang and Li (2022) proposed a nonlinear passive joint device based on inert-

ers to mitigate vibration transmission in coupled systems; the application of inerters

in some special structures or structural components like laminated composite plates

(Zhu et al. 2021) and metamaterial structures (Dong et al. 2021, Liu et al. 2022) have

also been studied.

2.4 Seismic control of atrium buildings and energy dissipation con-
figurations using specific structural elements

In the literature, very few research was conducted on seismic vibration control of

atrium buildings, which may be attributed to the fact that many conventional passive

control systems such as the interstory-placed damper-brace assemblies can already

provide sufficient damping to structures with atria. However, for better utilization of

the internal open space provided by the atrium, some passive control devices can be

installed inside the atrium to avoid excessive consumption of the usable space of the

building, such as the conventional tuned mass dampers (Lee et al. 2006, Leung et al.

2008, Bekdaş and Nigdeli 2011, Etedali and Rakhshani 2018, Bekdaş et al. 2018) and

more recent inerter-based absorbers like the tuned mass damper inerter and tuned

inerter damper (Marian and Giaralis 2014, Lazar et al. 2014, Marian and Giaralis

2014, Pietrosanti et al. 2017, Shen et al. 2019, Petrini et al. 2020, Pietrosanti et al.

2020, Deastra et al. 2020, Shen et al. 2021). These devices have been theoretically

and experimentally proven to be effective in mitigating the dynamic response of a

building when subjected to strong wind or earthquakes, yet a large space inside the

building is usually required for successful operations of these devices.

The truss-damper configuration proposed in this study utilizes a core structure to
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be a support of the passive control devices, as the core structure is also a structural

element that shall be designed to resist earthquake loads. Similar arrangements that

incorporated certain structural elements into the seismic control system of a build-

ing can be found in the literature, and most of them were proposed for the purpose

of enhancing the overall structural performance under external disturbances. For in-

stance, different floors can be connected together using certain passive control devices

to alleviate seismic response of the entire building (Marian and Giaralis 2014, Petrini

et al. 2020); an adjacent structure can be connected to the primary building with

different damping devices to control both structures (Bharti et al. 2010, Bigdeli et al.

2016, Kandemir-Mazanoglu and Mazanoglu 2017, De Domenico et al. 2020, Wang

et al. 2021), and some supplemental elements can also be built in the primary build-

ing to improve damping capacity of the seismic control devices, such as a strongback

system that utilized the uniform story drifts over the height of a building to dissipate

energy (Lai and Mahin 2015, Palermo, Laghi, Gasparini and Trombetti 2018), and

a damped outrigger system that used the relative vertical displacement between the

core and the perimeter columns of a high-rise building (tube-type building preferred)

to activate viscous dampers (Smith and Willford 2007, Alhaddad et al. 2020). A

recent example of the purpose-built supplemental elements for enhancing damping

capacity is a couple wall system proposed by Ji et al. (2021) for high-rise buildings,

which consists of two adjacent wall piers extending from the ground to the building

roof; multiple tuned viscous mass dampers were arranged between the wall piers in a

zigzag configuration, and the relative vertical motion between the two walls inducing

by the bending vibration of the building was used to activate the dampers.
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Chapter 3 Methodology

3.1 Numerical time-history analysis methods

In this thesis, the mass of a building is idealized as concentrated at the floor

levels. For instance, the structural model in Figure 3.1(a) is adopted to represent a

single-story structure. The equation of motion of an idealized building with nonlinear

viscous dampers can thus be expressed as a second-order ordinary differential equation

(ODE), of which the exact analytical solutions are difficult to be obtained. In this

thesis, numerical time-history approaches are adopted to solve the governing ODEs

directly for given earthquake inputs. The numerical techniques used in this research

will be introduced in the following sections.

3.1.1 State-space procedure

A single-story building with a supplemental nonlinear viscous damper installed

on top of a Chevron brace, as shown in Figure 3.1(a), is adopted here to demonstrate

the state-space technique used in this study.

Nonlinear FVD
Chevron brace

cd c

k
kb

m
x (t)

xg (t)

k

f d  (t) f d  (t)
c

m

x (t)

xg (t)(a) (b)

Figure 3.1: (a) Analytic model of a single-story structure with a nonlinear viscous
damper (b) an equivalent model.

The analytic model of the SDOF structure can also be represented using Figure

3.1(b), in which the force in the FVD is described as a nonlinear function fd(t). The

equation of motion of the analytic model can thus be expressed as:

mẍ(t) + cẋ(t) + kx(t) + fd(t) = −mẍg(t) (3.1)

where m, c, k and x(t) are the mass, damping coefficient, lateral stiffness, and hor-

izontal displacement of the structure, respectively, and ẍg(t) denotes the ground

acceleration.
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For a structural system with n-degree-of-freedom, the state variables, which de-

scribe the motion of the system, can be defined as the structural displacement and

velocity, i.e., xi(t) and ẋi(t) (i = 1, 2, ..., n). The structural motion can thus be rep-

resented in an 2n-dimensional Euclidean space contains xi(t) and ẋi(t), which is also

known as the state-space (Meirovitch 1990). When being converted from continu-

ous state to state-space, a second-order differential equation of motion will become a

first-order ODE, which simplifies the numerical integration process. The state-space

formulation of the equation of motion of the single-story building is:

ż0(t) = Az0(t) + Bfd(t) + Eẍg(t) (3.2)

where

z0(t) =

[
x(t)

ẋ(t)

]
is the response vector of the structure;

A =

[
0 1

−m−1k −m−1c

]
is the system matrix;

B =

[
0

−m−1

]
is the distribution vector of damper force fd(t);

E =

[
0

−1

]
is the distribution vector of the ground acceleration ẍg(t).

Although the form of equation of motion changes when it is expressed in state-

space formulation, the solution of structural response will be the same. The numerical

integration approach that solves differential equations using Laplace transformation

(Meirovitch 1990) is used in this research. For instance, to calculate Eq. (3.2),

Laplace transformation is first applied to the equation, which yields:

z0(s) = H(s)z0(t0) + H(s)Bfd(s) + H(s)Eẍg(s) (3.3)

where H(s) = (sI−A)−1.

By taking inverse Laplace transformation of Eq. (3.3), the response vector can

be described in the time-domain:

z0(t) = eA(t−t0)z0(t0) +

∫ t

t0

eA(t−τ){Bfd(τ) + Eẍg(τ)}dτ (3.4)

which can be evaluated by the following steps. Within the interval between two

consecutive sampling instants, t0 = k∆t and t = (k + 1)∆t, where ∆t is the sampling

period, it is assumed that the force induced by the nonlinear damper-brace system,
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fd(τ), is piece-wise constant, while the ground acceleration, ẍg(τ), changes linearly

within each time step, as described below:fd(τ) = fd(k∆t)

ẍg(τ) = (k+1)∆t−τ
∆t ẍg(k∆t) + τ−k∆t

∆t ẍg((k + 1)∆t)
for k∆t < τ < (k + 1)∆t (3.5)

By substituting Eq. (3.5) into Eq. (3.4), the response of the structure can be

further developed into a discrete-time state function for two consecutive sampling

points [k] and [k + 1]:

z0[k + 1] = A0z0[k] + B0fd[k] + E0ẍg[k] + E1ẍg[k + 1] (3.6)

where

A0 = eA∆t is the discrete system matrix;

B0 = A−1(A0 − I)B is the instant discrete damper force distribution matrix;

E0 = [A−1A0 + 1
∆tA

−2(I−A0)]E is the instant discrete ground acceleration distri-

bution vector at sampling point [k];

E1 = [−A−1 + 1
∆tA

−2(A0 − I)]E is the instant discrete ground acceleration distri-

bution vector at sampling point [k + 1].

It can be seen from Eq. (3.6) that, for a prescribed ground acceleration-history

ẍg, the next step response vector z0[k + 1] can be computed from the response vector

at the current step z0[k], once the damper force fd[k] is given. The damper force can

also be calculated using the state-space technique, as demonstrated in Section 4.2.

3.1.2 Runge-Kutta methods

The Runge-Kutta methods are a family of iterative approaches in numerical anal-

ysis, which are one of the most commonly used numerical integration methods for

solving initial value problems of ODEs (Cash and Karp 1990, Zheng and Zhang 2017,

Lindfield and Penny 2019). The Runge-Kutta methods were first proposed by Carl

Runge (Runge 1895) and Martin Kutta (Kutta 1901), which can construct numerical

computational formulas with high order accuracy for an ordinary differential equation

using the targeting ODE itself.

3.1.2.1 Fourth-order Runge-Kutta method (RK4)

For a differential equation ẏ = f(t, y), in which y(t0) = y0, the fourth-order

Runge-Kutta method is defined with the following recursion equation:

yn+1 = yn +
1

6
(K1 + 2K2 + 2K3 +K4) ∆t (3.7)
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where 1
6 (K1 + 2K2 + 2K3 +K4) is the weighted average slope of the solution; K1,

K2, K3 and K4 are the slope coefficients that are defined as:

K1 = f (tn, yn)

K2 = f
(
tn + ∆t

2 , yn + ∆t
2 K1

)
K3 = f

(
tn + ∆t

2 , yn + ∆t
2 K2

)
K4 = f (tn + ∆t, yn + ∆tK3)

(3.8)

The local truncation error of the fourth-order Runge-Kutta method is on the

order of O(∆t5), and the global accumulated error is on the order of O(∆t4). In this

study, RK4 is combined with the state-space method to conduct numerical analysis

of nonlinear structural systems with a constant time step size.

3.1.2.2 ODE suite in Matlab

The Matlab ODE suite provides different Runge-Kutta programs to solve dif-

ferential equations. The suite includes ode45, ode23, ode113, ode78, ode89, ode15s,

ode23s, ode23t, ode23tb and ode15i, among which the ode45 solver is recommended

as the prior choice for solving ODEs (MathWorks 2021). ode45 is a single-step solver

based on the explicit Runge-Kutta (4, 5) pair of Dormand and Prince (1980). The

fourth-order and fifth-order of the Dormand-Prince (4, 5) pair can be expressed as:

yi+1 = yi +

(
35

384
K1 +

500

1113
K3 +

125

192
K4 −

2187

6784
K5 +

11

84
K6

)
∆t (3.9)

zi+1 = yi +

(
5179

57600
K1 +

7571

16695
K3 +

393

640
K4 −

92097

339200
K5 +

187

2100
K6 +

1

40
K7

)
∆t

(3.10)

in which the slope coefficients are defined as:

K1 = f (tn, yn)

K2 = f
(
tn + 1

5∆t, yn + 1
5K1

)
K3 = f

(
tn + 3

10∆t, yn + 3
40K1 + 9

40K2

)
K4 = f

(
tn + 4

5∆t, yn + 44
45K1 − 56

15K2 + 32
9 K3

)
K5 = f

(
tn + 8

9∆t, yn + 19372
6561 K1 − 25360

2187 K2 + 64448
6561 K3 − 212

729K4

)
K6 = f

(
tn + ∆t, yn + 9017

3168K1 − 355
33 K2 + 46732

5247 K3 + 49
176K4 − 5103

18656K5

)
K7 = f

(
tn + ∆t, yn + 35

384K1 + 500
1113K3 + 125

192K4 − 2187
6784K5 + 11

84K6

)
(3.11)
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In this research, ode45 is adopted to be a solver of the differential equation be-

tween two consecutive computational time steps.

3.2 Performance assessment criteria

3.2.1 Performance indices

Performance-based design has been generally recognized as an ideal strategy for

the seismic design of civil engineering structures (Idels and Lavan 2021). According

to this design philosophy, the design criteria of the energy dissipation systems in

a structure shall be set based on specific structural performance objectives under

external disturbances, rather than considering only the additional damping provided

by the systems. Therefore, the effectiveness of a supplemental passive control device

in a structure can be assessed though evaluating different performance indices set.

A performance index reflects the response intensity or damage severity of the entire

structure or a certain structural component, which could be defined based on a specific

structural response such as roof displacement, interstory drift, story acceleration,

and base shear force. For instance, the following indices could be defined to reflect

the overall intensities of the story displacement and acceleration under a predefined

ground motion:

• The average of the root-mean-square (rms) of story displacement history.

PIS =
1

n

n∑
i=1

rms(xi) (3.12)

where xi is the horizontal displacement time-history of the i-th story of a MDOF

building.

• The average of the root-mean-square of story acceleration history.

PIA =
1

n

n∑
i=1

rms(ai) (3.13)

where ai is the absolute floor acceleration time-history of i-th story, given by

ai = ẍi + ẍg, in which ẍi and ẍg are the relative floor acceleration and the

ground acceleration, respectively.

A larger performance index generally indicates a more intense structural response

during the earthquake excitation. In order to numerically determine the improved

performance of the structure after the installation of a supplemental control system,
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a response reduction criterion is adopted with the following forms:

RRS(%) =

(
1− PIS

PIS,org

)
× 100 (3.14)

RRA(%) =

(
1− PIA

PIA,org

)
× 100 (3.15)

where RRS and RRA are the response reductions in story displacement and acceler-

ation, respectively; PIS,org and PIA,org are the corresponding performance indices of

the structure in the original state, i.e., without the control system. As the physical

meaning of a response reduction is the percentage of a specific structural response

that has been eliminated by the supplementary system during the earthquake, a more

effective design of the system would result in a larger response reduction.

3.2.2 Incremental dynamic analysis (IDA)

Previous research has revealed that the seismic performance of a structure can

be greatly affected by the vibration characteristic of the input ground excitation

(Bakhshinezhad and Mohebbi 2020). In order to evaluate the capacity and robust-

ness of a specific design of a seismic control system to the uncertainty of seismic

excitation input, multiple realistic earthquake records with different characteristics

could be incorporated into the performance assessment of the structure. One of the

approaches that has been adopted to tackle this task is the incremental dynamic

analysis developed by Vamvatsikos and Cornell (2002).

The IDA is generally recognized as a valuable method to evaluate the dynamic per-

formance of nonlinear structures within the framework of performance-based earth-

quake engineering (Han and Chopra 2006, Vamvatsikos 2011, Zacharenaki et al. 2014,

Soleimani et al. 2018). This method has been widely used in different civil structures,

such as buildings (Leng et al. 2020, Talley et al. 2021, Miari and Jankowski 2022),

bridges (Gönen and Soyöz 2021, Aldea et al. 2021), and dams (Alembagheri and

Ghaemian 2013, Soysal et al. 2016). In this thesis, IDA is adopted to investigate the

response intensities of a building structure when it is subjected to different earthquake

inputs and different excitation levels, and the average and maximum responses under

a set of probable ground acceleration records will be used to evaluate the structural

responses.

To conduct an IDA evaluation on a given structural model under a specific ground

acceleration, the following definitions should be addressed at the first place:

• Scale Factor (SF), which is a non-negative scalar that multiplies an unscaled

47



earthquake acceleration time-history to magnify or minify the accelerogram,

namely, SF = 1 represents the unscaled acceleration-history, SF < 1 indicates

a scaled-down accelerogram, and SF > 1 is a scaled-up one.

• Intensity Measure (IM), or monotonic scalable ground motion intensity mea-

sure. IM is a non-negative scalar that describes the intensity of a scaled ground

acceleration-history and increases with increasing scale factor SF. The com-

monly used IMs include peak ground acceleration (PGA), peaking ground ve-

locity and the 5% damped spectral acceleration at the structure’s fundamental

period (Sa(T1, 5%)).

• Damage measure (DM), or structural state variable, which is a non-negative

scalar that describes response intensity of the structural model when subjected

to a prescribed ground excitation input. Possible DMs include peak roof dis-

placement, peak story ductility, maximum interstory drift, story displacement

and acceleration.

An IDA curve is the plot of a structural state variable DM calculated or measured

in an IDA study against the intensity measures IMs for one or more earthquake inputs,

as illustrated in Figure 3.2, which demonstrates the changes in a specific DM, i.e.,

the maximum structural displacement, under ground acceleration records that are

scaled to progressively increasing level of intensity, which can provide an insight into

the nature of structural response to a specific earthquake excitation.
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Figure 3.2: IDA curves of a SDOF structure subjected to five different earthquakes.

3.3 Genetic algorithms (GAs) for performance optimization

For maximizing the seismic performance of a structure in terms of structural

response reductions, the design parameters of the seismic control systems, i.e., the
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Algorithm 1 Pseudocode for the genetic algorithm
Define structural properties and excitation inputs
Initialize population (design parameters) POP with size N
Define terminal conditions and maximum iteration number T
Set generation t = 0
while terminal condition not met and t ≤ T do
for i = 1 to N do

Evaluate fitness of POPt by computing target response reduction RR
end for
for i = 1 to N do

Select parents from POPt
end for
for i = 1 to N/2 do

Crossover and generate new population POPnew
end for
for i = 1 to N do

Perform mutation on POPnew
end for
for i = 1 to N do

Update population POPt+1 = POPnew
end for
t = t+ 1

end while
Return the best solution in POP as the optimal design parameters
Calculate the corresponding maximum response reduction RRmax

damper-brace and truss-damper assemblies, shall be optimally determined. To tackle

the challenges associated with potentially large number of supplemental systems used

in a building, genetic algorithm is adopted in this thesis as a global search engine for

the optimal design variables in single-objective optimization tasks. This evolutionary

algorithm was first popularized by Holland (1962), and has been extensively used

in civil engineering to solve the optimization problems involved in structure design

(Tavakolinia and Ch. Basim 2021, Ghasemof et al. 2022), structural model updating

(Shabbir and Omenzetter 2016), damage prediction and detection (Daryan and Palizi

2020, Kim et al. 2022), etc. Since GA makes a good balance between achieving a local

optimum by exploiting the best solutions and escaping from a local optimum through

exploring the solution space (Gen and Cheng 1999), this algorithm is recognized a

powerful tool in global optimization (Mishra et al. 2017, Fu et al. 2020, Katoch et al.

2021). Another reason to used GA in this research is that this algorithm is particular

suited for solving optimization problems with discrete objective functions (Singh and

Moreschi 2002), and the objective functions in this thesis are usually discretized. For

instance, in Section 5.1, different response reductions will be served as the objective

49



Start

Define structural properties and excitation inputs;
Initialize parent population POP and set generation t = 0

Evaluate target response reduction RR of each individual

Selection
Select parents for reproduction from POPt

Crossover
Generate new population (offspring) POPnew

Terminal conditions met or t > T?

Y

N

Stop

Mutation
Perform mutation on POPnew to explore the solution space

Evaluate RR and update population POPt+1 = POPnew;
t = t + 1

Figure 3.3: Flowchart of genetic algorithm for a single-objective optimization prob-
lem.

functions to optimize the damping coefficients of the viscous dampers under a dis-

crete ground accelerogram. As rigorous mathematical expressions of the structural

response cannot be obtained, the response reductions are no longer continuous func-

tions of the design parameters but rather discretized. Although GA is a suitable tool

for performing global optimizations in this research, it has some general drawbacks.

For example, GA usually requires a significant amount of fitness evaluations to obtain

an optimum (Ismail 2001) and it is less efficient in reaching an exact local optimum

compared with some local optimization algorithms (e.g., gradient decent) (Gen and

Cheng 1999); the random selection of parent population (i.e., initial design parame-

ters) may also reduce the quality of solutions at an initial stage (Beg and Islam 2016).
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Despite the drawbacks, the algorithm was found to be an effective tool to solve the

optimization problems in this thesis. The procedure of the genetic algorithm used

in this research is summarized in pseudocode 1; a flowchart of the algorithm is also

given, as shown in Figure 3.3.

Start

Define structural properties and excitation inputs;
Initialize parent population and set gen = 0

Evaluate fitness functions f1 and f2 of each individual

Conduct non­dominated sorting using rank and crowding
distance operators

Create offspring population using GA operators:
Selection, Crossover, Mutation

gen = gen_max ?

Y

N

Stop

Evaluate fitness functions f1 and f2 of each individual

Combine parent and offspring population

Sort new population using fast non­dominated sorting
algorithm and crowding distance operator

Select the best non­dominated solutions as a new
parent population; gen = gen + 1

Elitism

Figure 3.4: Flowchart of NSGA-II algorithm for a multi-objective optimization prob-
lem with two fitness functions.
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For the single-objective genetic algorithm optimizations performed in this re-

search, the solutions are deemed accurate and tolerable using the following stopping

criteria: (i) when the change in the mean value between two consecutive generations

is equal to or less than 10−4 for a design coefficient (e.g., damping coefficient) and

10−6 for a design ratio (e.g., damping ratio) after 100 iterations, or (ii) when the

number of iterations reaches 200, i.e., the maximum iteration number T is set to 200.

Notably, to reduce the probability of the algorithm being trapped by a local optimum

and ensure accuracy of the solutions, in this thesis, the size of population N of the

genetic algorithm is set to 20, and each of the optimization problems is optimized at

least five times by the algorithm.

Multi-objective optimizations are also conducted to minimize different structural

responses of a building simultaneously, e.g., minimizing interstory drift and base shear

force at the same time. For multi-objective optimization problems, the performance

objectives are usually in conflict with each other, i.e., the improvement of one may

lead to degrading of others. Therefore, instead of a single optimal solution, a set of

non-inferior solutions, also known as Pareto front or Pareto optimal solutions, should

be a more appropriate answer for the optimization problem. In some literature, the

multi-objective optimizations can be converted to single-objective optimizations us-

ing approaches such as weighted sum (Zadeh 1963) and goal attainment (Gembicki

and Haimes 1975). However, these approaches generally require multiple adjust-

ments and simulations to compute some possible optimal solutions at the Pareto

front (Bakhshinezhad and Mohebbi 2020). A more efficient way to solve a multi-

objective optimization may be to use algorithms that can detect Pareto fronts for

the fitness functions, which can find more Pareto optimal solutions at even a single

simulation run. For the multi-objective GA optimizations performed in this research,

a controlled elitist genetic algorithm gamultiobj embedded in Matlab optimization

toolbox is used, which was developed based on an upgraded non-dominated sort-

ing genetic algorithm (NSGA-II) (Deb 2001). Detailed algorithm of NSGA-II can

be found in Deb et al. (2002), and a flowchart of the algorithm for a two-objective

optimization problem is provided in Figure 3.4.

3.4 Earthquake ground motion representations

The time-variation of ground acceleration-history is recognized as the most ef-

fective definition of the ground shaking during an earthquake in seismic engineering

(Chopra 2012). The ground acceleration ẍg(t) usually appears at the right side of the

differential equation (e.g., Eq. (3.1)) that governing the structural seismic response.

And time-history analysis for building structures with predefined ground accelero-
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grams are usually required by worldwide seismic design standards. For instance, the

seismic design code of China (GB50011-2010) (CMC 2010) requires the designers to

use historic strong ground motion records and artificial accelerograms simultaneous

to conduction time-history analysis of structures. The American code FEMA 356

(ASCE 2000) requires at least three ground acceleration-history sets (two horizontal

components plus one vertical component if considered) that are selected and scaled

from three or more earthquake events to be used in the time-history analysis. In this

research, some realistic earthquake motion records, as well as two artificial accelero-

grams, i.e., a white-noise model and a Kanai-Tajimi model, will be adopted as the

ground excitation inputs. The data extraction approaches for the excitation inputs

will be introduced in the following sections.

3.4.1 Realistic earthquake records
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Figure 3.5: Spectral response accelerations of the realistic earthquake records
searched and scaled by a user-defined design spectrum with structural damping ratio
ξ = 5% using PEER database.

Acceleration recording instruments like strong-motion accelerographs can record

the ground acceleration-histories during an earthquake. The instruments are gen-

erally equipped at stations in earthquake-prone regions to record possible ground

motions (Chopra 2012). Strong ground shaking records collected at a target region

are useful information for seismic design of the building structures located near that

region or constructed at sites with a similar ground condition. Some design standards

also suggested specific earthquake motion records to be used for designing certain

types of buildings with certain site conditions (IEM 2004). The realistic earthquake

motion records used in this research are collected from the Pacific Earthquake Engi-
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neering Research Center (PEER) ground motion database (PEER 2022). The PEER

database provides tools for users to directly search the ground acceleration records

by earthquake information like event name, station name and moment magnitude. It

also allows the users to search records by a user-defined target design spectrum, as

shown in Figure 3.5.

3.4.2 Artificial accelerograms

Apart from the realistic earthquake records and a white-noise ground acceleration,

the Kanai-Tajimi earthquake model (Kanai 1960, Tajimi 1960) is also considered in

this research as a ground excitation input. The Kanai-Tajimi model idealizes the

earthquake ground acceleration as a stationary random process with a power spectral

density (PSD) function as follows:

Sẍg(ω) = S0
ω4
g + 4ξ2gω

2
gω

2(
ω2
g − ω2

)2
+ 4ξ2gω

2
gω

2
(3.16)

where S0 denotes the constant white-noise PSD of the bedrock excitation, ωg and

ξg are the fundamental circular frequency and damping ratio of surface soil deposit,

respectively, which can be regarded as the parameters of a SDOF linear filter for

the bedrock excitation. The above three parameters can be calibrated according to

different soil conditions and earthquake magnitudes. Table 3.1 lists the suggested

parameters of the Kanai-Tajimi model for different site types and seismic precau-

tionary intensities defined by the seismic design code of China GB50011-2010 (Shen

et al. 2021). In GB50011-2010 (CMC 2010), the site conditions are categorized into

4 types by the mean shear wave velocity of foundation soil or rock, namely, types I,

II, III and IV. These site types are also associated with the ground soil types, for

example, site type I is corresponding to rocks and close-grained gravels. The seismic

precautionary intensities VII, VIII and IX are also set by code GB50011-2010 to be

corresponded to an effective peak ground acceleration of 0.1-0.15g, 0.2-0.3g and 0.4g,

respectively.

Table 3.1: Parameters of Kanai-Tajimi earthquake model.

Intensity Parameter

Site type I II III

ωg ξg(%) S0 ωg ξg(%) S0 ωg ξg(%) S0

VII 33.9 0.38 5.6 23.3 0.43 9.6 17.8 0.46 13.8
VIII 33.9 0.38 22.0 23.3 0.42 36.8 17.9 0.46 52.3
IX 33.9 0.38 85.9 23.3 0.42 141.9 17.9 0.45 200.5
The unit of ωg is rad/s, the unit of S0 is (cm/s2)2/Hz.
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Spectrum representation approach developed by Shinozuka and Deodatis (1991)

is used in this research to generate artificial accelerograms from a Kanai-Tajimi earth-

quake model. For a Kanai-Tajimi model with a PSD function of Sẍg0(ω), an artificial

stationary stochastic representation of the PSD function, ẍg0(t), can be generated by

the following series as N →∞:

ẍg0(t) =
√

2
N−1∑
j=0

Qj cos (ωjt+ Φj) (3.17)

where

Qj =
√

(2Sẍg0(ωj)∆ω), j = 0, 1, 2, . . . , N − 1, Q0 = 0 (3.18)

ωj = j∆ω, j = 0, 1, 2, . . . , N − 1 (3.19)

∆ω = ωu/N (3.20)

Φj is a random phase angle for j = 0, 1, 2, . . . , N − 1, and ωu is an upper cut-off

frequency that Sẍg0(ω) may be assumed to be zero when ω > ωu. Since ωu is a fixed

value, according to Eq. (3.20), as N → ∞, ∆ω → 0. The following criterion can be

applied to estimate ωu:∫ ωu

0
Sẍg0(ω)dω = (1− ε)

∫ ∞
0

Sẍg0(ω)dω (3.21)

where ε << 1. For an estimated ωu, N can be calculated using Eq. (3.20) with a

fixed ∆ω.
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Figure 3.6: (a) PSD function and (b) ground acceleration-history of the Kanai-Tajimi
earthquake model (seismic intensity VIII, site type II).
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To demonstrate the spectrum representation approach, an artificial accelerogram

of a ground motion with seismic intensity VIII and site type II (in which the founda-

tion soil is composed mostly of medium-hard-soil or medium-soft-soil) is generated.

The parameters of the corresponding Kanai-Tajimi model, ωg, ξg and S0, according

to Table 3.1, are 23.3 rad/s, 42% and 36.8 (cm/s2)2/Hz, respectively. Figure 3.6(a)

shows the PSD of the Kanai-Tajimi model considered, and an artificial accelero-

gram generated from the PSD function using the spectrum representation approach

is shown in Figure 3.6(b). It is worth noting that, as the Kanai-Tajimi model assumes

the ground acceleration as a stationary random process and utilizes a white-noise to

represent the excitation in bedrock, the excitation amplitude of the accelerogram

generated from the Kanai-Tajimi model will not gradually reduce to zero, as shown

in Figure 3.6(b), which is different from a realistic earthquake record.
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Chapter 4 Dynamic response of a SDOF structure with a

nonlinear damper-brace system

In building applications, viscous dampers are often installed between adjacent

stories to dissipate seismic energy and increase the resilience of the structure. Since

the interstory-placed dampers are connected in series with their supporting braces, it

is essential to incorporate the braces into the analytic model of the dampers. In this

chapter, a numerical time-history method will be developed to compute the seismic

response of a SDOF structure with a nonlinear damper-brace system in the time-

domain; the correctness and accuracy of the proposed method will be verified using a

numerical comparative study, and the feasibility of the method in evaluating dynamic

performance of a building will be further assessed with a comparative case study.

4.1 Mathematical modelling and governing equations

Δd  (t)  Δb (t)

Nonlinear FVD
Chevron brace

cd c

k
kb

m

Nonlinear
dashpot cd  ,n

Spring
kb

(a) SDOF structure (b) Maxwell model under loading

x (t)

f d  (t)f d  (t)

xg (t)

Figure 4.1: (a) Analytic model of a single-story structure with a nonlinear viscous
damper (b) Maxwell model under an external load fd(t).

A single-story structure equipped with a nonlinear damper on top of a Chevron

brace, as shown in Figure 4.1(a), is investigated in this section. The equation of

motion of the structure is described in Eq. (3.1). Since the damper and the Chevron

brace are connected in series, the damper force will always be equal to the restoring

force in the brace. It will be assumed that the damper force obeys the nonlinear

power law of Eq. (1.1), while the restoring force in the brace obeys the Hooke’s law:

fd(t) = kb∆b(t) = cd|∆̇d(t)|νsgn(∆̇d(t)) (4.1)

where kb and ∆b(t) are the stiffness and the deformation of supporting brace in the
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horizontal direction, respectively, cd and ∆̇d(t) are the damping coefficient and the

deformation rate of the damper, respectively, ν is the exponent of the damper velocity

∆̇d(t), and the signum function sgn(·) is defined as:

sgn(x) =


1 for x > 0

0 for x = 0

−1 for x < 0

(4.2)

For the Maxwell model shown in Figure 4.1(b), the following kinematic conditions

must be imposed for the damper-brace system:

∆(t) = ∆d(t) + ∆b(t) (4.3)

and

∆̇(t) = ∆̇d(t) + ∆̇b(t) (4.4)

where ∆(t) is the total deformation of the damper-brace system.

4.2 Numerical time-history approach for a SDOF structure

The state-space procedure for obtaining the numerical solution of the equation

of motion of the single-story building equipped with a single nonlinear damper-brace

system is described in Section 3.1.1. When subjected to a ground acceleration input,

the discrete-time state expression of the structural dynamic response can be described

using Eq. (3.6), yet the force in the damper-brace system remains unknown. There-

fore, once the damper force fd is calculated, the numerical time-stepping method is

completed, and the structural response can be computed from Eq. (3.6). To obtain

the damper force, Eq. (4.1) is first rewritten as:

|∆̇d(t)|sgn(∆̇d(t)) = (
kb
cd

)
1
ν |∆b(t)|

1
ν sgn(∆b(t)) (4.5)

which can be further expressed as:

∆̇d(t) = (
kb
cd

)
1
ν |∆b(t)|(

1
ν
−1)∆b(t) (4.6)

For a single-story structure with a damper supported by a Chevron-type brace as

shown in Figure 4.1(a), the story velocity of the structure ẋ(t) is equal to the total
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deformation rate of the damper-brace system ∆̇(t), thus Eq. (4.4) becomes:

ẋ(t) = ∆̇d(t) + ∆̇b(t) (4.7)

The substitution of Eq. (4.6) into Eq. (4.7) yields:

∆̇b(t) = A(t)∆b(t) + ẋ(t) (4.8)

where A(t) is a dependent variable that changes with the horizontal deformation of

Chevron brace ∆b(t):

A(t) = −(
kb
cd

)
1
ν |∆b(t)|(

1
ν
−1) (4.9)

Eq. (4.8) is a first-order differential equation that describes the dynamic response

of the damper-brace system when excited by the structural velocity ẋ(t). It should

be noted that the results of Eqs. (4.6) and (4.9) become infinity at a zero-brace

deformation when ν is larger than unity, thus Eqs. (4.6) and (4.8) are valid only for

velocity exponents less than or equal to one. Eq. (4.8) can be solved numerically in

discrete-time state space by discretization of the independent variable, time t. The

dependent variables, namely, the structural velocity ẋ(t) and variable A(t) will change

with the time step. It is assumed that A(t) is a piece-wise constant and ẋ(t) changes

linearly within each computational time interval:A(τ) = A(k∆t)

ẋ(τ) = (k+1)∆t−τ
∆t ẋ(k∆t) + τ−k∆t

∆t ẋ((k + 1)∆t)
for k∆t < τ < (k + 1)∆t (4.10)

Apply the Laplace transform on both sides of Eq. (4.8) gives:

∆b(s) = G(s)∆b(t0) +G(s)ẋ(s) (4.11)

where G(s) = (s−A(s))−1.

Take the inverse Laplace transform of Eq. (4.11) while noting the assumptions made

in Eq. (4.10), the brace deformation ∆b can be expressed as the following discrete-

time state equation:

∆b[k + 1] = Ad[k]∆b[k] + E0[k]ẋ[k] + E1[k]ẋ[k + 1] (4.12)

where

A[k] = −(kbcd )
1
ν |∆b[k]|(

1
ν
−1);
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Ad[k] = eA[k]∆t;

E0[k] = A[k]−1Ad[k] + 1
∆tA[k]−2(1−Ad[k]);

E1[k] = −A[k]−1 + 1
∆tA[k]−2(Ad[k]− 1).

The force provided by the nonlinear damper-brace system at sampling point [k + 1]

can thus be calculated by substituting brace deformation ∆b[k + 1] from Eq. (4.12)

back into Eq. (4.1) to give:

fd[k + 1] = kb∆b[k + 1] = kb [Ad[k]∆b[k] + E0[k]ẋ[k] + E1[k]ẋ[k + 1]] (4.13)

The substitution of Eq. (4.13) into Eq. (3.6) gives the complete discrete-time

state expression of the structural response under the prescribed earthquake. It should

be noted that, before an earthquake, the building is assumed to be initially at rest

with a horizontal deformation equals zero, i.e., z0[1] = [0 0]T, hence imposing no

deformation on the damper-brace system. In other words, the damper force at the

first sampling instant, fd[1], must be set to zero.

4.3 Evaluations of the proposed numerical approach

In this section, the correctness and accuracy of the numerical time-stepping

method developed in Section 4.2 will first be examined by the fourth-order Runge-

Kutta method, and the feasibility of using the method to conduct structural perfor-

mance evaluations will then be assessed through a comparative study with a research

from Chen and Chai (2011).

4.3.1 Comparative numerical verification

In Eq. (4.5), the term at right side of the equation, |∆̇d(t)|sgn(∆̇d(t)), is equal

to ∆̇d(t). Thus the substitution of Eq. (4.5) into Eq. (4.7) yields:

∆̇b(t) = ẋ(t)− (
kb
cd

)
1
ν |∆b(t)|

1
ν sgn(∆b(t)) (4.14)

Since Eq. (4.14) is a first-order ODE that describes the dynamic response of the

brace in a nonlinear damper-brace system, Runge-Kutta methods can also be used

to solve it numerically and compute the nonlinear damper force with Eq. (4.1).

Here, RK4 is adopted to calculate the damper force as well as the structural response

under a given ground acceleration, which can be used to evaluate the accuracy of the

numerical time-stepping method proposed in Section 4.2. Using RK4, the discrete-

time state function of brace deformation for two consecutive sampling steps [k] and
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[k + 1] can be expressed as:

∆b[k + 1] = ∆b[k] +
1

6
(Kb1 + 2Kb2 + 2Kb3 +Kb4)∆t (4.15)

where

Kb1 = ẋ[k]− (
kb
cd

)
1
ν |∆b[k]|

1
ν sgn(∆b[k])

Kb2 =
1

2
(ẋ[k] + ẋ[k + 1])− (

kb
cd

)
1
ν |∆b[k] +

∆t

2
Kb1|

1
ν sgn(∆b[k] +

∆t

2
Kb1)

Kb3 =
1

2
(ẋ[k] + ẋ[k + 1])− (

kb
cd

)
1
ν |∆b[k] +

∆t

2
Kb2|

1
ν sgn(∆b[k] +

∆t

2
Kb2)

Kb4 = ẋ[k + 1]− (
kb
cd

)
1
ν |∆b[k] + ∆tKb3|

1
ν sgn(∆b[k] + ∆tKb3)

(4.16)

Noting that Eq. (4.16) also assumes the structural velocity ẋ(t) changes linearly

within each computational time interval. The force in the damper-brace system at

time step [k + 1] can be computed by substituting the value of ∆b[k + 1] calculated

by Eq. (4.15) into Eq. (4.1).

To calculate the structural response, the equation of the motion of the SDOF

structure, Eq. (3.1), is first rewritten as: ẋ(t) = y(t)

ẏ(t) = −m−1c y(t)−m−1k x(t)−m−1fd(t)− ẍg(t)
(4.17)

The discrete expression of the structural response can thus be expressed as:
x[k + 1] = x[k] +

1

6
(K11 + 2K12 + 2K13 +K14)∆t

y[k + 1] = y[k] +
1

6
(K21 + 2K22 + 2K23 +K24)∆t

(4.18)

(see next page)
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where

K11 = y[k]

K21 = −m−1c y[k]−m−1k x[k]−m−1fd[k]− ẍg[k]

K12 = y[k] +
∆t

2
K21

K22 = −m−1c
(
y[k] +

∆t

2
K21

)
−m−1k

(
x[k] +

∆t

2
K11

)
−m−1fd[k]

− 1

2
(ẍg[k] + ẍg[k + 1])

K13 = y[k] +
∆t

2
K22

K23 = −m−1c
(
y[k] +

∆t

2
K22

)
−m−1k

(
x[k] +

∆t

2
K12

)
−m−1fd[k]

− 1

2
(ẍg[k] + ẍg[k + 1])

K14 = y[k] + ∆tK23

K24 = −m−1c (y[k] + ∆tK23)−m−1k (x[k] + ∆tK13)−m−1fd[k]− ẍg[k + 1]

(4.19)

Noting that the assumptions made in Eq. (3.5) are also adopted by Eq. (4.19), i.e.,

the damper force is a constant between two adjacent sampling instants, while the

ground acceleration changes linearly.

To conduct accuracy assessment for the numerical method, a SDOF structure

with a natural period of 1 second is considered. This period is in the period range

of 0.5 and 1.5 seconds, which is the range for structures with medium fundamental

periods defined by the performance-based seismic design rule of China (CECS 160:

2004) (IEM 2004). The stiffness of the structure is assumed to be 100 kN/m, which

is the lateral stiffness used in some literature (De Domenico and Ricciardi 2019) for

evaluating SDOF structures. The structural mass can thus be calculated from the

natural period and stiffness as 2533 kg, and a 3% damping ratio is assigned to the

structure. The seismic inputs are set as a ground acceleration record from the 1940

Imperial Valley earthquake recorded at station El Centro, and the artificial accelero-

gram generated from the Kanai-Tajimi earthquake model shown in Figure 3.6. Two

different nonlinear damper-brace systems are respectively attached to the structure,

and the structural responses are computed respectively for each seismic input. The

design parameters of the two damper-brace systems are set as: damping coefficient

cd,1 and velocity exponent ν1 of damper 1 are 2 kN·(s/m)0.5 and 0.5, respectively,

damping coefficient cd,2 and velocity exponent ν2 of damper 2 are 10 kN·s/m and

1.0, respectively, and the stiffness of braces for the two dampers are identically set to

100 kN/m. It is worth noting that although the examined parameter combinations
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Mean
E.m.

: 7.96×10-4 kN     StDev
E.m.

: 0.29058 kN
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RK4
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: 0.29050 kN
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: -0.05359 mm     StDev
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Mean
RK4
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: -5.08×10-4 kN     StDev
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Mean
RK4

: -0.02640 mm     StDev
RK4
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(a) Numerical response results for damper 1 (c
d
 = 2 kN·(s/m)0.5, v = 0.5).

(b) Numerical response results for damper 2 (c
d
 = 10 kN·s/m, v = 1.0).
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Figure 4.2: Structural responses from different methods under the 1940 Imperial
Valley earthquake.

(cd,1 and ν1, cd,2 and ν2) do not need to be the optimal ones, they are selected to be

not very far from the optimal damper parameters for the SDOF structure to achieve

an optimal performance in story drift under white-noise excitation; those optimal

damper parameters can be found in Figure 5.2.

Figures 4.2 and 4.3 show the dynamic response results of the structure when

subjected to the 1940 Imperial Valley earthquake and the Kanai-Tajimi excitation,

respectively. In each figure, the response results, namely, the damper force and

the story displacement, are computed respectively using the examined numerical

time-stepping method and RK4. Mean value and standard deviation for each of the

response histories are also calculated and listed in the figures. It can be seen from

Figures 4.2 and 4.3 that, the curves which represent the response results from the

examined method and the curves representing the RK4 results are almost precisely

the same, which suggests a high accuracy of the numerical method developed in this

chapter. Moreover, if the results from RK4 are assumed to be accurate, among all

the mean value and standard deviation results, the maximum error in mean value

63



of the results from the examined method is 2.4%, calculated from the damper force

time-history in Figure 4.2(a); the maximum error in standard deviation of the results

from the examined method is 0.38%, also calculated from the damper force results

in Figure 4.2(a), and all the other errors are below 0.5%. The error evaluation also

suggests acceptable accuracy of the proposed numerical method.
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(a) Numerical response results for damper 1 (c
d
 = 2 kN·(s/m)0.5, v = 0.5).

(b) Numerical response results for damper 2 (c
d
 = 10 kN·s/m, v = 1.0).

10 15 20

Time (s)

-3

0

3

D
a

m
p

er
 f

o
rc

e 
(k

N
)

Examined method
RK4

10 15 20

Time (s)

-50

0

50
S

to
ry

 d
is

p
l.

 (
m

m
)

Examined method

RK4

0 5 0 5

0 5 10 15 20

Time (s)

-1.5

0

1.5

D
a

m
p

er
 f

o
rc

e 
(k

N
)

Examined method
RK4

0 5 10 15 20

Time (s)

-50

0

50

S
to

ry
 d

is
p

l.
 (

m
m

)

Examined method

RK4

Figure 4.3: Structural responses from different methods under the Kanai-Tajimi ex-
citation.

The computation costs of the examined numerical method and the fourth-order

Runge-Kutta method are also compared using Matlab. Table 4.1 shows the comput-

ing times consumed by the two methods, and the total amounts of computer memory

allocated to the methods, during ten successive runs of a program that computes

seismic response of the SDOF structure under the Kanai-Tajimi excitation, when

the building is equipped with a nonlinear damper-brace system with the predefined

damper parameters, cd,1 and ν1, and brace stiffness equals 100 kN/m. It can be

observed from the table that the examined method consumes fewer computing times

than the Runge-Kutta method, except in the first run, yet the total computer memo-

ries allocated to the examined method are generally larger, especially in the first run.
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Table 4.1: Computation costs of the numerical method and RK4 for the SDOF
structure with damper parameters cd,1 and ν1 under the Kanai-Tajimi excitation.

Examined method RK4

Number Total Allocated Total Allocated
of runs time (s) memory (Kb) time (s) memory (Kb)

1 0.106 11812 0.093 8800
2 0.064 1108 0.088 8524
3 0.063 1116 0.092 1660
4 0.062 0 0.095 2388
5 0.075 1156 0.094 1656
6 0.072 1272 0.092 596
7 0.072 68 0.091 64
8 0.077 1116 0.094 592
9 0.073 1156 0.097 0
10 0.074 1108 0.097 228

It is also found that the longer computation time for the examined method in the

first run is mainly due to a children function expm called for defining the discrete sys-

tem matrix that relates only to the properties of primary building and the sampling

period, as shown in Eqs. (3.2) and (3.6), and the proposed approach spends less time

on computing damper force than the Runge-Kutta method. As the instant memory

being occupied by the program is well below the computer’s capacity, the total time

consumed is more reflective of the computation cost of a method, thus the proposed

approach has an advantage in computing time. However, as mentioned in Section

4.2, the proposed method only valid for velocity exponents less than or equal to one,

while RK4 works well for most of the commonly used velocity exponents, hence the

applicability of the proposed method is lower than the Runge-Kutta method.

4.3.2 Comparative structural performance evaluation

In the research work conducted by Chen and Chai (2011), the seismic performance

of a SDOF structure equipped with a linear viscous damper on top of a Chevron brace,

as shown in Figure 4.4, were evaluated; an optimization procedure was also presented

to find the optimal parameters for maximizing the structural performances in story

displacement and acceleration. Since linear viscous dampers were adopted, frequency-

domain analysis was performed to find the closed-form solutions for the optimal

structural performances under a white-noise ground excitation. The feasibility of the

numerical method proposed in this chapter can thus be examined by comparing the

corresponding optimal performance results with those of the closed-form solutions.

The mathematical procedures introduced by Chen and Chai (2011) to obtain the
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Figure 4.4: Analytic model of a single-story structure with a linear FVD.

optimal performances in story displacement and acceleration of a SDOF structural

system are described below:

The damper force in the linear damper-brace system can be described using the

following first-order differential equation:

fd(t) +
cd
kb
ḟd(t) = cd∆̇(t) (4.20)

Eq. (4.20) can be substituted into Eq. (3.1) to obtain the equation of motion of the

structure. By taking the Fourier transform for each term in the equation of motion,

the story displacement in the frequency-domain, x(ω), was described as a function of

the Fourier transform of the ground acceleration, ẍg(ω):

x(ω) = H(ω)ẍg(ω) (4.21)

where H(ω) is the transfer function with the following expression:

H(ω) =
−mc2dω2 −mk2b

−c2dmω4 + jc2dcω
3 +

(
c2dkb + c2dk − k2bm

)
ω2 + j(cdk

2
b + ck2b )ω + k2bk

(4.22)

where j denotes the imaginary constant. To evaluate the seismic performance in story

displacement of the SDOF structure, the mean square value of the story displacement

was defined as a displacement index:

Js = δ2 =

∫ ∞
−∞
|x(ω)|2 dω (4.23)

A zero-mean white-noise with a constant power spectral density of S0 was assumed

to be the seismic input. By substituting Eq. (4.21) into Eq. (4.23), the story
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displacement performance index Js can be calculated as:

Js = πS0
4ξαbβd + α2

b + 4β2d
ω3
1

(
8αbβdξ2 + 2

(
α2
b + 4(αb + 1)β2d

)
ξ + 2α2

bβd
) (4.24)

where αb = kb/k and βd = cd/(2mω1) are the dimensionless brace stiffness ratio and

damping ratio for the damper-brace system; ω1 and ξ denote the natural circular

frequency and inherent damping ratio of the SDOF structure. To achieve an optimal

structural performance in story displacement, Eq. (4.24) should be minimized with

respect to both αb and βd. However, since the brace should be designed with a

limited stiffness coefficient in practice, a minimized performance index Js,opt can be

achieved by solving ∂Js/∂βd = 0 for a set brace stiffness ratio αb. The mathematical

expressions of the minimum performance index Js,opt and the optimal damping ratio

βd,s,opt are:

Js,opt = πS0
2 (1− ξ)

ω1
3 (αb + 4 (ξ − ξ2))

(4.25)

and

βd,s,opt =
αb

2 (1− 2ξ)
(4.26)

To calculate the improved story displacement performance after the installation of

the viscous damper with an optimal damping ratio βd,s,opt, a target reduction ratio

TRs was adopted with the following expression:

TRs = 1− Js,opt
Js,org

=
αb

αb + 4 (ξ − ξ2)
(4.27)

where Js,org is the displacement performance index of the original structure, which

can be obtained by setting βd to zero in Eq. (4.24).

In addition to the structural performance in story displacement, the performance

in story absolute acceleration was also considered by Chen and Chai (2011). The

story absolute acceleration of the SDOF system a(t) is given by:

a(t) = ẍ(t) + ẍg(t) (4.28)

Taking the Fourier transform for Eq. (4.28) yields the following equation:

a(ω) =
(
1− ω2H(ω)

)
ẍg(ω) (4.29)
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To evaluate the structural acceleration performance, a story acceleration index Ja

was defined as the mean square of the story acceleration in the frequency-domain:

Ja = σ2a =

∫ ∞
−∞
|a(ω)|2 dω (4.30)

Similar to TRs, the target reduction in story acceleration, TRa, was calculated as:

TRa = 1− Ja,opt
Ja,org

=
αb (1− 2ξ)2

(αb + 4 (1− ξ) ξ) (1 + 4ξ2)
(4.31)

where Ja,opt and Ja,org are the optimal story acceleration performance index and the

index of the original structure without the damper-brace system, respectively. The

corresponding optimal damping ratio for achieving the target reduction was expressed

as:

βd,a,opt =
αb (1− 2ξ)

2(αb + 1)
(4.32)

To assess the feasibility of the numerical time-history method in Section 4.2 in the

evaluation of structural seismic performances, the target reductions and the optimal

damping ratios are recalculated in the time-domain using the numerical method. A

single-story building with the same mass and stiffness properties as the structure

studied in Section 4.3.1 is adopted here. A linear damper-brace system is installed

in the building, and two different damping ratios, i.e., 2% and 5%, are assigned to

the structure, respectively. It can be observed from Eqs. (4.26), (4.27), (4.31) and

(4.32) that the optimal results, i.e., TRs, TRa, βd,s,opt and βd,a,opt, are independent

of the PSD magnitude of the white-noise excitation S0, thus S0 could be any value for

generating a white-noise accelerogram. However, it is found that a white-noise time-

history with an infinite frequency bandwidth is hard to be produced; a white-noise

Figure 4.5: Time-history of a zero-mean white-noise ground acceleration.
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time-history with a constant PSD at limited frequency bandwidth is thus adopted

here as the ground acceleration input, as shown in Figure 4.5.

Figure 4.6: Target displacement reduction versus brace stiffness ratio for the SDOF
structure under white-noise (ν = 1).

Figure 4.7: Optimal damping ratio for displacement performance versus brace stiff-
ness ratio for the SDOF structure under white-noise (ν = 1).

The time-histories of story displacement and acceleration can be computed using

the numerical time-stepping method, and the performance indices can thus be cal-

culated in the time-domain. For a given set of design parameters, namely for given

αb and βd, the corresponding performance indices, Js and Ja, can be calculated by

taking the mean-square values of the time-histories of story displacement and story
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absolute acceleration of the structure, receptively. By minimizing the performance

indices for a given brace stiffness ratio under the white-noise excitation, the optimal

performance indices, Js,opt and Ja,opt, and the corresponding optimal damping ratios,

βd,s,opt and βd,a,opt, can be obtained. The target reductions TRs and TRa can thus

be calculated by Eqs. (4.27) and (4.31). Notably, as only linear viscous dampers are

involved the evaluations, the velocity exponent was set to one during the numerical

computations.

Figure 4.8: Target acceleration reduction versus brace stiffness ratio for the SDOF
structure under white-noise (ν = 1).

Figure 4.9: Optimal damping ratio for acceleration performance versus brace stiffness
ratio for the SDOF structure under white-noise (ν = 1).
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The comparative plots of the target reductions in story displacement, TRs, and

the optimal damping ratios, βd,s,opt, against the brace stiffness ratios for 0 ≤ αb ≤ 5

are plotted in Figure 4.6 and 4.7, respectively, and Figure 4.8 and Figure 4.9 display

the corresponding plots for TRa and βd,a,opt, respectively. It can be seen from Figure

4.6 and 4.8 that, the target reduction results from the numerical method are generally

consistent with those from the closed-form solutions. However, in Figure 4.7, the

optimal damping ratios computed from the numerical method deviate a little bit from

the closed-form solutions in Eq. (4.26) when αb is greater than 3.5. It is found that

the differences between the numerical results and closed-form solutions mainly come

from the different ground excitation inputs, as the numerical computations adopt

a white-noise accelerogram generated from a PSD function with limited frequency

bandwidth to be the ground acceleration, while the closed-form solutions are based

on a white-noise with an infinite bandwidth. The differences may also come from the

optimization process of the design parameters, as well as the error accumulated from

the assumptions made in Eqs. (3.5) and (4.10) during the numerical computations.

Despite the differences, it can be seen from these comparative plots that the closed-

form solutions generally agree with the results from the proposed numerical approach,

which indicates that the accuracy of the structural seismic response computed from

the numerical approach is adequate to evaluate dynamic performance of the structure

and compute optimal design parameters.

4.4 Conclusions

In this chapter, a numerical time-history approach was developed for dynamic

analysis of building structures with nonlinear damper-brace systems. The proposed

approach explicitly dealt with the nonlinearity of the viscous dampers based on state-

space technique, which can compute the response time-histories of a SDOF structure

with a damper installed on top of a Chevron brace subjected to a ground acceleration.

The correctness and accuracy of the developed approach were verified through a

numerical comparative study. The results obtained from the proposed approach were

consistent with those calculated from the fourth-order Runge-Kutta method. The

feasibility of the numerical method for conducting structural performance evaluations

has also been evaluated using a comparative case study. The results from the proposed

method showed a good agreement with the closed-form solutions.
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Chapter 5 Effects of brace stiffness and damper nonlinear-

ity on seismic performance of building struc-

tures

Supporting braces for viscous dampers are considered a crucial component for

ensuring an efficient energy dissipation in a structure. Despite their importance,

limited research has been conducted to investigate the effects of the brace stiffness

and the velocity exponent of fluid viscous damper in building applications. In this

chapter, based on the numerical time-history approach developed in Chapter 4, the

influences of the design variables of a nonlinear damper-brace assembly on the seismic

performance of building structures are investigated through parametric studies, using

first a SDOF structure, followed by multi-story buildings. Optimizations of the design

parameters for maximizing a target structural performance are performed based on

genetic algorithm, and the robustness of the optimal design results are evaluated

through incremental dynamic analysis.

5.1 Performance assessment of a SDOF structure with a nonlinear
damper-brace system

The effectiveness of the damper-brace system under seismic excitation will now be

assessed through an evaluation of various performance indices. As noted in Section

3.2.1, the improved performance of the structure may be quantified using a response

reduction criterion by comparing the performance indices before and after the in-

stallation of the damper-brace systems. In the next two sections, different response

reduction ratios will be defined, and the effects of brace stiffness and damper nonlin-

earity on the overall structural performance will be presented for a SDOF shear-type

building.

5.1.1 Minimization of interstory drift

The performance of a multi-story building under earthquake conditions may be

assessed using the interstory drifts. In this chapter, the average of the root-mean-

square of the interstory drift time-history is taken as the first performance index:

PID =
1

n

n∑
i=1

rms (δi) for n-story structures (5.1)

where δi is the interstory drift time-history of the i-th story of a MDOF building. In

addition to representing the interstory drift intensity of the structure, the PID index
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also reflects the extent of structural wall damage during an earthquake (Silvestri and

Trombetti 2007).

To evaluate the structural performance after the installation of the supplemental

damper–brace systems, a response reduction ratio RRD is adopted with the following

expression:

RRD(%) =

(
1− PID

PID,org

)
× 100 (5.2)

where PID,org is the interstory drift performance index of the structure in the original

state, i.e., without the damper–brace systems. Since RRD represents the percentage

reduction in structural interstory drift after installing the braces and dampers, a

larger RRD would indicate a more effective design of the damper-brace system.

For the purposes of design of the structure in Figure 4.1(a), two parameters can

be defined for the damper-brace system: (i) a dimensionless brace stiffness ratio, α,

relating the brace lateral stiffness to the structure story stiffness, i.e.,

α ≡ kb
k

(5.3)

and (ii) a damping ratio, β, relating the damping coefficient of the supplemental

damper to the mass and vibrational frequency of the structure, i.e.,

β ≡ cd
2mω1

(5.4)

where ω1 =
√
k/m is the natural circular frequency of the primary structure. It is

worth noting that since the unit of cd changes with the velocity exponent ν, the unit

of β is (s/m)ν−1.

A parametric study is now conducted to assess the effects of different design

parameters on structural performance using the properties defined in Section 4.3

for a SDOF structure: story mass m = 2533 kg, story stiffness k = 100 kN/m, and

inherent damping ratio ξ = 2%. Note that the natural period of the primary structure

has been set to 1 second. Different combinations of the design parameters (α, β, and

ν) are then assigned to the brace-damper system to quantify the response reduction

in the interstory drift of the structure. A white-noise acceleration time-history with

a zero-mean is used as the input ground motion.

Figure 5.1 shows the three-dimensional mesh and contour plots of the response

reduction in interstory drift RRD versus brace stiffness ratio α and damping ratio of

the supplemental damper β for a velocity exponent ν equals 0.6 and 0.8. The colour

of the mesh reflects the magnitude of the response reduction, with greater values of
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Figure 5.1: Three-dimensional mesh plot and contour plot of response reduction in
interstory drift versus brace stiffness ratio and supplemental damping ratio for the
SDOF structure under white-noise excitation.

RRD implying smaller interstory drift response and hence a more effective and desir-

able design of the damper and the brace. It can be seen from Figure 5.1(a) that for

a velocity exponent of ν equals 0.6, a larger brace stiffness and a larger damping co-

efficient of the supplemental damper result in better structural performance in terms

of interstory drift reduction. However, there exists an infinite combination of the de-

sign parameters for a given targeted response reduction. Importantly, it can be seen

from the contour plot in Figure 5.1(a) that, for a specified response reduction, there

exists a minimum brace stiffness and a corresponding optimum damping coefficient

of the viscous damper. Similar observations are made for the case of ν equals 0.8, as

shown in Figure 5.1(b). These findings for structures with nonlinear damper-brace

systems are consistent with that observed for linear damper-brace systems, as had

been reported earlier by Chen and Chai (2011).

Given a target response reduction, the existence of a minimum brace stiffness, as
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noted above, suggests that a worthwhile exercise would be to investigate the maxi-

mum level of response reduction that can be achieved by the damper-brace system

if the brace stiffness is constrained. For the best performance, however, the damp-

ing coefficient of the viscous damper cd also needs to be optimized. To that end,

for a given brace stiffness, the damping coefficient is hereby optimized, with the re-

sponse reduction in interstory drift serving as the objective function, which is to be

maximized.

≈ 67.7%

≈ 81.0%
≈ 85.4%

≈ 67.7%

≈ 81.0%

≈ 85.4%

Figure 5.2: (a) Maximum response reduction in interstory drift RRD,max and (b)
corresponding optimal damping ratio βD,opt against brace stiffness ratio α for the
SDOF structure under white-noise excitation.

Figure 5.2 shows the maximum response reduction in interstory driftRRD,max and

the corresponding optimal damping ratio βD,opt versus the brace stiffness ratio α for

velocity exponent ν of 0.4, 0.5, 0.6, 0.8 and 1.0. The examined velocity exponents are

selected to cover most of the typically used values for seismic applications, as stated

by Taylor (2013) and Lin and Chopra (2002). It can be seen from Figure 5.2(a) that,

the maximum response reduction increases rapidly with the brace stiffness in the

low stiffness ratio range, say α < 1. This sharp increase shows that the maximum

response reduction in interstory drift is highly sensitive to the brace stiffness when the

stiffness ratio is small, implying that a small increase in brace stiffness can provide a

significant performance improvement. However, as the stiffness ratio becomes larger,

say α > 1, the response reduction still increases but at a reduced rate. It can also be

seen from Figure 5.2(a) that the maximum response reduction changes slightly for

different velocity exponents, indicating that if there is no constraint on the damping

coefficient, and the damping coefficient to be optimized, the velocity exponent of

the viscous dampers has almost no influence on the maximum response reduction

in interstory drift. Figure 5.2(b) shows the variation of the optimal damping ratio

with the brace stiffness ratio. It can be seen from the figure that, given a velocity
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exponent for the damper, the optimal damping ratio increases linearly with increasing

brace stiffness ratio. It can also be seen that, for a set of brace stiffness ratio, the

optimal damping ratio decreases when the velocity exponent decreases from 1 to 0.4.

Observations made from Figure 5.2 are instructive as they suggest that to achieve

a certain response reduction in interstory drift, a nonlinear damper with velocity

exponent less than unity has an advantage over its linear counterpart.

Figure 5.3: Variation of interstory drift response reduction RRD with damping ratio
β for different velocity exponents ν (α = 1).

Figure 5.3 further illustrates the fact that nearly the same maximum response

reduction can be achieved in the range of velocity exponent between 0.4 and 1. In

generating the data for the figure, a brace stiffness equals to the story stiffness is

first selected, followed by varying the damping coefficient for each velocity exponent.

Figure 5.3 plots the response reduction for interstory drift RRD against the damping

ratio β for velocity exponent in the range of 0.4 ≤ ν ≤ 1. It can be seen from the figure

that peak values of the response reduction are close, at about 67.7%, for the selected

velocity exponent range, implying that if the damper has been optimally designed

and there is no constraint on the damping coefficient, dampers with the velocity

exponent in the range of 0.4 ≤ ν ≤ 1 are expected to provide the same improvement

in structural interstory drift. Moreover, it can also be seen from Figure 5.3 that,

for all the dampers that are optimally designed, a further increase in damping will

reduce the effectiveness of the damper-brace system.

For a preset brace stiffness, although the unit of damping coefficient changes with

the velocity exponent, it may be worthwhile to evaluate the variation of structural

response reduction with the magnitude of damping ratio and velocity exponent. Fig-

ure 5.4 shows the three-dimensional mesh plot and contour plot of the variation for

the SDOF structure under the white-noise ground acceleration. A “ridge” of the mesh

76



20

2
0

20

30 30

3
0

30

40 40
40

40

40

50
50

50

50

50

50

55
55

55

55

55

55

0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

 (
s/

m
)

-1

5
0

4
0

55

3
0

2
0

0

50
5555

0.5

50

20

30
20555040

30

5040

R
R

D
 (

%
)

5540

40

130

20

 (s/m) -1

0.25 0.8
0.6

0 0.4

10

20

30

40

50

Figure 5.4: Mesh and contour plots of response reduction in interstory drift ver-
sus damping ratio and velocity exponent for the SDOF structure under white-noise
excitation (α = 0.5).

surface can be found in the first plot of Figure 5.4, which shows the achievable “peak”

response reductions (i.e., RRD,max) of the structure within the examined ranges of

β and ν. The peak response reductions at the ridge of surface seem to have similar

values, and the magnitude of damping ratio increases with the velocity exponent for

obtaining a peak reduction. These trends are similarly noted in the contour plot

in Figure 5.4, which further confirm the observation from Figures 5.2 and 5.3 that

for a given brace stiffness, similar maximum response reductions can be achieved for

different velocity exponents, once the damping coefficient is optimally determined.

Therefore, if we optimize both the damping ratio and velocity exponent for a certain

brace stiffness ratio, there will be an infinite combination of damper parameters that

can obtain similar maximum response reductions.

Table 5.1: Maximum damper forces of the dampers with optimal damping ratios
βD,opt in the SDOF structure under white-noise excitation.

Brace stiffness
ratio α

Maximum damper force (N)

ν = 0.4 ν = 0.5 ν = 0.6 ν = 0.8 ν = 1.0

0.2 242 258 273 299 320
0.5 448 468 485 516 540
1.0 656 703 746 822 886
2.0 979 1044 1094 1166 1213
5.0 1798 1983 2098 2242 2321

Although similar maximum response reductions can be achieved by the optimal

viscous dampers for different velocity exponents, it is nonetheless important to eval-

uate the peak force in the dampers during the ground motion. Table 5.1 summarizes

the maximum damper forces of the dampers with optimal damping ratios βD,opt un-
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der the white-noise excitation. It can be seen from the table that as the velocity

exponent increases from 0.4 to 1.0, the maximum damper forces generally increase

for the examined brace stiffness ratios, which indicates that the use of a smaller ve-

locity exponent can reduce the peak damper force while achieving a similar response

reduction of the building. Since the manufacturing cost of the FVD depends heavily

on the peak damper force, this observation also suggests that the use of nonlinear

dampers with a ν less than one has an economic advantage.

5.1.2 Minimization of base shear force

In addition to interstory drift, an index involving the base shear force is also

used as a potential candidate for response reduction. The performance index in base

shear force, PIV , is hereby defined as the root-mean-square of the base shear force

time-history Vs:

PIV = rms (Vs) (5.5)

The PIV index represents the total dynamic load acting on the structure; it also

reflects the cost of foundation structures (Silvestri and Trombetti 2007). Based on

the base shear force performance index, the reduction in structural shear force can

be estimated using the following reduction ratio for the base shear force:

RRV (%) =

(
1− PIV

PIV,org

)
× 100 (5.6)

where PIV,org is the performance index in base shear force of the original structure

without the supplemental damper-brace systems.

(a) v = 0.6. (b) v = 0.8.
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Figure 5.5: Three-dimensional mesh and contour plots of response reduction in base
shear force versus brace stiffness ratio and damping ratio for the SDOF structure
under white-noise excitation.
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Design parameters for reducing the base shear force, as signified by the ratio RRV ,

are calculated using the same procedure in Section 5.1.1 for interstory drift. Figure

5.5 shows the three-dimensional mesh plot and the contour plot of the RRV versus

the stiffness ratio α and the damping ratio β for the velocity exponents of 0.6 and

0.8. However, unlike the interstory drift reduction presented earlier in Figure 5.1,

the mesh plot in Figure 5.5(a) shows that the use of larger brace stiffness and larger

damping coefficient does not necessarily result in a greater base shear force reduction.

While a larger brace stiffness generally provides a greater response reduction, a larger

damping coefficient in the viscous damper may not lead to a greater reduction in

the base shear force. It can also be seen from Figure 5.5 that there exist infinite

combinations of design parameters to achieve the same reduction in base shear force,

and for a given target in response reduction, there exists a minimum brace stiffness

and an optimal damping coefficient in the viscous damper.

≈ 63.4%

≈ 61.5%

≈ 54.0%
≈ 63.4%≈ 61.5%

≈ 54.0%

Figure 5.6: (a) Maximum response reduction in base shear RRV,max and (b) corre-
sponding optimal damping ratio βV,opt against brace stiffness ratio α for the SDOF
structure under white-noise excitation.

Figure 5.6 shows the variation of the maximum response reduction in base shear

force RRV,max, and the optimal damping ratio βV,opt with the brace stiffness ratio α

for the velocity exponent in the range 0.4-1. Similar to the trend noted for interstory

drift, the plots in Figure 5.6(a) show a sharp increase in base shear response reduction

in the small brace stiffness ratio range, and tends toward a diminishing return when

the brace stiffness ratio becomes larger, say α > 1. The trend is noted regardless

of the magnitude of the velocity exponent; thus the tested velocity exponents are

expected to provide the same improvement in structural base shear when the damper

is optimally designed. It can be seen from Figure 5.6(b) that the optimal damping

ratio of the damper shows a nonlinear increase with the brace stiffness, but the

growth rate decreases gradually. It can also be observed from the figure that as the
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velocity exponent decreases from 1 to 0.4, the amount of damping required for the

maximum reduction in base shear force decreases. It is worth noting that the optimal

damping ratio for maximum reduction in base shear force is much smaller than that

of interstory drift.
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Figure 5.7: Optimal damping ratios to achieve maximum response reductions in base
shear force under white-noise excitation with different intensities.

The optimal parameters above are computed based on a white-noise acceleration

time-history with a peak ground acceleration of 0.637 g. However, as nonlinear vis-

cous dampers are used, these optimal parameters may no longer be “optimal” if we

change the overall intensity of the ground acceleration, i.e., uniformly scale-up or

scale-down the input accelerogram. Figure 5.7(a) shows the optimal damping ratios

required to maximize the base shear response reduction under the original white-

noise acceleration-history, and Figure 5.7(b) shows the optimal damping ratios under

a white-noise that is scaled-up from the original accelerogram to have a PGA equals

1 g. It is worth noting that the optimal parameters for different excitation intensity

levels result in the same maximum response reductions (Figure 5.6(a)) for a given set

of brace stiffness and velocity exponent. From Figure 5.7 it can be seen that, as the

PGA of the ground motion increases from 0.637 to 1 g, the optimal damping ratios

for a linear damper, i.e., ν equals one, are identical, yet an optimal damping ratio of

a nonlinear damper increases for a given set of α and ν.

5.1.3 Seismic performance of the SDOF structure under realistic
earthquakes

The seismic performance of the SDOF structure is also evaluated using the ac-

celerograms of three realistic ground motions. The examined earthquakes are sum-

marized in Table 5.2.
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Table 5.2: Earthquake ground motions considered.
Earthquake event Station PGA(g)

1940 Imperial Valley El Centro 0.348
1989 Loma Prieta Capitola 0.458
1994 Northridge Canoga Park - Topanga Canyon 0.358

Figure 5.8: (a) RRD,max and (b) βD,opt versus brace stiffness ratio α; (c) RRV,max and
(d) βV,opt versus α for the SDOF structure under the 1940 Imperial Valley earthquake.

The maximum response reductions in interstory drift and base shear force, RRD,max
and RRV,max, as well as the corresponding optimal damping ratios, βD,opt and βV,opt,

against the brace stiffness ratio under the three examined earthquakes are plotted

in Figures 5.8, 5.9 and 5.10. It can be seen from Figures 5.8(a),(c), Figures 5.9(a),

(c) and Figures 5.10(a), (c) that, the response reductions curves under the realistic

earthquakes are similar to those under the white-noise excitation, as shown in Figure

5.2(a) and Figure 5.6(a). However, the achievable maximum response reduction for a
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given brace stiffness will change when the structure is subjected to a different ground

motion. For instance, when the brace stiffness equals the structural stiffness, i.e., α

equals one, the maximum interstory drift response reduction for the building under

the Imperial Valley earthquake is approximately 75%, as shown in Figure 5.8(a), while

the maximum achievable response reductions under the Loma Prieta earthquake and

the Northridge earthquake are around 57% and 69%, respectively. It can also be seen

from the response reduction curves that, for a prescribed ground motion input, the

maximum achievable response reductions in interstory drift are generally larger than

those in base shear force for a given brace stiffness.

Figure 5.9: (a) RRD,max and (b) βD,opt versus brace stiffness ratio α; (c) RRV,max and
(d) βV,opt versus α for the SDOF structure under the 1989 Loma Prieta earthquake.

Figures 5.8(b), (d), Figures 5.9(b), (d) and Figures 5.10(b), (d) show the optimal

damping ratios required from the viscous damper to achieve the maximum response

reductions. From the figures it can be seen that, the optimal damping ratios for

maximizing a response reduction vary for different earthquakes, which indicates that
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the optimal parameters for a specific ground acceleration input may not still be op-

timal when the excitation changes. In general, the optimal damping ratios increase

with increasing brace stiffness for a preset velocity exponent, which agrees with the

observations made in Sections 5.1.1 and 5.1.2 for the white-noise ground excitation.

It can also be observed from these figures that, for a given brace stiffness ratio, the

magnitudes of the optimal damping ratios required to maximized the story drift and

base shear force response reductions generally increase with increasing velocity expo-

nent, for all the examined earthquake acceleration time-histories. This observation

also agreed with those for the white-noise excitation in the previous sections.

Figure 5.10: (a) RRD,opt and (b) βD,opt versus brace stiffness ratio α; (c) RRV,max
and (d) βV,opt versus α for the SDOF structure under the 1994 Northridge earthquake.

5.1.4 Minimization of peak seismic responses

In addition to the root-mean-square of structural responses, the seismic perfor-

mance of a building may also be assessed through evaluations of the peak responses.

In this section, to evaluate the effectiveness of a damper-brace system in mitigating
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peak structural responses, a performance index in peak story drift, and an index in

peak base shear force, are respectively defined as:

PImD = max(abs(δ)) (5.7)

and

PImV = max(abs(Vs)) (5.8)

where δ and Vs are the time-histories in story drift and base shear force of a SDOF

structure, respectively, and the corresponding response reductions can be calculated

as:

RRmD(%) =

(
1− PImD

PImD,org

)
× 100 (5.9)

and

RRmV (%) =

(
1− PImV

PImV,org

)
× 100 (5.10)

where PImD,org and PImV,org are the performance indices in peak story drift and

maximum base shear of the original structure without a damper-brace system, re-

spectively. Based on these peak response reductions, the optimal performances of the

SDOF structure described in Section 5.1.1, and the corresponding optimal damper

parameters to minimize the peak story drift and peak base shear force of the structure

under white-noise excitation, are computed, as shown in Figures 5.11 and 5.13.

Figure 5.11 shows the maximum achievable response reduction in peak story drift

RRmD,max and the optimal damping ratio βmD,opt against the brace stiffness ratio

for velocity exponent equals 0.4, 0.6, 0.8 and 1.0. From Figure 5.11(a) it can be

seen that the maximum peak story drift response reduction generally increases with

increasing brace stiffness ratio, which is similar to the trend for the maximum story

drift response reduction RRD,max in Figure 5.2(a), and the velocity exponent also

has no significant influence on the RRmD,max. It can be seen from Figure 5.11(b)

that, in general, the optimal damping ratio increases with the brace stiffness ratio,

but sharp changes in βmD,opt can be observed at α around 1.7 and 3, for all the

examined velocity exponents. For instance, when α increases from 1.6 to 1.7, there

is a sharp increase in βmD,opt for a given velocity exponent. However, if we plot the

response reduction against the damping ratio for α equals 1.6 and 1.7, as shown in
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Figure 5.11: (a) Maximum response reduction in peak story drift RRmD,max and (b)
corresponding optimal damping ratio βmD,opt against brace stiffness ratio α for the
SDOF structure under white-noise excitation.

Figure 5.12: Response reduction in peak base shear force RRmV against damping
ratio β for α equals 1.6 and 1.7 (ν = 0.4).

Figure 5.12, it can be found that the sudden change in optimal damping ratio is

due to the existence of different “peak” response reductions for a given α. Unlike

the performance index in story drift PID that describes the overall drift intensity of

the structure during an earthquake, the PImD focuses on the peak drift at a certain

time instant within the earthquake time-history. The damping required to minimize

a peak structural response at two different time instants in an earthquake may be

quite different, which causes a sudden change in the optimal damping ratio.

Figure 5.13 shows the maximum achievable response reductions in peak base shear

force RRmV,max and the corresponding optimal damping ratios βmV,opt for different

brace stiffness ratios and different velocity exponents. It can be seen from Figure

5.13(a) that, as the brace stiffness ratio increases, the trends of RRmV,max are similar
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Figure 5.13: (a) Maximum response reduction in peak base shear force RRmV,max
and (b) corresponding optimal damping ratio βmV,opt against brace stiffness ratio α
for the SDOF structure under white-noise excitation.

to those of other maximum response reductions, and for a given brace stiffness, the

maximum response reductions in peak base shear force are also very close for different

velocity exponents. Sharp changes in the optimal damping ratio can be similarly

observed in Figure 5.13(b), and it can also be seen from the figure that, for a given

brace stiffness ratio, the magnitude of the optimal damping ratio to minimize the

peak base shear force increases with increasing velocity exponent of the damper.
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5.2 Performance assessment of a MDOF structure with multiple
damper-brace systems

5.2.1 Dynamic response of the structure-damper-brace system

cd1

k1
kb1

m1 x1 (t)

ẍg (t)

cd2

k2
kb2

m2 x 2 (t)

mn-1 x n-1 (t)

cdn

kn
kbn

mn x n (t)

Figure 5.14: A n-story shear-type building with nonlinear FVDs installed on top of
Chevron braces.

The equation of motion for a structure with n-degree-of-freedom and controlled

by p number of nonlinear viscous dampers installed on Chevron braces, such as that

shown in Figure 5.14, can be written as:

Mẍ(t) + Cẋ(t) + Kx(t) + Fd(t) = −M1ẍg(t) (5.11)

whereM,C andK are the n×nmass, damping and stiffness matrices of the structure,

respectively, x(t) = [x1(t) x2(t) · · · xn(t)]T is the n× 1 story displacement vector,

1 = [1 · · · 1]T denotes the n × 1 unit vector and Fd(t) is the n × 1 damper force

vector expressed as:
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Fd(t) =



fd,1(t)− fd,2(t)
fd,2(t)− fd,3(t)

...

fd,n−1(t)− fd,n(t)

fd,n(t)


(5.12)

where fd,i(t) is the force induced by the nonlinear viscous damper at i-th story; if

no damper is installed at i-th floor, fd,i(t) should be set to zero. The activating

displacement of the damper-brace system at the i-th floor, ∆i(t), is equal to the

horizontal relative displacement between the floors (interstory drift), i.e., ∆i(t) =

xi(t)− xi−1(t). Steps outlined in Section 4.2 are used to determine the displacement

increment in the i-th supporting brace, ∆b,i[k + 1]:

∆b,i[k + 1] = Ad,i[k]∆b,i[k] + E0,i[k]∆̇i[k] + E1,i[k]∆̇i[k + 1] (5.13)

where

Ai[k] = −(kbicdi )
1
νi |∆b,i[k]|(

1
νi
−1);

Ad,i[k] = eAi[k]∆t;

kbi, cdi and νi are the brace stiffness, damping coefficient and velocity exponent of the

i-th damper-brace system, respectively. The i-th damper force at the next increment

can be calculated as:

fd,i[k + 1] = kbi∆b,i[k + 1] (5.14)

To compute the response history of the structure, Eq. (5.11) is rewritten in the

following first-order differential equation:

ż(t) = A∗z(t) + B∗Fd(t) + E∗ẍg(t) (5.15)

where

z(t) =

[
x(t)

ẋ(t)

]
is the 2n× 1 response vector of the structure;

A∗ =

[
0 I

−M−1K −M−1C

]
is the 2n× 2n system matrix;

B∗ =

[
0

−M−1

]
is the 2n× n damper force distribution matrix;

88



E∗ =

[
0

−1

]
is the 2n× 1 external excitation distribution vector.

Similar to the assumptions made in Section 3.1.1, the damper force at i-th floor

is assumed to be piece-wise constant between the two consecutive sampling points

[k] and [k + 1]. The ground acceleration however is interpolated linearly between

these sampling points. Thus the discrete time-state function for the response of the

multi-story building under a ground acceleration ẍg can be expressed as:

z[k + 1] = A∗0z[k] + B∗0Fd[k] + E∗0ẍg[k] + E∗1ẍg[k + 1] (5.16)

where the parameters, which are all matrices, A∗0, B∗0, E∗0 and E∗1 are given by:

A∗0 = eA
∗∆t is the discrete system matrix;

B∗0 = A∗
−1

(A∗0 − I)B∗ is the instant discrete damper force distribution matrix;

E∗0 = [A∗
−1
A∗0 + 1

∆tA
∗−2

(I − A∗0)]E∗ is the instant discrete ground acceleration

distribution vector at sampling point [k];

E∗1 = [−A∗−1
+ 1

∆tA
∗−2

(A∗0 − I)]E∗ is the instant discrete ground acceleration dis-

tribution vector at sampling point [k + 1].

5.2.2 Numerical example I: a two-story shear building

The 2DOF building studied by Lavan and Levy (2006) is adopted here to inves-

tigate whether observations made for SDOF structures can be extended to MDOF

structures. The first and second natural periods of the structure are 0.281 and 0.115

seconds, respectively, and the structure is assumed to have an inherent damping ratio

of 3% for the two vibration modes. The investigation is also made using the white-

noise excitation noted in Section 5.1. The mass and stiffness matrices of the structure

are:

M =

[
25000 0

0 25000

]
(kg) and K =

[
62500 −25000

−25000 25000

]
(kN/m) (5.17)

For the best performance of the 2DOF structure, damping coefficients of the dampers

at the first floor, cd1, and the second floor, cd2, are optimized for the maximum

response reduction given the set of equal brace stiffness kb1 = kb2 = kb and equal

velocity exponent ν1 = ν2 = ν using genetic algorithm described in Section 3.3. The

optimization is carried out using the dimensionless brace stiffness ratio, α, which is

defined here as the ratio of the brace stiffness kb to the first story stiffness k1, which

is 37500 kN/m in this case.
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5.2.2.1 Response reduction in interstory drift

Figure 5.15: (a) Optimal damping coefficient of the damper at 1st story versus brace
stiffness ratio; (b) optimal damping coefficient of the damper at 2nd story versus
brace stiffness ratio; (c) maximum response reduction in interstory drift versus brace
stiffness ratio; (d) response reduction against two damping coefficients (α = 1, ν =
0.5).

Figures 5.15(a) and (b) show the plots of the optimal damping coefficients cd1,opt
and cd2,opt against the brace stiffness ratio α for velocity exponent from 0.4 to 1. It

can be seen from Figures 5.15(a) and (b) that, in general, for the structure to achieve

a maximum response reduction, the use of a larger brace stiffness requires a larger

damping coefficient, and the optimal damping coefficient decreases as the velocity

exponent decreases from 1 to 0.4. It can also be seen by comparing Figures 5.15(a)

and (b) that the required optimal damping coefficient of the damper at the first floor

is generally smaller than the damper at the second floor given a fixed combination

of the brace stiffness and velocity exponent. Figure 5.15(c) shows the variation of

the achievable maximum response reduction in the interstory drift with the brace

stiffness ratio. Curves similar to that seen in Figure 5.2(a) for the SDOF structure
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can also be observed in Figure 5.15(c), where the maximum response reduction grows

rapidly as the brace stiffness ratio becomes small and the growth becomes gradual

when the brace stiffness is large. Changes in the velocity exponent can be seen to

have an insignificant effect on the optimal interstory drift performance of the 2-story

structure. Observations from Figure 5.15(c) also reveal that for achieving a target

response reduction, there exists a minimum brace stiffness requirement, and the use

of nonlinear dampers with velocity exponent less than unity requires a much smaller

value of damping coefficient than the linear counterparts.

To verify the accuracy of the results obtained by the genetic algorithm, an ex-

haustive search is also carried out independently for comparison, in which every set

of design parameters lies on the grids within a given search region is examined to find

the approximate optimal results. Figure 5.15(d) shows the exhaustive search result of

the response reduction in interstory drift versus the two damping coefficients cd1 and

cd2 for the brace stiffness of α = 1 and the velocity exponent of ν = 0.5. It can be seen

from Figure 5.15(d) that there exists a global maximum in the response reduction

in interstory drift. The global maximum RRD,max, as obtained by the exhaustive

search at a grid size of 1×1 kN·(s/m)0.5, is 69.78% with the corresponding damping

coefficients of cd1,opt equals 106 kN·(s/m)0.5 and cd2,opt equals 104 kN·(s/m)0.5. Re-

sults obtained by the genetic algorithm for RRD,max, cd1,opt and cd2,opt are 69.78%,

106.2 kN·(s/m)0.5 and 104.4 kN·(s/m)0.5, respectively. The results from exhaustive

search agree well with the those from the genetic algorithm, indicating GA is capable

of obtaining the global optimal solutions for such a multi-dimensional optimization

problem.

5.2.2.2 Response reduction in base shear force

The variations in the optimal damping coefficients and their corresponding max-

imum reduction in the base shear force with the brace stiffness are shown in Figures

5.16(a)-(c) for different velocity exponents. It can be seen from Figures 5.16(a) and

(b) that the optimal damping coefficients for both dampers increase with increasing

brace stiffness but with a decreasing growth rate. The diminishing return in the

response reduction occurs regardless of the velocity exponent, as can be seen from

Figure 5.16(c). It is worth noting that, the required damping for both dampers to

achieve a maximum response reduction in base shear force is significantly less than

that for interstory drift.

An exhaustive search is also conducted on the two-story structure to confirm

the optimal results for base shear force obtained by the genetic algorithm. Figure

5.16(d) shows a plot of the exhaustive search result for base shear force against the
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Figure 5.16: (a) Optimal damping coefficient of the damper at 1st story versus brace
stiffness ratio; (b) optimal damping coefficient of the damper at 2nd story versus brace
stiffness ratio; (c) maximum response reduction in base shear versus brace stiffness
ratio; (d) response reduction against two damping coefficients (α = 1, ν = 0.5).

two damping coefficients cd1 and cd2 for the brace stiffness ratio of α equals 1 and

velocity exponent of ν equals 0.5. It can be seen from Figure 5.16(d) that, similar to

observations made for interstory drift reduction, there also exists a global maximum

response reduction for the base shear force. The maximum response reduction ob-

tained by the exhaustive search and the genetic algorithm are both 53.49%, while the

optimal damping coefficients are cd1,opt equals 65 kN·(s/m)0.5 and cd2,opt equals 38

kN·(s/m)0.5 for exhaustive search compared to cd1,opt of 65.5 kN·(s/m)0.5 and cd2,opt
of 38.2 kN·(s/m)0.5.

5.2.3 Numerical example II: a six-story shear building

A six-story shear-type building is included in this study to further investigate

the effects of the brace stiffness and velocity exponent on optimal seismic response

reduction of MDOF structures. The building is the same as that studied by Takewaki

(1997), which has identical story mass and stiffness in each floor, namely, m1 = m2 =
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Figure 5.17: Distribution of optimal damping coefficients for different brace stiffness
ratios in the 6-story building (ν = 0.5).

· · · = m6 = 80000 kg and k1 = k2 = · · · = k6 = 40 MN/m. The fundamental period of

the building is 1.17 seconds, and a 2% inherent damping is assigned to the structure.

It is assumed that each story of the building is equipped with a nonlinear viscous

damper installed on top of a Chevron brace. All braces in the building are assumed

to be identical (i.e., kb1 = kb2 = · · · = kb), while the dampers may have different

damping coefficients but with the same velocity exponent (i.e., ν1 = ν2 = · · · = ν).

Response reduction is investigated using a brace stiffness ratio α of 0.2, 0.5, 1, 2 and 5.

The Kanai-Tajimi earthquake model described in Section 3.4.2 is used for optimizing

the damper parameters. The building is assumed to be constructed on foundation soil

type II, and the seismic precautionary intensity is assumed to be VIII. The artificial

accelerogram generated from the PSD function of the Kanai-Tajimi model, as shown

in Figure 3.6(b), is adopted as the input ground acceleration-history.

Figure 5.17 shows the distribution of optimal damping coefficients in different

stories of the building, and the distribution is obtained by the genetic algorithm for a

velocity exponent of ν equals 0.5. It can be seen from Figure 5.17 that a lager brace

stiffness generally requires a larger optimal damping coefficient in all stories and that

for a given stiffness ratio, larger damping coefficients are generally needed in the

lower stories. Figure 5.18 shows the plots of the maximum reduction in interstory

drift and the sum of optimal damping coefficients for the velocity exponent of 0.5, 0.7,

and 1. It can be seen from 5.18(a) that the maximum response reduction RRD,max
increases with increasing brace stiffness ratio but at a decreasing rate. For example,

an increase of the brace stiffness ratio from 1 to 2 provides a modest improvement in
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Figure 5.18: (a) Maximum response reduction in interstory drift and (b) summa-
tion of optimal damping coefficients for the 6-story building under the Kanai-Tajimi
excitation (ν = 0.5).

performance as reflected by a 10.7% increase in RRD,max, and an increase in a brace

stiffness ratio from 2 to 5 provides 9.8% improvement in performance. It can also be

seen in the sub-figure of Figure 5.18(a) that, for optimally designed viscous dampers

in the structure, the maximum reductions in interstory drift are nearly the same for

different velocity exponents. Figure 5.18(b) shows that the damping required for the

structure to reach an optimal performance is not proportional to the value of the

maximum response reduction. For example, Figure 5.18(a) shows that an increase in

brace stiffness from 2 to 5 times the first story stiffness only results in close to 10%

improvement in the interstory drift, but the required sum of the damping coefficients

for ν equals 1.0 and 0.7, which is shown in the sub-figure of Figure 5.18(b), is more

than doubled. Since the fabrication and installation of the braces and dampers are

directly related to the overall cost of the protective system (Park et al. 2004, Pollini

et al. 2017), a target structural performance is best set before the design of the

nonlinear damper-brace system to achieve a balance between cost and performance.

It can also be seen from the sub-figure in Figure 5.18(b) that the use of a larger

velocity exponent would result in a larger sum of the damping coefficients, which is

consistent with the observations made for the SDOF structure in Section 5.1 and the

2DOF structure in Section 5.2.2.

Since the damping coefficients of the viscous dampers can be optimized for max-

imizing a response reduction given the brace stiffness and velocity exponent, it is

instructive to examine the supplemental damping required of the different struc-

tural performance indices. Table 5.3 summarizes the optimal damping coefficients

for achieving maximum response reductions of the 6-story structure in terms of in-
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terstory drift, base shear force, story displacement, and floor acceleration. Note that

results in the table correspond to a brace stiffness that is equal to the first story stiff-

ness and a velocity exponent of 0.5. It can be seen from Table 5.3 that the optimally

designed damping coefficients vary depending on the chosen performance index. All

four response reductions are greater than 35 percent, and the reductions in interstory

drift, story displacement and acceleration are over 50 percent. The required sums

of the damping coefficients for interstory drift and story displacement indices are

very close, and they are significantly larger than those for base shear force and story

acceleration indices.

Table 5.3: Optimal damping coefficients for the 6-story building under four perfor-
mance evaluation criteria (α = 1, ν = 0.5).

Damping
coefficient Performance index

Story (N·(s/m)0.5) Interstory drift Base shear Story displacement Story acceleration

6F cd6,opt 659335 173797 441635 169306
5F cd5,opt 659597 290040 530455 259615
4F cd4,opt 695665 349989 571366 380044
3F cd3,opt 698386 372328 646693 471202
2F cd2,opt 708474 411482 821899 336071
1F cd1,opt 726320 478571 1188536 195911∑6

i=1 cdi,opt 4147776 2076207 4200584 1812149
Max. Response 1− PID

PID,org
1− PIV

PIV,org
1− PIS

PIS,org
1− PIA

PIA,org

Reduction 54.25% 38.23% 51.67% 51.79%

Although the nonlinear damper-brace system has been shown to be effective in

mitigating structural responses under the Kanai-Tajimi excitation, it is nonethe-

less important to verify its effectiveness under more realistic earthquakes. The

performance-based seismic design of China (CECS 160: 2004) published by IEM

(2004) recommends several earthquake ground acceleration records for time-history

analysis of buildings with a fundamental period of 0.5-1.5 seconds at site type II. The

recommended ground motions of the 1979 Imperial Valley earthquake recorded at

station El Centro Array #10 in California (PEER 2022), and the 1952 Kern County

earthquake recorded at Taft Lincoln school also in Caifornia (PEER 2022), are con-

sidered in this example. Figure 5.19 shows the response envelopes plotted against the

building height under the Imperial Valley earthquake using damper parameters opti-

mized for interstory drift index. It can be seen from Figure 5.19 that the structural

responses generally decrease with an increase in the brace stiffness ratio, indicating

that even though the design damper parameters have not been optimized based on
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Figure 5.19: Response envelopes of the 6-story building installed with the optimally
designed damper-brace systems for interstory drift under the 1979 Imperial Valley
earthquake (ν = 0.5).

the actual earthquakes but the Kanai-Tajimi excitation, the brace-damper systems

are still capable of providing significant improvement to the seismic performance of

the structure. However, it should be noted from the plots of base shear and story

acceleration that, when the brace stiffness ratio increases from 2 to 5, the overall

maximum base shear and story acceleration both increases. The increases in base

shear and story acceleration may be attributed to the fact that the design parame-

ters had been optimized based on the interstory drift performance index rather than

by the story acceleration.

From a structural design point of view, the performance of the structure should be

assessed by a set of performance indices rather than by a single index alone. In that

context, three additional performance indices, pertaining to the base shear force de-

fined in Eq. (5.5), story displacement, as defined in Eq. (3.12), and floor acceleration,

as defined in Eq. (3.13), are evaluated under both the 1979 Imperial Valley and the
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(a) The 1979 Imperial Valley earthquake, El Centro Array #10.

(b) The 1952 Kern County earthquake, Taft Lincoln School.

            

Figure 5.20: Response reductions for different performance indices of the 6-story
building under (a) the 1979 Imperial Valley earthquake and (b) the 1952 Kern County
earthquake, using the optimal dampers designed based on RRD under the Kanai-
Tajimi excitation.

1952 Kern County earthquakes using the damper parameters optimally determined

from the interstory drift index under the Kanai-Tajimi excitation. Figure 5.20 shows

the response reductions for the different performance indices (RRD, RRV , RRS and

RRA) for different nonlinear velocity exponents under the two earthquakes. It can

be seen from Figures 5.20(a) and (b) that response reductions in interstory drift and

story displacement generally improve with increasing brace stiffness for both earth-

quakes, while the response reductions in base shear and story acceleration for Imperial

Valley earthquake start to decrease when brace stiffness ratio is greater than 2, and

for Kern County earthquake the response reductions start to decrease when α is larger

than 1. It is evident that the interstory drift and story displacement response reduc-

tions tend towards diminishing returns after α equals one (i.e., brace stiffness equals

first story stiffness), and the base shear and story acceleration response reductions

may reduce when brace stiffness is larger than the first story stiffness. Since previ-

ous results also suggested that greater amounts of optimal damping will be required

when using a larger brace stiffness, it is not suggested to use an excessive large brace
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stiffness for damper-brace assemblies. From Figures 5.20(a) and (b) it can also be

seen that, for a given brace stiffness ratio, response reductions are close for different

velocity exponents, particularly in the interstory drift and story displacement indices.

Results from Figure 5.20 also suggest that, for a given brace stiffness, there exists a

maximum achievable response reduction regardless of the value of the velocity expo-

nent, similar to that observed in Figure 5.18(a). If higher performance is desired of

displacement-based indices, the brace stiffness should be increased, followed by the

optimization of the damper parameters, although this could be at the expense of a

decrease in story acceleration and base shear performance indices.

5.2.4 Numerical example III: incremental dynamic analysis of a
nonlinear eight-story building

kE

kPE
1

1

Restoring force

Story displacementδy

Figure 5.21: Bilinear elastic-plastic stiffness model of the nonlinear structure.

To evaluate the capacity and robustness of the optimally designed nonlinear

damper-brace systems to the uncertainty of ground motions, incremental dynamic

analysis has been performed on a nonlinear eight-story building under multiple earth-

quakes with different vibration characteristics. The nonlinear building is a benchmark

structure studied by Yang et al. (1988), of which the lateral stiffness of each floor is

assumed to be bilinear elastic-plastic, as shown in Figure 5.21, with elastic stiffness

kE = 340.4 MN/m, post-elastic stiffness kPE = 0.1kE = 34.04 MN/m and yield-

ing interstory drift δy = 2.4 cm. It can be seen from Figure 5.21 that an excessive

lateral displacement can yield the floor and may cause permanent deformation in sto-

ries. The floor mass and damping coefficient are identical at each story unit, namely

m1 = m2 = · · · = m8 = 345.6 × 103 kg and c1 = c2 = · · · = c8 = 734.3 kN·s/m.
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Noting that the fundamental period of the building based on its elastic stiffness, T1,

is 1.085 seconds.

Table 5.4: Seismic design parameters.
Parameters value

Risk/Occupancy category II
Importance factor 1
Seismic design category D
Site class C
MCE1 spectral response acceleration parameter at short periods SS (g) 2.866
MCE spectral response acceleration parameter at period of 1 sec S1 (g) 0.924
Short period site coefficient Fa 1
Long period site coefficient Fv 1.3
Spectral response acceleration parameter at short periods SDS (g) 1.911
Spectral response acceleration parameter at period of 1 sec SD1 (g) 0.8
Long-period transition period TL (s) 8

1Maximum Considered Earthquake.
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Figure 5.22: Design response spectrum at downtown Los Angeles (based on parame-
ters in Table 5.4) and acceleration response spectrums of the selected earthquakes.

Building structures may be subjected to ground excitation with different vibra-

tion properties due to the stochastic nature of earthquakes. Therefore, to assess the

robustness of the damper-brace system to the uncertainty of input ground motions,

several realistic strong earthquakes have been considered that are selected based on

the design ground acceleration spectrum for a specific construction site. In this ex-

ample, the structure is assumed to be located in downtown Los Angeles in California,

USA, on very dense soil and soft rock that is classified as site class C in ASCE 7-

05 (ASCE 2005). The occupancy category of the building is assumed to be II, and

the corresponding seismic design parameters can be found in ASCE 7-05. Alterna-

tively, the parameters can be determined from the seismic design maps developed

99



Table 5.5: Selected ground motions used in the numerical example.

Code Earthquake event Year Station Magni- Sa(T1, PGA
tude 5%) (g) (g)

EQ1 Imperial Valley-02 1940 El Centro Array #9 6.95 0.85 0.62
EQ2 Parkfield 1966 Cholame - Shandon Array #5 6.19 0.75 1.29
EQ3 Managua, Nicaragua-01 1972 Managua - ESSO 6.24 0.72 1.11
EQ4 Gazli, USSR 1976 Karakyr 6.80 1.32 0.88
EQ5 Coyote Lake 1979 Gilroy Array #4 5.74 0.98 1.12
EQ6 Imperial Valley-06 1979 Aeropuerto Mexicali 6.53 0.77 0.45
EQ7 Imperial Valley-06 1979 Bonds Corner 6.53 1.10 1.76
EQ8 Imperial Valley-06 1979 Chihuahua 6.53 0.71 0.61
EQ9 Imperial Valley-06 1979 El Centro Array #11 6.53 0.52 0.78
EQ10 Imperial Valley-06 1979 El Centro Differential Array 6.53 0.64 0.88
EQ11 Imperial Valley-06 1979 Holtville Post Office 6.53 0.93 0.63
EQ12 Northridge-01 1994 Canyon Country - W Lost Cany 6.69 0.71 0.95
EQ13 Northridge-01 1994 LA - Saturn St 6.69 1.01 1.74
EQ14 Northridge-01 1994 LA - 7-story Univ Hospital 6.69 0.73 2.09
EQ15 Northridge-01 1994 Newhall - Fire Station 6.69 0.55 0.45
EQ16 Northridge-01 1994 Pacific Palisades - Sunset 6.69 0.85 1.73
EQ17 Northridge-01 1994 Rinaldi Receiving Station 6.69 0.78 0.41
EQ18 Kobe, Japan 1995 Amagasaki 6.90 1.57 0.59
EQ19 Kobe, Japan 1995 KJMA 6.90 0.80 0.52
EQ20 Kobe, Japan 1995 Tadoka 6.90 0.69 1.25

by Structural Engineers Association of California and California Office of Statewide

Health Planning and Development (SEAOC and OSHPD 2022), which provide more

specific MCE spectral response acceleration parameters (SS and S1). The seismic

design parameters used are summarized in Table 5.4, based on which a design accel-

eration response spectrum of the construction site is generated according to ASCE

7-05 (ASCE 2005), as shown in Figure 5.22, and the PEER database is used to search

for historic earthquake records. The selected 20 ground motion records are listed in

Table 5.5, which have been scaled such that the mean acceleration response spectrum

is larger than the design spectrum between periods of 0.2T1 and 1.5T1, namely 0.217

and 1.673 seconds, as shown in Figure 5.22. In this example, the 5% damped spec-

tral acceleration at the structure’s fundamental period, Sa(T1, 5%), is adopted as the

intensity measure of the ground motions for conducting the IDA, which are summa-

rized in Table 5.5. For a specific earthquake, the scale factor for obtaining a spectral

acceleration with an IM of 1 g, SFSa=1g, is the multiplicative inverse of Sa(T1, 5%),

and the SF for a given spectral acceleration is the product of the value of this Sa and

SFSa=1g. The spectral acceleration considered in this example increases from 0 to 3

g with a step size of 0.1 g, and the following damage measures are defined to describe

response intensities of the structure under the prescribed ground excitation inputs,

in which Eqs. (5.18)-(5.21) are defined as the average maximum response measures,
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and Eqs. (5.22)-(5.25) are the maximum response measures:

Average maximum story displacement =
1

w

w∑
j=1

max(abs(Xj)) (5.18)

Average maximum interstory drift =
1

w

w∑
j=1

max(abs(δj)) (5.19)

Average maximum story acceleration =
1

w

w∑
j=1

max(abs(Aj)) (5.20)

Average maximum base shear force =
1

w

w∑
j=1

max(abs(Vj)) (5.21)

Maximum story displacement = max{max(abs(X1)), max(abs(X2)), . . .

. . . , max(abs(Xw))}
(5.22)

Maximum interstory drift = max{max(abs(δ1)), max(abs(δ2)), . . .

. . . , max(abs(δw))}
(5.23)

Maximum story acceleration = max{max(abs(A1)), max(abs(A2)), . . .

. . . , max(abs(Aw))}
(5.24)

Maximum base shear force = max{max(abs(V1)), max(abs(V2)), . . .

. . . , max(abs(Vw))}
(5.25)

where Xj , δj , Aj and Vj are the time-histories of story displacement, interstory

drift, story absolute acceleration and base shear force of the building under j-th

earthquake, respectively, w is the total number of the earthquakes considered, and

abs(·) is the absolute value function. Noting that for a multi-story building, the

response histories of Xj , δj , Aj are the histories of all the floors, rather than the

histories of a certain story. For instance, the story displacement time-history of a n-
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story building under j-th earthquake is Xj = [x1,j x2,j · · · xn,j ], where xi,j denotes

the displacement-history of i-th floor.
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Figure 5.23: IDA curves of average of maximum (a) story displacement (b) interstory
drift (c) story acceleration and (d) base shear force for uncontrolled structure and
controlled by the optimal damper-brace systems under selected earthquakes (ν = 0.5).

Figure 5.23 shows the IDA curves corresponding to the average maximum dis-

placement, interstory drift, absolute acceleration and bases shear force for the un-

controlled structure and the structure controlled by the optimal viscous dampers for

maximizing the interstory drift response reduction under a white-noise ground accel-

eration time-history. The optimal damping coefficients considered in this example are

summarized in Table 5.6. It can be seen from Figures 5.23(a) and (b) that, despite

the various earthquake excitation characteristics, the optimal dampers can effectively

alleviate the average maximum story displacement and interstory drift of the building

at a wide range of excitation intensity (Sa(T1, 5%) from 0 to 3 g), and the performance

of an optimal damper-brace system with a larger brace stiffness is generally better

than that with a smaller stiffness. For the average maximum story acceleration and

base shear force, it can be seen from Figures 5.23(c) and (d) that using a larger brace

stiffness ratio may not enhance the seismic performance of the building, especially
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Table 5.6: Optimal damping coefficients of the 8-story nonlinear building for different
brace stiffness ratios under white-noise excitation (PGAẍg= 0.6 g, ν = 0.5).

Damping
coefficient Brace stiffness ratio

Story (N·(s/m)0.5) α = 0.2 α = 0.5 α = 1

8F cd8,opt 744485 1566873 16040115
7F cd7,opt 884610 1551727 1966766
6F cd6,opt 1121201 2052859 13110102
5F cd5,opt 1161348 2328036 9298316
4F cd4,opt 1196200 2706469 7814802
3F cd3,opt 1220828 2745907 4005069
2F cd2,opt 1369470 2190080 3853896
1F cd1,opt 1383215 2480578 6899300∑6

i=1 cdi,opt 9081356 17622530 62988367
RRD,max 61.30% 74.52% 81.47%

when α increases from 0.5 to 1. The large accelerations and base shear forces are

caused by the large damper force in the viscous dampers; these responses could be

alleviated by using an acceleration-based performance index to optimize the damper

parameters. It is also worth noting that, all the IDA curves exhibit a linear region

when the IM, i.e., Sa(T1, 5%), is small. This is caused by the elastic behaviour of the

building at small displacements, and the linear elastic region of an IDA curve ends

when any structural element reaches the end of its elastic phase (Vamvatsikos and

Cornell 2002). In this example, the terminate of the initial linear region of an IDA

curve indicates the first yield of at least one story of the building.
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Figure 5.24: IDA curves of peak interstory drifts for each story of the uncontrolled
structure under the EQ7 Imperial Valley earthquake.
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“Hardening” in the IDA curves can be observed from Figures 5.23(a) and (d),

especially from the curves of the uncontrolled structure, which show a gradual reduce

in the growth rate of the DMs with increasing spectral acceleration. It seems counter-

intuitive that the growth speed of the structural response has not been accelerated

after yielding of the structure; however, this hardening phenomenon can be commonly

seen in the incremental dynamic analysis, and it is not only due to the excitation

intensity, but also because of the pattern and the timing of structural vibration

(Vamvatsikos and Cornell 2002). For multi-story structures, strong earthquakes may

cause early yielding of one story, which in turn alleviates the responses of other floors,

as illustrated in Figure 5.24 that the “softening” of the first story results in “hardening”

of upper floors. Even a SDOF structure that yields in an earlier vibration cycle may

relieve its response in later cycles and thus exhibit a small DM value under an intense

ground motion (Vamvatsikos and Cornell 2002).
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Figure 5.25: IDA curves of maximum (a) story displacement (b) interstory drift (c)
story acceleration and (d) base shear force for uncontrolled structure and controlled
by the optimal damper-brace systems under selected earthquakes (ν = 0.5).

Figure 5.25 plots the IDA curves of the maximum displacement, interstory drift,

absolute acceleration and base shear force for the uncontrolled structure and that

104



controlled by the optimal dampers under the 20 selected earthquakes. It can be seen

from Figures 5.25(a) and (b) that, the optimally designed damper-brace systems can

generally mitigate the peak story displacement and interstory drift of the building

within the prescribed intensity range of ground motions, although the maximum in-

terstory drift of the controlled structure for α equals one is larger than that of the

uncontrolled building when 1.8 g < Sa < 2.6 g. For the uncontrolled structure in

Figure 5.25(a), the first slope change of the IDA curve can be found at a spectral

acceleration around 0.7 g, indicating the initial yielding of the structure; however, the

post-elastic behaviour of the structure seems to be delayed a little bit when equipped

with a damper-brace system. For the story acceleration and base shear force, it can

be seen from Figures 5.25(c) and (d) that the peak responses of the controlled struc-

ture under the 20 earthquakes are generally larger than the uncontrolled building,

indicating the optimal dampers designed based on the interstory drift performance

index may not reduce the peak acceleration-related responses in extreme earthquake

events; the viscous damper shall be designed based on an acceleration-related index

(e.g., story acceleration and base shear indices) to alleviate these peak responses.

However, it can be seen from Figure 5.25(d) that compared with the uncontrolled

building, the first slope change in the IDA curve is postponed by around 0.2 g when

using an optimal damper-brace system, indicating the elastic phase of the structure

has been extended by the supplemental dampers.

To illustrate the dynamic behaviour of the nonlinear building with the optimal

damper-brace systems, Figures 5.26 and 5.27 are plotted, in which Figure 5.26 shows

the interstory drift time-histories of the first four floors of the uncontrolled struc-

ture and the structure with the optimal dampers for α equals 0.5 under the scaled

Northridge earthquake (EQ12) with Sa(T1, 5%) = 3 g, while Figure 5.27 displays

the corresponding time-histories in story absolute acceleration. Although the yield-

ing displacement relative to the ground changes during the inelastic deformation of

the structure, the initial yielding drifts are marked in Figure 5.26 using dashed lines

to highlight the first yielding of a story. From Figure 5.26 it can be seen that, the

use of the optimal damper-brace systems generally mitigates the interstory drifts of

the building during the earthquake, and the inelastic deformations of the structure

caused by excessive interstory drifts are also reduced. For example, the large hor-

izontal drifts in the first 5 seconds result in an approximately 20 mm’s permanent

deformation in the first story of the uncontrolled building, while the supplemental

viscous dampers reduce the final floor deformation to around 4 mm; the second and

fourth stories also yield during the ground motion and develop unrecoverable defor-

mations after the earthquake, yet the interstory drifts of these floors are kept within

105



the elastic range of the story stiffness when equipped with the optimal damper-brace

systems. It can be seen from Figure 5.27 that, the optimal dampers can also mitigate

story acceleration during the earthquake, especially at the third and fourth floors.

Due to the additional damping provided by the dampers, the examined structural

responses are quickly suppressed after 5 seconds, which demonstrates the increased

resilience of the structure after the installation of the dampers.
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Figure 5.26: Interstory drift time-histories of first four stories of the uncontrolled
structure and equipped with optimal dampers for α = 0.5 under the scaled EQ12
Northridge earthquake with Sa(T1, 5%) = 3 g (ν = 0.5).
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Figure 5.27: Story acceleration time-histories of first four stories of the uncontrolled
structure and equipped with optimal dampers for α = 0.5 under the scaled EQ12
Northridge earthquake with Sa(T1, 5%) = 3 g (ν = 0.5).

To illustrate the hysteretic behaviour of the nonlinear structure during an earth-

quake, the hysteretic curves of the shear walls that provide lateral restoring force

to the structure at the first four floors under the EQ2 Northridge earthquake are

plotted in Figure 5.28. As can be seen from the figure, compared to the uncontrolled

structure, the maximum achievable interstory drifts of the building can be reduced

by equipping the optimal damper-brace systems, even in the case of pure elastic

interstory drift (Figure 5.28(c)). The areas enclosed by the hysteretic loops of the

uncontrolled structure are generally larger than those of the building controlled by
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the damper-brace systems, which indicates that a significant amount of input seismic

energy is dissipated by the supplemental viscous dampers. In general, the nonlin-

ear damper-brace systems designed by the presented optimization approach exhibit

good performance in mitigating both the elastic and post-elastic deformations of the

structure.
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Figure 5.28: Restoring force-story drift relationships of first four stories of the uncon-
trolled structure and equipped with optimal dampers for α = 0.5 under the scaled
EQ12 Northridge earthquake with Sa(T1, 5%) = 3 g (ν = 0.5).

Figure 5.29 shows the mean story ductility of the nonlinear building due to an

ensemble of the scaled 20 earthquakes with Sa(T1, 5%) equals 3 g, in which the

ductility factor of i-th floor under j-th earthquake is defined as:

Ductility factor of i-th floor under j-th earthquake =
δmax(i,j)

δy
(5.26)

Eq. (5.26) normalizes the maximum absolute interstory drift between (i−1)-th and i-

th floors due to j-th earthquake, δmax(i,j), relative to the yielding interstory drift of the

building, δy. From Figure 5.29 it can be seen that the optimal damper-brace systems

can effectively reduce the ductility of the building under the examined earthquakes.

It can also be seen from the figure that the story ductility is generally large at lower

floors, indicating the lower stories, especially the first and second stories, exhibit more

inelastic behaviours during the earthquakes, and thus dissipate more seismic energy
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Figure 5.29: Mean story ductility of the 8-story building under the scaled 20 earth-
quakes with Sa(T1, 5%) = 3 g (ν = 0.5).

and in turn reduce the post-elastic deformations of upper floors. In general, the use of

optimal dampers with a larger brace stiffness ratio α result in smaller story ductility,

although the ductility of the building with the optimal dampers for α equals 1 is

slightly larger than that of the structure with the optimal dampers for α equals 0.5

at 2nd, 3rd and 7th floors.
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Figure 5.30: Maximum damper forces of the optimal dampers in the 8-story building
under different scaled earthquakes with Sa(T1, 5%) = 3 g (α = 1).

The observations made in Section 5.1.1 suggested that the use of viscous dampers

with a smaller velocity exponent can effectively reduce the peak damper force while

maintaining a similar level of structural response reduction. To evaluate the peak

force in the dampers with different velocity exponents during some intense ground
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motions, Figure 5.30 is plotted, which shows the maximum damper forces of optimal

viscous dampers in the 8-story building under the selected earthquakes that are scaled

to have a Sa(T1, 5%) of 3 g. Two sets of optimal dampers for a given brace stiffness

ratio (α equals 1) are evaluated, which have different velocity exponents, i.e., ν equals

0.5 and 1; both the optimal damper sets can achieve a maximum response reduction

RRD,max of around 82%. From Figure 5.30 it can be seen that, different earthquakes

result in different peak damper forces, and the maximum forces of the dampers with ν

equals 0.5 are generally smaller than those of the dampers with ν equals 1, although

the linear dampers have slightly smaller peak damper forces in earthquakes 4 and

6. Therefore, compared with using linear dampers, the use of nonlinear ones with

a smaller velocity exponent can alleviate the peak damper forces induced by some

strong earthquakes, which can also lower the manufacturing cost of the dampers and

reduce the structural damages related to large damper forces.

5.3 Conclusions

In this chapter, the potential for satisfactory seismic performance of shear-type

buildings as protected by nonlinear viscous dampers and braces was investigated.

The viscous dampers were assumed to be installed on top of Chevron-type braces

that are responding elastically. Based on the numerical time-stepping method devel-

oped in Chapter 4, the seismic performance of a building before and after the damper

installation was evaluated. Results from single- and two-story example structures in-

dicated that an infinite combination of parameters was possible for the damper-brace

system given a performance objective or specific response reduction; however, a min-

imum brace stiffness together with a corresponding set of damping coefficients can be

optimally determined to achieve the target performance. Results also indicated that

nonlinear viscous dampers with velocity exponent less than unity generally require

smaller values of the damping compared to their linear viscous damper counterparts,

and importantly, the velocity exponent of the viscous dampers has no significant ef-

fect on the maximum response reduction when the dampers are optimally designed.

Results from a six-story example building confirmed the observations made in single-

and two-story buildings, which also suggested that a large brace stiffness is not neces-

sary to achieve an acceptable level of response reduction. For a given brace stiffness,

there existed a maximum response reduction for performance indices involving in-

terstory drift, base shear force, floor displacement, and floor acceleration. If higher

performance is desired of displacement-based performance indices, the brace stiffness

may be increased accordingly, followed by appropriate optimization of the damper

parameters. Incremental dynamic analysis was conducted to evaluate the capacity
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and robustness of the damper-brace systems using a nonlinear eight-story benchmark

building under multiple earthquakes. Results indicated that the optimally designed

dampers were effectively robust to the uncertainty of ground motions.
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Chapter 6 Seismic vibration control of atrium buildings

with a truss-damper system

In this chapter, a passive control approach that utilizes a core structure inside

an atrium building in combination with a truss-damper system to achieve a novel

path for seismic energy dissipation is presented. The analytic models of a truss-FVD

system and a truss-IMD system are introduced, and their corresponding numerical

approaches for conducting time-history analysis are presented. Parametric studies

are performed to assess and compare the vibration control effectiveness of the truss-

damper configurations, and the seismic capacity and robustness of the optimally

designed control systems are evaluated under multiple earthquake records.

6.1 A truss-FVD system for vibration control of atrium buildings

Viscous
dampers

Core
structure

Atrium
building

Cantilever
truss

(b)
xg(t)

Atrium

(a)

Core
structure

xg(t)

Figure 6.1: (a) A centralized atrium building with a core structure (b) proposed
truss-FVD system.

A truss-FVD system that incorporates a cantilever truss and fluid viscous dampers

into an atrium building and a core structure to mitigate their seismic responses is first

introduced in this section. The investigated atrium has a centralized type, as illus-

trated in Figure 6.1(a). The core structure, which could be an existing construction,

as shown in Figure 6.2, or a purpose-built structure for the global control system, is

located inside the centralized atrium. A truss structure extending from the building

roof to the top of the core structure is built first. Unlike conventionally been done in

buildings where viscous dampers are placed between stories, it is proposed to install
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the dampers in between the bottom of the overhang truss and the top of the core

structure, as shown in Figure 6.1(b). Such a ‘truss-damper’ configuration utilizes

the unsynchronized dynamic motions of the two structures to improve the overall

efficiency of the dampers, hence the proposed truss-damper setup is deemed suitable

for the atrium building. In the next two sections, a numerical time-history method

will be developed to compute the seismic responses of the atrium building and the

internal core structure. Based on the numerical approach, the effectiveness of the

truss-FVD system will be assessed through an evaluation of the response reduction

in interstory drift under seismic excitation.

(a) Suria KLCC at Petronas towers, 

Kuala Lumpur, Malaysia.
(b) Avia Park mall, Moscow, Russia.

Figure 6.2: Internal core structure examples (Kenny 2014, Praime construction 2015).

6.1.1 Analytic model of a simple atrium building and a core struc-
ture connected by a truss-FVD system

xg (t)Core structure Atrium building

cc

kc

mc

xc (t)

c

k

m
x (t)

ktcd ,v

Figure 6.3: Analytic model of an atrium building and its core structure connected by
a truss-FVD system.

To assess the seismic performance of the proposed truss-FVD system, a simple

atrium building and a core structure connected by a truss and a viscous damper in
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series is first adopted as the analytic model, as shown in Figure 6.3. In Figure 6.3, m,

c, k and x(t) are the mass, damping coefficient, stiffness and horizontal displacement

of the atrium building, respectively, while mc, cc, kc and xc(t) are respectively the

mass, damping coefficient, stiffness and horizontal displacement of the core structure;

kt denotes the stiffness of the cantilever truss in the horizontal direction; cd and ν

are the damping coefficient and velocity exponent of the FVD, respectively. The

equation of motion of the atrium building and the core structure under an input

ground acceleration ẍg(t) can be expressed as a second-order differential equation:

Msẍs(t) + Csẋs(t) + Ksxs(t) + Fd,s(t) = −Ms1ẍg(t) (6.1)

where

Ms =

[
m 0

0 mc

]
is the mass matrix of the structural system;

Cs =

[
c 0

0 cc

]
is the damping matrix of the system;

Ks =

[
k 0

0 kc

]
is the stiffness matrix;

xs(t) =

[
x(t)

xc(t)

]
is the story displacement vector relative to the ground;

Fd,s(t) =

[
fd(t)

−fd(t)

]
is the damper force vector, fd(t) is the force in the IMD;

1 =

[
1

1

]
is a unit vector.

Eq. (6.1) can be numerically solved using different time-history approaches. This

study adopts the state-space technique outlined in Section 3.1.1 to compute the struc-

tural responses under an input ground acceleration. The state-space expression of

Eq. (6.1) is:

żs(t) = Azs(t) + BFd,s(t) + Eẍg(t) (6.2)

where

zs(t) =

[
xs(t)

ẋs(t)

]
is the response vector of the structural system;

A =

[
0 I

−Ms
−1Ks −Ms

−1Cs

]
is the system matrix;
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B =

[
0

−Ms
−1

]
is the distribution matrix of the damper force;

E =

[
0

−1

]
is the distribution vector of the ground acceleration.

The discrete time-state expression of Eq. (6.2) can be formulated based on the

assumptions that the damper force is a constant within two consecutive sampling

instants, while the ground acceleration changes linearly:

zs[k + 1] = A0zs[k] + B0Fd,s[k] + E0ẍg[k] + E1ẍg[k + 1] (6.3)

where

A0 = eA∆t is the discrete system matrix;

B0 = A−1(A0 − I)B is the instant discrete damper force distribution matrix;

E0 = [A−1A0 + 1
∆tA

−2(I−A0)]E is the instant discrete ground acceleration distri-

bution vector at step [k];

E1 = [−A−1 + 1
∆tA

−2(A0 − I)]E is the instant discrete ground acceleration distri-

bution vector at step [k + 1].

The structural response-history can be calculated once the damper force vector,

Fd,s(t), is computed at each time step. Notably, for the simple structural system

shown in Figure 6.3, the relative displacement of the two structures is equal to the

total deformation of the truss-damper system, ∆(t). Therefore, the following kine-

matic relationship must be satisfied:

∆(t) = x(t)− xc(t) = ∆d(t) + ∆t(t) (6.4)

where ∆(t) is the relative displacement between the two ends of the model, i.e., the

total deformation of the truss-IMD system, and ∆d(t) and ∆t(t) are the deformations

of the damper and the cantilever truss, respectively.

6.1.1.1 Force in the truss-FVD system

The damper force vector at step k, Fd,s[k], can be formed once the damper force

fd[k] is obtained. In this chapter, the damper force is solved numerically using the

fourth-order Runge-Kutta method. Since the truss and FVD are connected in series,

as shown in Figure 6.3, the force induced by the damper is equal to the force in the

truss. The damper force can thus be expressed as:

fd(t) = kt∆t(t) = cd|∆̇d(t)|νsgn(∆̇d(t)) (6.5)
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where sgn(·) denotes the signum function. To calculate the damper force, Eq. (6.5)

is first rewritten as:

|∆̇d(t)|sgn(∆̇d(t)) = (
kt
cd

)
1
ν |∆t(t)|

1
ν sgn(∆t(t)) (6.6)

which can be further expressed as:

∆̇d(t) = (
kt
cd

)
1
ν |∆t(t)|

1
ν sgn(∆t(t)) (6.7)

The substitution of the first derivative of Eq. (6.4) into Eq. (6.7) gives the following

first-order nonlinear differential equation for the truss deformation:

∆̇t(t) = ∆̇(t)− (
kt
cd

)
1
v |∆t(t)|

1
v sgn(∆t(t)) (6.8)

Eq. (6.8) can be discretized and solved numerically following the fourth-order Runge-

Kutta method. The discrete time-state function of truss deformation for two consec-

utive sampling steps [k] and [k + 1] can thus be expressed as:

∆t[k + 1] = ∆t[k] +
1

6
(Kt1 + 2Kt2 + 2Kt3 +Kt4)∆t (6.9)

where

Kt1 = ∆̇[k]− (ktcd )
1
ν |∆t[k]|

1
ν sgn(∆t[k])

Kt2 = 1
2(∆̇[k] + ∆̇[k + 1])− (ktcd )

1
ν |∆t[k] + ∆t

2 Kt1|
1
ν sgn(∆t[k] + ∆t

2 Kt1)

Kt3 = 1
2(∆̇[k] + ∆̇[k + 1])− (ktcd )

1
ν |∆t[k] + ∆t

2 Kt2|
1
ν sgn(∆t[k] + ∆t

2 Kt2)

Kt4 = ∆̇[k + 1]− (ktcd )
1
ν |∆t[k] + ∆tKt3|

1
ν sgn(∆t[k] + ∆tKt3)

(6.10)

Note that Eq. (6.10) assumes the deformation of the truss-FVD system, ∆(t), changes

linearly within each computational time interval. By substituting the truss deforma-

tion ∆t[k + 1] in Eq. (6.9) into Eq. (6.5), the force in the truss-damper system at

sampling step [k + 1] can be obtained:

fd[k + 1] = kt∆t[k + 1] = kt

[
∆t[k] +

1

6
(Kt1 + 2Kt2 + 2Kt3 +Kt4)∆t

]
(6.11)
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6.1.2 Performance evaluation of the truss-FVD system

Parametric studies using the analytic model in Figure 6.3 will now be conducted

to assess the performance of the truss-FVD system in seismic vibration control of

an atrium building, and the effects of truss stiffness and damper nonlinearity on the

dynamic performance of the building will be primarily investigated. The following

parameters are introduced to facilitate later performance evaluation process:

α ≡ kt
k
, β ≡ cd

2mω1
, γ ≡ kc

k
, µ ≡ mc

m
(6.12)

where α is the truss stiffness ratio, β is the damping ratio of the damper with a unit

of (s/m)ν−1, γ is the core structure stiffness ratio, µ is the mass ratio of the core

structure, and ω1 is the natural circular frequency of the atrium building.

To evaluate the effectiveness of a truss-damper system, an interstory drift perfor-

mance index, defined as the average of root-mean-square value of the interstory drift

time-histories of a n-story atrium building, is first adopted:

PID =
1

n

n∑
i=1

rms (δi) for a n-story building (6.13)

where δi is the interstory drift time-history of the i-th story of the atrium building.

A response reduction ratio, RRD, is then adopted with the following expression to

evaluate the performance improvement:

RRD(%) =

(
1− PID

PID,org

)
× 100 (6.14)

where PID,org is the original performance index of the atrium building without the

truss and damper. A larger RRD represents a more effective design of the system.

In addition to the atrium building, to assess the seismic performance of the core

structure, a performance index, PID,c, and a response reduction, RRD,c, are similarly

defined.

The simple system in Figure 6.3 is investigated with the following properties: the

natural period, structural mass and structural stiffness of the atrium building are 1

second, 2533 kg and 100 kN/m, respectively. The stiffness ratio γ and mass ratio µ

of the core structure are set to 0.1 and 5%, respectively. Selection of the values is

based on the assumption that both the mass and stiffness of the core structure are

much smaller than those of the atrium building. The inherent damping ratio of both

structures are assumed to be 2%, and a zero-mean white-noise acceleration-history is

adopted as the input ground excitation.
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Figure 6.4: Variations of response reduction in story drift with truss stiffness ratio
for (a) the atrium building and (b) the core structure under white-noise (ν = 0.4).

The effectiveness of the truss-FVD system on enhancing seismic performance of

the atrium building is first investigated. The variations of building response reduction

in story drift with truss stiffness ratio for different damper parameters are shown in

Figure 6.4. It can be seen from Figure 6.4(a) that, for the preset velocity exponent (ν

= 0.4), the response reduction of the atrium building increases rapidly with increasing

truss stiffness ratio for small truss stiffness ratio, say α < 0.2; when the truss stiffness

ratio becomes larger, the response reduction still increases but with a reduced growth

rate, indicating that the change in truss stiffness has a small influence on the building

performance when stiffness ratio is large, say α > 0.2. It can also be seen from Figure

6.4(a) that, for a given truss stiffness ratio, the response reduction may not increase

with increasing damping ratio of the viscous damper. For instance, when α equals

0.4, the response reduction increases as β grows from 0.002 to 0.004; as the damping

ratio becomes larger, RRD starts to decrease, indicating there may exist an optimal

damping ratio for the set truss stiffness to maximize the structural performance. The

story drift response reduction of the core structure, RRD,c, versus truss stiffness ratio

is plotted in Figure 6.4(b). It can be observed from Figure 6.4(b) that, the response

reduction of the core structure is sensitive to the truss stiffness when stiffness ratio is

low, say α < 0.1. For the examined damping ratios, a sharp increase in the response

reduction can be found when truss stiffness ratio is smaller than 0.04, and a peak

response reduction can be observed for a given damping ratio. After the peak, the

response reduction decreases with increasing truss stiffness ratio.

The variation of story drift response reduction of the atrium building with truss

stiffness ratio and damping ratio of the damper for velocity exponent equals 0.4 is

shown in Figure 6.5(a). From Figure 6.5(a) it can be seen that, the use of larger truss

stiffness and damping coefficient may not improve the performance of the atrium
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Figure 6.5: (a) Mesh and (b) contour plots of response reduction versus truss stiffness
ratio and damping ratio of truss-FVD system for the atrium building under white-
noise excitation (ν = 0.4).

building; however, using a larger truss stiffness can generally increase the response

reduction when the damper parameters are preset, which agrees with the observa-

tion from Figure 6.4(a). A contour plot is shown in Figure 6.5(b). It can be seen

from Figure 6.5(b) that, there exists an infinite combination of design parameters to

achieve a certain response reduction; however, a minimum truss stiffness ratio will be

required, as indicated by the red dashed lines. Therefore, if the stiffness of the truss

is predefined, there must exist a maximum achievable response reduction in story

drift of the atrium building and a corresponding optimal damping coefficient.
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Figure 6.6: Variations of response reductions in story drift with damping ratio for (a)
the atrium building (b) the core structure under white-noise excitation (α = 0.1).

The effects of damper parameters, i.e., damping ratio and velocity exponent, on

the seismic performance of the atrium building are also investigated. Figures 6.6(a)

and (b) show response reductions of the atrium building and the core structure against

damping ratio of the damper, respectively, when truss stiffness ratio equals 0.1. It can
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be seen from Figure 6.6(a) that, for a given set of truss stiffness and velocity exponent,

the response reduction of the building first increases with increasing damping ratio

and reaches a peak value, and then decreases. It can also be seen that, for the

investigated structural system under white-noise excitation, using a larger velocity

exponent requires a larger “optimal” damping ratio to achieve a maximum response

reduction of the building. However, the magnitudes of RRD,max are fairly close for

different velocity exponents. Figure 6.6(b) shows the variations of response reduction

of the core structure with damping ratio for different velocity exponents. The curves

in Figure 6.6(b) show similar trends to those in Figure 6.6(a). When the damping

ratio becomes larger, the response reduction reduces to negative, indicating magnified

core structure’s response.
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Figure 6.7: (a) Mesh and (b) contour plots of response reduction versus damping ratio
and velocity exponent of viscous damper for the atrium building under white-noise
excitation (α = 0.1).

The variation of the response reduction of the atrium building with damping ratio

and velocity exponent of the damper for truss stiffness ratio equals 0.1 is shown in

Figure 6.7. It can be seen from Figure 6.7(a) that, using a large damping coefficient

may not result in a good performance of the atrium building; a greater value of

damping ratio will be required when using a larger velocity exponent to increase the

response reduction, which agrees with the observation from Figures 6.6(a) and (c). In

general, to achieve a certain response reduction, there exists an infinite combination

of damping coefficient and velocity exponent. Figure 6.7(b) shows the contour plot

of response reduction of the atrium building for the examined truss stiffness. From

Figure 6.7(b) it can be seen that, there seems to exist a global maximum response

reduction at velocity exponent about 0.9. When ν is less than 0.9, to achieve a given

response reduction, there exists a minimum velocity exponent, as indicated by the

dashed lines, and a corresponding minimum required damping ratio.
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Figure 6.8: (a) Maximum response reduction in story drift and (b) corresponding
optimal damping ratio versus truss stiffness ratio for the atrium building under white-
noise excitation.

Since the results from Figures 6.5 and 6.6 suggest that for a given truss stiffness,

there exist a maximum response reduction of the atrium building and a corresponding

optimal damping coefficient, it may be worthwhile to investigate the effect of truss

stiffness on the maximum response reduction. Figure 6.8 shows the maximum re-

sponse reduction RRD,max, and the corresponding optimal damping ratios βD,opt, for

truss stiffness ratio ranging from 0 to 1. It can be seen from Figure 6.8(a) that, the

RRD,max increases rapidly with truss stiffness in a low stiffness region, say α < 0.2,

and shows a diminishing return when α becomes larger. It can also be observed from

Figure 6.8(a) that for a given stiffness ratio, the maximum response reductions are

very close, indicating that the examined velocity exponents have no significant influ-

ence on the maximum response reduction of the building if the dampers are optimally

designed. Figure 6.8(b) shows the corresponding optimal damping ratios required to

achieve the maximum response reductions for different velocity exponents. It can be

seen from the figure that, for the same truss stiffness, the use of a smaller velocity

exponent reduces the required damping to achieve a maximum response reduction,

which agrees with the observation from Figure 6.6(a).

Although the core structure only serves as a supporting element of the proposed

truss-damper system during an earthquake, it is nonetheless important to evaluate its

dynamic response when equipped with the optimally designed truss-damper systems.

Figure 6.9 shows the story drift response reduction of the core structure with the

optimal dampers for different truss stiffness ratios. From the figure it can be seen

that, as the truss stiffness becomes larger, the response reduction of the core structure

RRD,c reduces with a decreasing rate. When the stiffness ratio is larger than around

0.6, there is no performance improvement on the core structure, noting that the
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Figure 6.9: Story drift response reductions of the core structure with optimal damper
parameters for different truss stiffness.

optimal performance of the atrium building will not be significantly enhanced when

the truss stiffness ratio is larger than 0.2.

6.2 A novel truss-IMD system for vibration control of atrium build-
ings

Atrium

(a)

Core
structure

xg(t)

cd ,v

b

(b)

Atrium
building

Cantilever
truss

IMD

Figure 6.10: (a) A centralized atrium building with a core structure (b) proposed
truss-IMD system.

In this section, a nonlinear IMD is incorporated into the proposed truss-damper

configuration for seismic energy dissipation of atrium buildings, which utilizes an

inerter to improve the performance of a nonlinear viscous damper, as shown in Figure

6.10. An analytic model of an atrium building equipped with a truss-IMD system

is established first, and a numerical time-history method is developed to compute

the dynamic response of the building under earthquake excitation. Based on the

numerical approach, parametric studies are conducted to assess the effectiveness of
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the truss-IMD system on mitigating interstory drift response of the atrium building,

using first SDOF structural models, followed by a 6-story building. The performance

of the truss-IMD system is also compared with the truss-FVD system.

6.2.1 Analytic model of a simple atrium building and a core struc-
ture connected by a truss-IMD system

xg (t)Core structure Atrium building

cc

kc

mc

xc (t)

c

k

m
x (t)

kt

cd ,v

b

Figure 6.11: Analytic model of an atrium building and its core structure connected
by a truss-IMD system.

To evaluate the seismic performance of the proposed truss-IMD system, an ana-

lytic model of a simple structural system is adopted, as shown in Figure 6.11, which

is similar to the model shown in Figure 6.3, yet the viscous damper is replaced by an

inertial mass damper. In Figure 6.11, b, cd and ν represent the inertance, damping

coefficient and velocity exponent of the IMD, respectively. The equation of motion of

the atrium building and the core structure under seismic excitation can be expressed

as the following second-order differential equation:

Msẍs(t) + Csẋs(t) + Ksxs(t) + Fd,s(t) = −Ms1ẍg(t) (6.15)

Eq. (6.15) is similar to the equation of motion of the structural model studied

in Section 6.1.1, thus it can be similarly solved using the state-space procedure and

obtain the discrete time-state solution expressed in Eq. (6.3). However, as an inertial

mass damper is adopted in the section, the damper force vector of the truss-IMD

system, Fd,s(t), should be different from that of the truss-FVD system.

Figure 6.12 shows the hysteretic curves of a nonlinear viscous damper, an inerter,

and a nonlinear IMD subjected to a sinusoidal vibration. It can be seen from Figure

6.12 that the force-displacement loop of an ideal IMD is the superposition of the

hysteretic curves of the viscous damper and the inerter. Therefore, the damper force
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Figure 6.12: Superposition of hysteretic curves of a viscous damper (ν = 0.5) and an
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in an IMD can be expressed as:

fd(t) = cd|∆̇d(t)|νsgn(∆̇d(t)) + b∆̈d(t) = kt∆t(t) (6.16)

The rearrangement of Eq. (6.16) yields a second-order differential equation:

∆̈d(t) +
cd
b
|∆̇d(t)|νsgn(∆̇d(t))−

kt
b

∆t(t) = 0 (6.17)

The substitution of ∆t(t) in Eq. (6.4) into Eq. (6.17) gives the following differential

equation:

∆̈d(t) +
cd
b
|∆̇d(t)|νsgn(∆̇d(t)) +

kt
b

∆d(t) =
kt
b

∆(t) (6.18)

From Eq. (6.18) it can be observed that, the response of the IMD, ∆d(t), can be

found based on the input relative displacement of the truss-IMD system, ∆(t). Here,

∆(t) is assumed to change linearly within two adjacent sampling instants, and Eq.

(6.18) is treated as an initial value problem at each computational time interval that

can be solved piece-wisely :

∆̈d(t) +
cd
b
|∆̇d(t)|νsgn(∆̇d(t)) +

kt
b

∆d(t) =
kt
b

(∆0 +
∆1 −∆0

∆t
t),

∆d(t0) = ∆d,0, ∆̇d(t0) = ∆̇d,0

∆(t0) = ∆0, ∆(t0 + ∆t) = ∆1

for t0 ≤ t ≤ t0 + ∆t

(6.19)

The ode45 (Shampine and Reichelt 1997) based on the Dormand-Prince (4,5) pair
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(Dormand and Prince 1980) is used in this study to solve Eq. (6.19) numerically. The

IMD deformation at sampling instant (k + 1)∆t, namely ∆d[k + 1], can be calculated

by extracting the numerical solution of the following equation at t = (k + 1)∆t.

∆̈d(t) +
cd
b
|∆̇d(t)|νsgn(∆̇d(t)) +

kt
b

∆d(t) =
kt
b

(∆[k] +
∆[k + 1]−∆[k]

∆t
t),

∆d(0) = ∆d[k], ∆̇d(0) = ∆̇d[k]

for k∆t ≤ t ≤ (k + 1)∆t

(6.20)

The substitution of ∆d[k+1] and ∆[k+1] into Eq. (6.4) gives the truss deformation

at time step [k + 1], ∆t[k + 1]. The control force in the IMD at step [k + 1], fd[k + 1],

can thus be calculated by substituting ∆t[k + 1] into Eq. (6.16).

6.2.2 Performance evaluation of the truss-IMD system

Parametric studies using the analytic model in Figure 6.11 will now be conducted

to evaluate the effectiveness of the truss-IMD system, focusing primarily on the effects

of truss stiffness, damper inertance and nonlinearity. To relate the design variables

of the IMD to the properties of the atrium building, in addition to the parameters in

Eq. (6.12), a normalized dimensionless inertial mass ratio λ is defined as the ratio of

IMD inertance to the story mass of the atrium building:

λ ≡ b

m
(6.21)

To evaluate the effectiveness of a truss-IMD system, the performance indices PID
and PID,c, as well as the corresponding response reductions RRD and RRD,c are

also adopted here. The simple system shown in Figure 6.11 is investigated with the

same structural properties as those of the SDOF system studied in Section 6.1.2.

The zero-mean white-noise accelerogram is also adopted here as the input ground

acceleration.

The effectiveness of truss stiffness on enhancing seismic performance of the atrium

building is first investigated. Figure 6.13 shows the story drift response reduction of

the building against truss stiffness ratio for different inertial mass ratios, when the

damping ratio and the velocity exponent are 0.0015 and 0.4, respectively. It can

be seen from Figure 6.13 that, the response reduction generally increases rapidly

with increasing truss stiffness at low stiffness region, say α < 0.1. As the truss

stiffness becomes larger, for λ equals 0.005, 0.04 and 0.05, the response reduction

tends towards a diminishing return; for an examined inertial mass ratio between 0.005

and 0.04, the response reduction reaches a peak and decreases afterwards. Moreover,
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Figure 6.13: Variations of response reduction in story drift with truss stiffness ratio
for different inertial mass ratios under white-noise excitation (β = 0.0015 (s/m)−0.6,
ν = 0.4).

for a given truss stiffness, using a larger inertial mass ratio may not improve the

structural performance. For example, when α equals 0.2, the response reduction

increases as λ grows from 0.005 to 0.03; as λ becomes larger, the response reduction

starts to decrease, indicating that there may be an optimal inertance to maximize

the structural performance for the given truss stiffness.
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Figure 6.14: (a) Mesh and (b) contour plots of response reduction versus truss stiffness
ratio and inertial mass ratio of the truss-IMD system for the atrium building under
white-noise excitation (β = 0.0015, ν = 0.4).

Figures 6.14(a) and (b) show the three-dimensional mesh and contour plots of

building response reduction versus the truss stiffness ratio and inertial mass ratio

for a given set of damping ratio and velocity exponent, respectively. It can be seen

from Figure 6.14(a) that, the use of larger truss stiffness and IMD inertance may not

improve the performance of the atrium building, yet using a larger truss stiffness can

generally increase the response reduction when the IMD parameters are preset. In
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general, for a given truss stiffness, there seems to exist an optimal inertial mass ratio.

It can be seen from the contour plot in Figure 6.14(b) that, there exists an infinite

combination of design parameters for the truss-IMD system to achieve a specific

response reduction; however, a minimum truss stiffness will be required, as indicated

by the red dashed lines. For example, to obtain a 25% story drift response reduction,

the truss stiffness ratio shall not be smaller than 0.08.
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Figure 6.15: Variations of response reductions in story drift with (a) damping ratio
(α = 0.1, ν = 0.4) and (b) velocity exponent (α = 0.1, β = 0.0015) of the IMD for
the atrium building under white-noise excitation.

To study the effect of inertance on dynamic performance of the atrium building,

variations of the response reduction with inertial mass ratio for a given truss stiffness

are plotted in Figure 6.15, in which Figure 6.15(a) is plotted for a preset velocity

exponent, while for Figure 6.15(b) the damping ratio is fixed. It can be seen from

Figure 6.15(a) that, all the peak response reductions occur at inertial mass ratio

around 0.03, and the use of a larger damping ratio may not necessarily result in a

better structural performance. For the examined damping ratios, the peak response

reduction increases as β rises from 0.0005 to 0.0015, and it drops when β becomes

larger, indicating that there may exist an optimal damping ratio to maximize the

response reduction. From Figure 6.15(b) it can be seen that, the peak response

reductions for different velocity exponents also converge at inertial mass ratio around

0.03. From the above observations, it may be concluded that for a given truss stiffness,

there exists an optimal inertance of the IMD, regardless of the damping ratios and

the velocity exponents considered.

Results from Figure 6.15(a) suggest that for a preset velocity exponent, there

may exist an optimal damping ratio and a corresponding optimal inertial mass ra-

tio to achieve a maximum response reduction for a given truss stiffness. To verify

this speculation, Figure 6.16 is plotted to show the three-dimensional mesh ((a)-(c))
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Figure 6.16: Mesh and contour plots of response reduction in story drift versus inertial
mass ratio and damping ratio for the atrium building under white-noise excitation (ν
= 0.4).

and contour ((d)-(f)) plots of the response reduction RRD versus the inertial mass

ratio λ and the damping ratio β for truss stiffness ratio equals 0.1, 0.2 and 0.5 at

velocity exponent equals 0.4. Figures 6.16(a)-(c) show that, the damping ratio and

the inertial mass ratio can be combined in numerous ways to achieve a target perfor-

mance objective; however, for each stiffness ratio, there exists one global maximum

response reduction. It can be seen from Figures 6.16(d)-(f) that, as the truss stiff-

ness becomes larger, the maximum achievable response reduction increases, so do the

optimal inertial mass ratio and damping ratio of the IMD.

Previous results from Figure 6.16 have shown the existence of a maximum response

reduction of the atrium building for a given truss stiffness, to further investigate the

relationship between the maximum response reduction and the truss stiffness, the

genetic algorithm described in Section 3.3 is used to search for the optimal design

parameters of the IMD to maximize response reduction for a given set of stiffness ratio

and velocity exponent. Figure 6.17(a) shows the variations of maximum building

response reduction with truss stiffness ratio. It can be seen from Figure 6.17(a) that,

as stiffness ratio increases, there is a sharp increase in maximum response reduction

at small truss stiffness region, say α < 0.1, and a diminishing return can be found

when truss stiffness becomes larger. Moreover, velocity exponent is noted to have
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Figure 6.17: (a) Maximum story drift response reduction of the atrium building
(b) corresponding response reduction of the core structure (c) optimal inertial mass
ratio and (d) optimal damping ratio against truss stiffness ratio under white-noise
excitation.

no significant influence on maximum response reduction of the building. It is worth

noting that, the curves in Figure 6.17(a) are similar to those in Figure 6.8(a), yet

with larger achievable RRD,max. For instance, when the truss stiffness ratio equals

0.1, the RRD,max that can be achieved by a truss-FVD system is approximately

12.48%, while the RRD,max for the truss-IMD system is about 26.23%, which shows

around 14% difference, indicating that the IMD exhibits better performance than the

viscous damper in terms of response reduction in story drift. Figure 6.17(b) shows

the response reduction of the core structure when the optimal parameters of the IMD

are used. From Figure 6.17(b) it can be seen that, the response reduction in story

drift of the core structure, RRD,c, decreases rapidly with increasing truss stiffness at

small truss stiffness region, say α < 0.1, regardless of the magnitude of the velocity

exponent. Figures 6.17(c) and (d) show respectively the optimal inertial mass ratio

and the optimal damping ratio versus truss stiffness ratio. It can be seen from Figures

6.17(c) and (d) that, for a given truss stiffness, the optimal inertial mass ratios for

different velocity exponent are very close, but the optimal damping ratio increases
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with increasing velocity exponent.
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Figure 6.18: (a) Maximum response reduction in peak story drift (b) optimal inertial
mass ratio and (c) optimal damping ratio against truss stiffness ratio of the atrium
building with a truss-IMD system under white-noise excitation.

In addition to the story drift response reduction ratio RRD, the performance

of the truss-IMD system in mitigating peak response of the atrium building during

an earthquake is also evaluated based on the response reduction ratio in peak story

drift RRmD, which is defined in Section 5.1.4 (Eq. (5.9)). Figure 6.18 shows the

maximum peak story drift response reduction of the building RRmD,max and the

corresponding optimal IMD parameters (λmD,opt and βmD,opt) versus truss stiffness

ratio α for different velocity exponents under the white-noise excitation. Note that

the examined range of truss stiffness ratio is 0 ≤ α ≤ 1, as RRmD,max is found to

be very sensitive to the truss stiffness when the stiffness ratio is smaller than 0.1. In

general, the curves in Figure 6.18 show similar trends to the corresponding curves

in Figure 6.17 for the maximum story drift response reduction, which indicates that

in addition to the root-mean-square of story drift, the truss-IMD system can also

effectively mitigate the peak drift of the atrium building. From Figure 6.18(a) it can

be seen that as the truss stiffness becomes larger, the maximum response reduction

in peak story drift reaches a peak at α around 0.05. Moreover, by comparing Figure
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6.18(c) with Figure 6.17(d), it can be found that the optimal damping required to

minimize the peak story drift of the building are generally smaller than that required

to minimize the root-mean-square of story drift for a given truss stiffness ratio.
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Figure 6.19: (a) Maximum response reduction in peak story drift and (b) optimal
damping ratio against truss stiffness ratio of the atrium building with a truss-FVD
system under white-noise excitation.

The optimal performance of the truss-FVD system in reducing peak displacement

of the atrium building is also evaluated based on the response reduction in peak story

drift; the maximum response reductions and the corresponding optimal damping

ratios are shown in Figure 6.19. It can be seen from Figure 6.19(a) that the truss-FVD

system is also capable of mitigating the peak story drift when it is properly designed;

however, by comparing Figure 6.19(a) with Figure 6.18(a) it can be found that, the

maximum achievable response reduction of the viscous damper is significantly smaller

than that of the inertial mass damper for a given truss stiffness ratio. It can be seen

from Figure 6.19(b) that the optimal damping ratio generally increases with the truss

stiffness ratio for a preset velocity exponent, yet sharp changes in βmD,opt can be

observed at α around 0.01 for the examined velocity exponents. These sharp changes

in optimal damping ratio may also be due to the fact that the damping required to

minimize a peak structural response at different time instants may be quite different,

as explained in Section 5.1.4.
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6.2.3 Numerical example I: incremental dynamic analysis of a non-
linear simple structural system

To assess capacity and robustness of the proposed truss-IMD system to the un-

certainty of ground motion input, incremental dynamic analysis has been carried out

for a nonlinear SDOF atrium building under multiple earthquakes with increasing

excitation intensities. The nonlinear restoring force-displacement behaviour of the

building is assumed to be bilinear, as shown in Figure 5.21, and the mass m, elastic

stiffness kE and post-elastic stiffness kPE of the structure are 2533 kg, 100 kN/m and

10 kN/m, respectively. Noting that the fundamental period of the atrium building

based on its elastic stiffness is 1 second. A 2% inherent damping is assigned to the

building, and the yielding story drift in the horizontal direction δy is set to 2 cm.

The core structure is assumed to be a linear elastic structure with a mass ratio of

0.05 and a damping ratio of 2%.

Table 6.1: Seismic design parameters.
Parameters value

Risk/Occupancy category II
Importance factor 1
Seismic design category D
Site class C
MCE1 spectral response acceleration parameter at short periods SS (g) 1.5
MCE spectral response acceleration parameter at period of 1 sec S1 (g) 0.6
Short period site coefficient Fa 1.2
Long period site coefficient Fv 1.4
Spectral response acceleration parameter at short periods SDS (g) 1.2
Spectral response acceleration parameter at period of 1 sec SD1 (g) 0.56
Long-period transition period TL (s) 12

1Maximum Considered Earthquake.

The atrium building may be subjected to ground motions with various vibration

properties. In this section, it is assumed that the building is located in downtown

San Jose, California, USA, on very dense soil and soft rock that is classified as site

class C according to ASCE 7-05 (ASCE 2005). The seismic design parameters used

are summarized in Table 6.1 (SEAOC and OSHPD 2022), based on which a design

response spectrum of the construction site is produced. Twenty realistic ground

motion records were selected from the PEER database, as listed in Table 6.2; these

earthquake records were scaled to have a mean spectrum that approximately matches

the design spectrum, particularly between periods of 0.2T1 and 1.5T1, namely 0.2

and 1.5 seconds, as shown in Figure 6.20. For conducting the IDA, the 5% damped

spectral acceleration at the structure’s fundamental period, Sa(T1, 5%), is chosen as
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Table 6.2: Selected ground motions used in the numerical example.

Code Earthquake event Year Station Magni- Sa(T1, PGA
tude 5%) (g) (g)

EQ1 Kern County 1952 Santa Barbara Courthouse 7.36 0.86 0.35
EQ2 Kern County 1952 Taft Lincoln School 7.36 0.50 0.39
EQ3 Lytle Creek 1970 Wrightwood - 6074 Park Dr 5.33 0.40 0.61
EQ4 San Fernando 1971 Castaic - Old Ridge Route 6.61 0.38 0.56
EQ5 San Fernando 1971 Palmdale Fire Station 6.61 0.61 0.42
EQ6 Friuli, Italy-01 1976 Tolmezzo 6.50 0.44 0.64
EQ7 Tabas, Iran 1978 Dayhook 7.35 0.44 0.63
EQ8 Coyote Lake 1979 Coyote Lake Dam 5.74 0.38 0.54
EQ9 Coyote Lake 1979 Gilroy Array #6 5.74 0.77 0.56
EQ10 Imperial Valley-06 1979 Cerro Prieto 6.53 0.26 0.42
EQ11 Livermore-01 1980 San Ramon - Eastman Kodak 5.80 0.94 0.53
EQ12 Livermore-02 1980 San Ramon - Eastman Kodak 5.42 0.52 0.58
EQ13 Mammoth Lakes-01 1980 Convict Creek 6.06 0.28 0.67
EQ14 Mammoth Lakes-01 1980 Long Valley Dam 6.06 0.43 0.81
EQ15 Mammoth Lakes-02 1980 Convict Creek 5.69 0.46 0.51
EQ16 Mammoth Lakes-03 1980 Convict Creek 5.91 0.47 0.52
EQ17 Mammoth Lakes-04 1980 Long Valley Dam 5.70 0.42 0.75
EQ18 Mammoth Lakes-06 1980 Convict Creek 5.94 0.50 0.74
EQ19 Mammoth Lakes-06 1980 Long Valley Dam 5.94 0.33 1.20
EQ20 Victoria, Mexico 1980 Cerro Prieto 6.33 0.69 0.63
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Figure 6.20: Design response spectrum at downtown San Jose (based on parameters
in Table 6.1) and acceleration response spectrums of the selected earthquakes.
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the intensity measure of a scaled ground acceleration-history. The scaled Sa(T1, 5%)

for the selected earthquakes are summarized in Table 6.2. In this numerical example,

the spectral acceleration considered in the IDA increases from 0 to 2 g with a step

size of 0.1 g. A maximum story drift and an average maximum story drift are defined

as the damage measures of the structure with the following expressions:

Maximum story drift = max{max(δ1), max(δ2), . . . , max(δ20)} (6.22)

and

Average maximum story drift =
1

20

20∑
j=1

max(δj) (6.23)

where δj is the story drift time-history of the atrium building under j-th earthquake

and j = 1, 2, . . . , 20.

Table 6.3: Optimal damper parameters and response reductions of the atrium build-
ing and the core structure under white-noise excitation (PGAẍg= 0.64 g, ν = 0.6).

Truss-IMD system Truss-FVD system

γ α
λopt βopt RRD,max RRD,c βopt RRD,max RRD,c
(kg) (N·(s/m)0.6) (%) (%) (N·(s/m)0.6) (%) (%)

0.2 0.2 0.073 0.0062 31.86 -73.32 0.0096 11.54 39.59
0.2 0.5 0.097 0.0084 35.59 -99.80 0.0177 14.76 8.44
0.5 0.5 0.185 0.0191 48.50 -86.38 0.0291 27.56 0.18
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Figure 6.21: IDA curves of (a) maximum story drift (b) average maximum story drift
for structure controlled by truss-IMD system, truss-FVD system and for uncontrolled
structure under the selected earthquakes (γ = 0.2, α = 0.2).
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Figure 6.22: IDA curves of (a) maximum story drift (b) average maximum story drift
for structure controlled by truss-IMD system, truss-FVD system and for uncontrolled
structure under the selected earthquakes (γ = 0.2, α = 0.5).
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Figure 6.23: IDA curves of (a) maximum story drift (b) average maximum story drift
for structure controlled by truss-IMD system, truss-FVD system and for uncontrolled
structure under the selected earthquakes (γ = 0.5, α = 0.5).

Figures 6.21, 6.22 and 6.23 show the IDA curves of the atrium building equipped

with the optimal truss-damper systems to maximize response reductions in story

drift under white-noise for (α = 0.2, γ = 0.2), (α = 0.5, γ = 0.2) and (α = 0.5, γ =

0.5), respectively. The optimal parameters of the dampers, as well as the achievable

structural response reductions are summarized in Table 6.3. It can be seen from

the figures that, both the FVD and IMD are effectively robust to the stochastic

characteristic of the input earthquake excitation, and the truss-IMD system generally

outperforms the truss-FVD system in mitigating peak story drift of the building. For

the uncontrolled building, a change in slope of the IDA curve of maximum story

drift can be found at a spectral acceleration approximately equals 0.3 g, as shown

in Figure 6.21(a), indicating the atrium building starts to yield; this slope change

seems to be postponed when a truss-damper system is used. For example, Figure
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6.22(a) shows the IDA curves for α equals 0.5 and γ equals 0.2, in which the yielding

spectral acceleration of the building is postponed to around 0.4 and 0.6 g by the truss-

FVD and truss-IMD systems, respectively. It can also be seen from Figures 6.21(a),

6.22(a) and 6.23(a) that, for a given spectral acceleration, the maximum story drift

of the building with a truss-damper system generally reduces with increasing stiffness

of the truss and core structure, indicating the use of a stiffer truss or a stiffer core

structure can further enhance performance of a truss-damper system and alleviate

displacement response of the atrium building within the examined excitation intensity

range. From Figures 6.21(b), 6.22(b) and 6.23(b) it can be seen that, the truss-IMD

system is generally more robust than the truss-FVD system in reducing the average

maximum story drift of the building under different ground motions. As the stiffness

of the truss and core structure becomes larger, the distance between an IDA curve of

the structure with a truss-damper system and the curve of the uncontrolled structure

is amplified, indicating more structural response is mitigated by the truss-damper

systems.
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Figure 6.24: (a) Displacement and (b) acceleration time-histories of the uncontrolled
atrium building and equipped with the optimal truss-IMD system for α = 0.5 and
γ = 0.5 under the EQ2 Kern County earthquake.

To illustrate the seismic behaviour of the nonlinear atrium building with a truss-

IMD system, Figure 6.24 is plotted, which shows the displacement and accelera-
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Figure 6.25: (a) Structural restoring force versus displacement (b) total lateral force
versus displacement of the uncontrolled atrium building and equipped with the op-
timal truss-IMD system for α = 0.5 and γ = 0.5 under the EQ2 Kern County
earthquake.

tion time-histories of the building under ground motion EQ2, namely the 1952 Kern

County earthquake. It can be seen from Figure 6.24(a) that, the lateral displacement

of the building with the truss-IMD system is generally smaller than that of the un-

controlled structure, and the horizontal drift of the uncontrolled building reaches the

initial yielding displacement when t is around 8 s, which causes inelastic deformation

of the structure. However, the building with the truss-IMD system stays within its

elastic phase during the earthquake. It can also be seen from Figure 6.24(a) that,

after twelve seconds of the time-history, the uncontrolled building still oscillates with

large amplitudes and tends not to restore its initial position, i.e., the final displace-

ment of the uncontrolled building after the earthquake will not be zero. However, the

vibration amplitude of the building with the truss-IMD system are much smaller than

that of the uncontrolled structure, and the lateral structural displacement tends to

stabilize to zero, indicating the truss-IMD system can effectively increase the damp-

ing of the atrium building and reduce inelastic structural deformation during the

earthquake. From Figure 6.24(b) it can be seen that, in general, when equipped with

the truss-IMD system, the acceleration response of the building is reduced, and the

structure is quickly stabilized after the earthquake due to the additional damping.

When t < 3 s, the structural acceleration with the truss-IMD system is sometimes

larger than that of the uncontrolled structure, which can be attributed to the large

damper force generated by the IMD. To further improve the acceleration performance

of the building, the damper parameters could be optimized based on a performance
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index in story acceleration.

Figure 6.25(a) shows the hysteretic curves of the shear walls that provide restoring

force in the horizontal direction for the uncontrolled building and when equipped

with the optimal truss-IMD system, and 6.25(b) plots the hysteretic loops of the

entire structure. As can be seen from Figure 6.25(a) that, the truss-IMD system can

suppress dynamic response of the atrium building and prevent inelastic deformation

of the shear wall under the examined earthquake; when equipped with the truss-

IMD system, the structure utilizes the supplemental IMD to dissipate a significant

amount of input seismic energy, rather than relying only on its damping and inelastic

deformations.
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Figure 6.26: Structural ductility of the uncontrolled atrium building and with the
optimal truss-damper systems under the (a) EQ2 (b) EQ7 (c) EQ10 and (d) EQ14
earthquakes (γ = 0.5, α = 0.5).

To illustrate the response intensity of the atrium building deforming into its post-

elastic range during some intense earthquakes, Figure 6.26 is plotted, which shows

the ductility of the building with and without an optimal truss-damper system under

earthquakes with progressively increasing spectral acceleration Sa(T1, 5%), in which
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the ductility factor of the building is defined as:

Structural ductility factor =
δmax
δy

(6.24)

where δmax and δy are the maximum absolute drift and yield drift of the structure,

respectively. It can be seen from Figure 6.26 that, the optimal truss-damper systems

can generally reduce the structural ductility, and the truss-IMD system outperforms

the truss-FVD system at most of the examined excitation intensities. However, it can

also be seen from Figures 6.26(a) and (d) that, under the Kern County earthquake

(EQ2), the structural ductility is amplified when the building is equipped with a

truss-damper system for Sa(T1, 5%) larger than 1.2, and under the Mammoth Lakes

earthquake (EQ14), the ductility of the building with the truss-FVD system is greater

than that of the uncontrolled structure when Sa(T1, 5%) is larger than 0.9. These

observations suggest that although being effective in most of the examined intensities,

the optimal truss-damper systems are not capable of reducing the peak inelastic

deformation of the building for all earthquake intensities.
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6.2.4 Analytic model of a multi-story atrium building with a truss-
IMD system

ccn

kcn
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Figure 6.27: Analytic model of a N -story atrium building and a n-story core structure
connected by a truss-IMD system.

To compute the response of a multi-story atrium building under earthquake exci-

tation, the simple model in Section 6.2.1 is further extended. The analytic model of

a N -story atrium building connected to a n-story core structure using a truss-IMD

system is shown in Figure 6.27. The equation of motion of this system can be written

as:

Mẍ(t) + Cẋ(t) + Kx(t) + Fd(t) = −M1ẍg(t) (6.25)

where

M =

[
Ma 0

0 Mc

]
is the (N + n)× (N + n) mass matrix of the structural system;

C =

[
Ca 0

0 Cc

]
is the (N + n)× (N + n) damping matrix of the system;
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K =

[
Ka 0

0 Kc

]
is the (N + n)× (N + n) stiffness matrix;

Fd(t) =
[
01×(N−1) fd(t) 01×(n−1) −fd(t)

]T
is the (N + n) × 1 damper force

vector;

x(t) =

[
xa(t)

xc(t)

]
is the (N + n)× 1 response vector;

xa(t) =
[
x1(t) x2(t) · · · xN (t)

]T
is the story displacement vector of the atrium

building;

xc(t) =
[
xc,1(t) xc,2(t) · · · xc,n(t)

]T
is the story displacement vector of the core

structure;

Ma, Ca and Ka are the N ×N mass, damping and stiffness matrices of the atrium

building, respectively; Mc, Cc and Kc are the n × n mass, damping and stiffness

matrices of the core structure, respectively; 1 is a (N + n)× 1 unit vector.

The state-space procedure outlined in Section 3.1.1 is adopted to calculate the

seismic responses of the MDOF structural system, and the steps outlined in Section

6.2.1 are used to calculate the force in the truss-IMD system. Notably, for a multi-

story atrium building, the total deformation of the system ∆(t) is equal to the relative

displacement between the atrium roof and the top of the core structure:

∆(t) = xN (t)− xc,n(t) = ∆d(t) + ∆t(t) (6.26)

6.2.5 Numerical example II: a six-story atrium building

A six-story atrium building with a five-story core structure is used to evaluate the

performance of the proposed truss-IMD system. The example building has identical

story mass and stiffness, i.e., m1 = m2 = · · · = m6 = 50 × 103 kg and k1 = k2 =

· · · = k6 = 40 MN/m. The fundamental period of the building is 0.92 second, and

a 3% inherent damping is assigned to the building. The core structure is a 5-story

elevator tower with equal story mass and stiffness. The story stiffness of the tower is

assumed to be 50% and 100% of that of the atrium building (γ equals 0.5 and 1), and

the story mass is 5% of that of the building. 2% inherent damping is assigned to the

elevator tower, and it is connected to the top of the atrium building by a truss-damper

system. The ground motion used in this example is the filtered white-noise following

the Kanai-Tajimi model, with a power spectral density function shown in Figure

6.28(a) and an acceleration time-history shown in Figure 6.28(b), which simulates

the seismic excitation with an intensity class of 8 on type II site according to the

Chinese code for seismic design of buildings (GB50011-2010) (CMC 2010).
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Figure 6.28: (a) Power spectral density function and (b) artificial accelerogram of the
Kanai-Tajimi model considered.

Table 6.4: Optimal damper parameters and response reductions of the atrium build-
ing and the core structure.

Truss-IMD system Truss-FVD system

ν γ α
bopt cd,opt RRD,max RRD,c cd,opt RRD,max RRD,c
(kg) (N·(s/m)ν) (%) (%) (N·(s/m)ν) (%) (%)

0.5 0.5

0.1 28526 45624 52.86 -68.08 95391 37.57 6.90
0.2 33296 60727 55.01 -79.71 117630 42.32 -7.70
0.5 37487 73460 56.70 -90.81 136935 45.70 -20.72
1 39432 79636 57.28 -95.61 144620 46.91 -25.91
2 40148 83822 57.59 -97.89 148892 47.53 -28.77

0.5 1

0.1 33520 64487 55.75 -156.00 123458 42.82 -57.69
0.2 42658 93590 58.95 -187.31 163914 49.24 -94.50
0.5 47446 128901 61.68 -200.55 207355 54.14 -132.24
1 51249 145361 62.78 -214.38 227758 56.01 -149.52
2 53205 156164 63.33 -222.46 240991 57.00 -160.28

1 0.5

0.1 28028 89952 52.99 -62.19 238517 36.98 7.53
0.2 33765 128118 55.30 -75.48 311371 41.67 -8.80
0.5 38676 167473 57.00 -86.33 379698 45.18 -23.46
1 40639 185232 57.60 -90.45 408880 46.48 -29.42
2 41482 197390 57.94 -92.63 425172 47.16 -32.66

1 1

0.1 34764 136777 56.03 -153.00 326475 42.67 -58.77
0.2 44398 227264 59.36 -180.13 472648 49.41 -99.27
0.5 53407 348771 62.06 -208.08 639092 54.64 -139.61
1 57021 417152 63.11 -220.60 718796 56.64 -157.40
2 58692 461850 63.67 -227.62 765168 57.70 -167.36

To further evaluate the performance of the truss-IMD system, dynamic responses

of the atrium building equipped with a truss-IMD system and a truss-FVD system are

compared. The damper parameters of the two systems are optimized for maximizing

interstory drift performance of the building for different truss stiffness ratio (i.e., α

equals 0.1, 0.2, 0.5, 1 and 2, where α here is defined as the ratio of the truss stiffness

142



kt to first story stiffness of the building k1). Table 6.4 summarizes the optimal

design parameters of the two truss-damper systems, and the response reductions

of the building and the core structure for different velocity exponents (0.5 and 1).

From the table it can be seen that for both systems, the optimal damper parameters

and the maximum response reductions increase with increasing truss stiffness, while

the response reductions of the core structure decrease with increasing truss stiffness.

As compared to the truss-FVD system, the optimal damping coefficients required

from the truss-IMD system are smaller, but the maximum response reductions are

generally larger, by 6-16%. Importantly, the maximum response reduction of the

atrium building with the truss-FVD system at α equals 2 are still smaller than that

with the truss-IMD system at α equals 0.2 for the examined velocity exponents,

indicating the superior performance of the truss-IMD system. It is also worth noting

that, the maximum achievable response reduction of the building increases as the

core structure stiffness ratio γ increases from 0.5 to 1.

Figure 6.29 shows the structural response, base shear and damper force time-

histories, and the hysteretic loops of the atrium building with two optimal truss-

damper systems under the Kanai-Tajimi excitation for core structure stiffness ratio

equals 0.5, truss stiffness ratio equals 0.5 and velocity exponent equals 0.5. It can be

seen from the figure that, the truss-IMD system exhibits better performance in the

examined structural responses, especially in roof displacement, and the damper force

provided by the IMD is generally larger than the viscous damper. It can also be seen

from the figure that, the area enclosed by the hysteretic loop of the IMD is larger than

that of the viscous damper, indicating more seismic energy been dissipated by the

truss-IMD system. To illustrate the dynamic responses of the core structure equipped

with an optimally designed truss-IMD system, the top story displacement and base

shear force time-histories of the core structure are plotted, as shown in Figure 6.30.

The core structure story stiffness, truss stiffness and optimal damper parameters are

identical to those used in Figure 6.29. It can be seen from Figure 6.30(a) that the

roof displacement response of the core structure is amplified during the earthquake,

but the base shear force of the core structure is reduced, as can be seen from Figure

6.30(b). As a 56.7% of interstory drift response reduction is achieved by the atrium

building, the increased displacement of core structure in Figure 6.30(a) is deemed an

acceptable cost to ensure safety of the building; possible damage in core structure

caused by the amplified displacement could be repaired after the earthquake.

The two truss-damper systems optimized for the Kanai-Tajimi excitation are also

evaluated using realistic ground motions. Five historic strong ground motion records

are considered in this example to assess the robustness of the optimal damper de-
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Figure 6.29: Roof story responses, base shear, damper force time-histories of the 6-
story building with the optimal damper systems under the Kanai-Tajimi excitation
and dampers’ hysteretic loops (γ = 0.5, α = 0.5, ν = 0.5).
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Figure 6.30: Response histories of the core structure with and without an optimal
truss-IMD system under the Kanai-Tajimi excitation.

Table 6.5: Realistic earthquake ground motions considered.

Code Event Year Station Magni- Fault PGA
tude type (g)

EQ1 Imperial Valley 1940 El Centro 6.9 Strike-slip 0.348
EQ2 Imperial Valley 1979 El Centro Array #10 6.5 Strike-slip 0.173
EQ3 Kobe 1995 Kakogawa 6.9 Strike-slip 0.345
EQ4 Northridge 1994 Canoga Park—Topanga Canyon 6.7 Reverse 0.358
EQ5 Kern County 1952 Taft Lincoln School 7.4 Reverse 0.159

signs. The selected earthquakes are summarized in Table 6.5. Figure 6.31 reports

the average story displacement, absolute acceleration, interstory drift and story shear

force ratios under the five earthquakes, in which the ratios are defined as the ratio

of the mean value of a specific structural response with added truss-damper system

to that without a truss-damper. For example, the average story displacement ratio

is defined as:

Average story displacement ratio at i−th floor =
1

5

5∑
j=1

JS(i,j)

JS,org(i,j)
(6.27)

where JS(i,j) and JS,org(i,j) are the mean story displacements of i-th floor under j-th

earthquake of the building with and without a truss-damper system, respectively,

which are defined as:

JS(i,j) =
1

Kj

Kj∑
κ=1

abs(x(i,j,κ)), JS,org(i,j) =
1

Kj

Kj∑
κ=1

abs(xorg(i,j,κ)) (6.28)

where Kj is the number of sampling instants of j-th earthquake, x(i,j,κ) and xorg(i,j,κ)
are the displacements of i-th floor under j-th earthquake at sampling instant κ for

the controlled and uncontrolled building, respectively, and abs(·) is the absolute value
function. The average absolute story acceleration, interstory drift and story shear
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force ratios have been similarly defined using Eqs. (6.27) and (6.28). These ratios

are used to reflect the capability of a truss-damper system in mitigating the overall

structural responses during the considered earthquakes, and a response ratio equals

1 indicates no performance improvement. It can be seen from Figure 6.31 that, both

the truss-IMD and truss-FVD systems can significantly alleviate the overall responses

of the building, and the mean responses generally decrease with increasing truss stiff-

ness. Although both dampers are designed for minimizing the structural interstory

drift, the two systems still perform well in reducing the story acceleration and story

shear force of the building. It can also be seen from Figure 6.31 that, despite the

larger average interstory drift ratio at 5-6th floor, the truss-IMD system in general

outperforms the truss-FVD system. In particular, the average story shear force ratios

of the truss-IMD system with a truss stiffness ratio of 0.1 are even smaller than those

of the truss-FVD system with a stiffness ratio equals 1.

F

Figure 6.31: Average story response ratios of the atrium building with optimal truss-
damper systems under the five earthquakes (γ = 0.5, ν = 0.5).
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Figure 6.32: Maximum responses of the atrium with optimal truss-damper systems
under different earthquakes (α = 0.1, γ = 0.5, ν = 0.5).

The maximum interstory drift, absolute story acceleration, roof displacement and

base shear force of the atrium building equipped with an optimal truss-IMD system,

an optimal truss-FVD system, and of the uncontrolled building under the five earth-

quakes are plotted in Figure 6.32 to illustrate the maximum responses and seismic

loads of the structure for α equals 0.1, γ equals 0.5 and ν equals 0.5. It can be seen

from the figure that, both the truss-IMD and truss-FVD systems can reduce peak

responses of the atrium building under different earthquakes, and the maximum struc-

tural responses and base shear force of the truss-IMD system are generally smaller

than those of the truss-FVD system, although the truss-FVD performs slightly better

in earthquake 3 (the Kobe earthquake in 1995).

6.3 Conclusions

A novel truss-damper configuration for vibration control of atrium buildings with

a core structure was proposed in this chapter. The effectiveness of a truss-FVD sys-

tem and a truss-IMD system on mitigating interstory drift response of an atrium

building has been numerically evaluated. Results from a simple structural model in-

dicated that the story drift of the atrium building generally decreased with increasing

stiffness of the cantilever truss. For a given truss stiffness, there existed an optimal

combination of inertance and damping coefficient of the IMD to achieve a best struc-

tural performance. Damper nonlinearity was found to have no significant influence
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on the maximum building response reduction and the optimal inertance, yet the use

of a smaller velocity exponent reduced the optimal damping coefficient for a given

truss stiffness. Results from a six-story atrium building showed that the maximum

structural response reduction with a truss-IMD system was larger than that with

a truss-FVD system, and the damping required from the IMD was smaller. When

both damper systems were optimally designed, the IMD was general more effective

than the conventional viscous damper. Incremental dynamic analysis has also been

conducted on a nonlinear SDOF structural system to evaluate the robustness of the

truss-damper systems to the uncertainty of the earthquake excitation input. The

proposed truss-damper configuration was shown to be an effective energy dissipation

scheme for seismic vibration control of atrium buildings.
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Chapter 7 A simplified model for a truss-IMD system and

a core structure

In the previous chapter, a truss-damper configuration was introduced for seismic

vibration control of an atrium building with an internal core structure, in which the

core structure has been simulated as a MODF system. Since the core structure can

also be a purpose-built truss structure, of which the structural mass and damping are

relatively small compared to the main building, in this chapter, a simplified model

that combines a truss-IMD system and a core structure is proposed. The effect of

lateral stiffness of the core structure on the seismic performance of the atrium building

will be further investigated. A multi-objective optimization approach is developed

for the simplified model to minimize the peak interstory drift and story acceleration

simultaneously when subjected to a set of different earthquakes, which is achieved

by finding the Pareto optimal solutions of a predefined multi-objective optimization

problem with discrete fitness functions of the structural responses using a controlled

elitist genetic algorithm.

7.1 Analytic model of an atrium building with a simplified truss-
IMD-core structure system

Core
structure

xg(t)

cd ,v

bAtrium
building

Cantilever
truss

IMD

Figure 7.1: Atrium building with a truss-IMD-core structure system.

Figure 7.1 shows the truss-IMD configuration proposed in this study and the

core structure connecting the roof of the atrium building to the ground. The core

structure in Figure 7.1 is assumed to be a purpose-built truss structure, of which the

structural mass and damping are relatively small compared to the main building and

could be neglected in the analysis. Therefore, a simplified truss-IMD-core structure
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system is proposed for dynamic analysis of an atrium building controlled by a truss-

IMD system, in which the core structure is idealized as a spring element with a

stiffness coefficient kc, with the mass and damping been neglected for simplification.

The structural system shown in Figure 7.2(a) is thus adopted as the analytic model

of a N-story atrium building equipped with a truss-IMD-core structure system, in

which mi, ci and ki (i = 1, 2, . . . , N) denote the story mass, damping and stiffness

coefficients, respectively, b, cd and ν denote the inertance, damping coefficient and

velocity exponent of the IMD, respectively, and kt is the stiffness of the truss in the

horizontal direction.

c2 k2

c1 k1

m1

x2 (t)

x1 (t)

m2

cN kN

mN

xN (t)

mN-1 xN-1 (t)
kt
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b

cd ,v

xg (t)

c2 k2

c1 k1
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mN-1
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b

cd ,v

x2 (t)

x1 (t)

xN (t)

xN-1 (t)
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Figure 7.2: (a) Analytic model of an atrium building with a simplified truss-IMD-core
structure system and (b) an equivalent model.

The relative displacement between the atrium building and the core structure will

transmit to the IMD through the truss. It can be seen from Figure 7.2(a) that, since

the core structure has been idealized as a spring and it is in series with the truss,

the core structure and the truss can be represented by a spring with an equivalent

stiffness coefficient of ke, as shown in Figure 7.2(b), where:

1

ke
=

1

kc
+

1

kt
(7.1)

The effect of the lateral stiffness of the truss and core structure can thus be inves-

tigated through an evaluation of the equivalent stiffness of the spring. Importantly,

as the IMD and the equivalent spring are arranged in series, the following kinematic
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condition must be satisfied:

∆(t) = ∆d(t) + ∆e(t) (7.2)

where ∆(t) is the total deformation of the spring and IMD system, ∆d(t) and ∆e(t)

are the deformations of the IMD and the equivalent spring, respectively.

7.1.1 Dynamic response of the atrium building

The equation of motion of the atrium building in Figure 7.2(b) under seismic

excitation can be represented by a second-order differential equation:

Mẍ(t) + Cẋ(t) + Kx(t) + Fd(t) = −M1ẍg(t) (7.3)

where M, C and K are the N×N mass, inherent damping, and stiffness matrices of

the atrium building, respectively, x(t) is the N×1 response vector of the building, 1 is

a N× 1 influence vector with each element equal to unity, and ẍg(t) is the horizontal

ground acceleration. The damper force vector, Fd(t), is a N × 1 vector with the

following expression:

Fd(t) =

[
0(N−1)×1

fd(t)

]
(7.4)

where fd(t) is the force in the IMD. The equation of motion in Eq. (7.3) can be

solved numerically using the state-space technique outlined in Section 3.1.1 to com-

pute the dynamic response of the building during an earthquake input ẍg(t). The

response-history can be obtained once the damper force fd(t) is calculated at each

computational time instant. The damper force in the IMD can be expressed as:

fd(t) = cd|∆̇d(t)|νsgn(∆̇d(t)) + b∆̈d(t) = ke∆e(t) (7.5)

To calculate the damper force at each sampling instant, Eq. (7.5) is first rewritten

as:

∆̈d(t) +
cd
b
|∆̇d(t)|νsgn(∆̇d(t)) =

ke
b

∆e(t) (7.6)

The substitution of Eq. (7.2) into Eq. (7.6) yields:

∆̈d(t) +
cd
b
|∆̇d(t)|νsgn(∆̇d(t)) +

ke
b

∆d(t) =
ke
b

∆(t) (7.7)
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The total deformation of the equivalent spring and IMD, ∆(t), is equal to the roof

displacement of the atrium building xN(t). It can be seen from Eq. (7.7) that the

damper deformation ∆d(t) can be calculated from an input ∆(t) (or xN(t)). In this

section, similar to the approach outlined in Section 6.2.1, it is assumed that the roof

displacement changes linearly between two consecutive sampling instants and Eq.

(7.7) becomes an initial value problem at each computational time interval:

∆̈d(t) +
cd
b
|∆̇d(t)|νsgn(∆̇d(t)) +

ke
b

∆d(t) =
ke
b

(∆0 +
∆1 −∆0

∆t
t),

∆d(t0) = ∆d,0, ∆̇d(t0) = ∆̇d,0

∆(t0) = ∆0, ∆(t0 + ∆t) = ∆1

for t0 ≤ t ≤ t0 + ∆t

(7.8)

The roof displacements of the building at two adjacent time steps, xN[k] and xN[k+1],

can be calculated from the structural responses, which are respectively equal to the

total deformations of the spring and IMD system at these steps, ∆[k] and ∆[k + 1].

Therefore, Eq. (7.8) becomes:

∆̈d(t) +
cd
b
|∆̇d(t)|νsgn(∆̇d(t)) +

ke
b

∆d(t) =
ke
b

(∆[k] +
∆[k + 1]−∆[k]

∆t
t),

∆d(0) = ∆d[k], ∆̇d(0) = ∆̇d[k]

for k∆t ≤ t ≤ (k + 1)∆t

(7.9)

ode45 based on the explicit Runge-Kutta (4, 5) pair of Dormand and Prince (1980)

is also adopted here to solve Eq. (7.9) between two adjacent computational time

instants. The next step damper deformation, ∆d[k + 1], can be calculated by ex-

tracting the numerical solution at t = (k + 1)∆t. Noting that the substitution of

∆d[k + 1] into Eq. (7.2) gives the spring deformation ∆e[k + 1]. Therefore, the next

step damper force fd[k + 1] can be calculated from either the IMD deformation or

the spring deformation using Eq. (7.5).
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7.2 Performance assessment of a SDOF atrium building with a sim-
plified truss-IMD-core structure system

To evaluate the effect of the equivalent stiffness of the truss and core structure

on dynamic performance of the atrium building, parametric studies will first be con-

ducted using a SDOF model, i.e., a single-story atrium building controlled by a sim-

plified truss-IMD-core structure system. The improved structural performance after

the installation of the simplified control system will be assessed based on response

reductions in terms of interstory drift and story acceleration of the atrium building.

7.2.1 Minimization of story drift

The performance of an atrium building under seismic excitation is first assessed

based on the structural interstory drifts. The performance index PID and the cor-

responding response reduction for interstory drift RRD defined in Section 6.1.2 are

adopted in this section. The equivalent model in Figure 7.2(b) is used to assess the

performance of the simplified truss-IMD-core structure system. The simplified con-

trol system has four design variables, namely ke, b, cd and ν, indicating the stiffness,

inertance, damping and nonlinearity of the system, respectively. The first three vari-

ables are related to the building properties with three new parameters to facilitate

later performance evaluation process:

η ≡ ke
k1
, λ ≡ b

M1
, β ≡ cd

2M1ω1
(7.10)

where η is the stiffness ratio of the equivalent spring, λ and β are the inertial mass

ratio and damping ratio of the IMD, respectively, k1 is the first story stiffness of

the building, M1 and ω1 are the modal mass and natural circular frequency of the

first vibration mode of the building, respectively. Notably, η and λ are dimensionless

parameters, while β has a unit of (s/m)ν−1.

A SDOF structural model is first considered to assess the effectiveness of the sim-

plified control system. The investigated model has the following properties: structural

mass m = 2533 kg, structural lateral stiffness k = 100 kN/m and inherent damping

ratio ξ = 2%. A white-noise acceleration time-history with a zero-mean is adopted

to be the ground excitation input of the building model.

Figure 7.3 shows the variations of the story drift response reduction of the atrium

building with the stiffness ratio of the equivalent spring and the damping ratio of the

IMD for different velocity exponents. From the mesh plots it can be seen that, for a

given inertial mass ratio of the IMD, the response reduction generally increases with

increasing equivalent stiffness ratio and damping ratio. However, it can also be seen
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Figure 7.3: Three-dimensional mesh plots and contour plots of story drift response
reduction versus equivalent stiffness ratio and IMD damping ratio (λ = 0.02).

that using a larger damping ratio may not result in a greater response reduction, and

there exists an optimal damping ratio to maximize the story drift performance for

a given equivalent stiffness ke. A red dot in the contour plots indicates a minimum

equivalent stiffness ratio of the truss and core structure, ηmin, and the corresponding

“optimal” damping ratio of the IMD, that are required to achieve a target response

reduction. As the target RRD increases, the required minimum stiffness ratio and

“optimal” damping ratio also increase.

Figure 7.4 shows the variations of response reduction in story drift with inertial

mass ratio and damping ratio of the IMD for equivalent stiffness ratios of 0.1, 0.2 and

0.5. It can be seen from the figure that, for a given equivalent stiffness of the truss and

core structure, there is an optimal combination of inertial mass ratio and damping

ratio for the atrium building to achieve a global maximum response reduction. Here,

the optimal combination is defined as the optimal design parameters of the IMD

for a given stiffness ratio. It can be observed from Figures 7.4(d), (e) and (f) that,
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Figure 7.4: Mesh and contour plots of story drift response reduction versus inertial
mass ratio and damping ratio of the IMD for different equivalent stiffness ratios
(ν = 0.4).

the maximum achievable response reduction of the building increases with increasing

equivalent stiffness of the truss and core structure, so do the optimal inertial mass

ratio and damping ratio of the IMD.

The maximum story drift response reductions of the atrium building, and the

corresponding optimal design parameters of the IMD for different velocity exponents

are plotted in Figure 7.5. The optimal parameters are obtained using the genetic

algorithm described in Section 3.3 by setting the story drift response reduction as the

objective function. It can be seen from Figure 7.5(a) that the maximum response re-

duction increases rapidly with increasing equivalent stiffness when η is smaller than

0.1; when η becomes larger, the increasing rate of RRD,max reduces significantly.

This growth pattern of RRD,max is noted regardless of the magnitude of the veloc-

ity exponent, indicating the nonlinearity of IMD has no significant influence on the

optimal performance of the truss-IMD system, which agrees with the observations

made in Section 6.2.2. From Figures 7.5(b) and (c) it can be seen that, the optimal

inertance and damping coefficient of the IMD also increase with the equivalent stiff-

ness; however, for a given stiffness ratio, the optimal inertial mass ratios are similar

for different velocity exponents, while a greater amount of optimal damping will be

required when using a larger velocity exponent. It can also be seen from Figure 7.5(c)
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Figure 7.5: (a) Maximum response reductions in story drift, (b) corresponding opti-
mal inertial mass ratios and (c) optimal damping ratios for the atrium building under
white-noise excitation.

that the value of the optimal damping coefficient for a given equivalent stiffness in-

creases with the velocity exponent, and for the examined range of equivalent stiffness,

the growth rate of the optimal damping ratio increases with increasing stiffness ratio.

Moreover, it can be seen from Figure 7.5(a) that when η equals 0.1, the RRD,max is

already around 55%, and a further increase in the equivalent stiffness will not result

in a significant increase in the RRD,max, yet it will cost large amounts of inertance

and damping from the IMD, as shown in Figures 7.5(b) and (c).

7.2.2 Minimization of story acceleration

In addition to the performance index in interstory drift, the story acceleration

index PIA and the corresponding response reduction RRA are also adopted to evalu-

ate the overall seismic performance of the atrium building, as defined in Eqs. (3.13)

and (3.15) in Section 3.2.1. Based on the response reduction in story acceleration,

the effectiveness of the truss-IMD-core structure system on enhancing acceleration-

related performance of the building is assessed using the same SDOF structural model

described in Section 7.2.1.

Figure 7.6 shows the three-dimensional mesh plots and contour plots of the re-

sponse reduction in story acceleration RRA against the equivalent stiffness ratio and

the damping ratio of the IMD for velocity exponent equals 0.6 and 0.8. Similar to

RRD, the story acceleration response reduction also increases with increasing equiv-

alent stiffness ratio. However, it can be seen from the mesh plot in Figure 7.6(a)

that, as both η and β become larger, RRA does not necessarily increase, indicat-

ing an excessively large damping will deteriorate acceleration performance of the

atrium building. A minimum equivalent stiffness will also be required to achieve a

target story acceleration response reduction, as shown in the contour plots, and this
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Figure 7.6: Three-dimensional mesh plots and contour plots of story acceleration
response reduction versus equivalent stiffness ratio and IMD damping ratio (λ =
0.02).

minimum stiffness and the corresponding “optimal” damping ratio are also noted to

increase with the response reduction desired.

An optimal combination of the inertance and damping of the IMD also exists

to achieve a maximum response reduction in story acceleration RRA,max for a given

equivalent stiffness, as shown in Figure 7.7. The optimal inertial mass ratio and

damping ratio are also noted to increase with increasing equivalent stiffness. However,

it can be seen from Figures 7.7(d), (e) and (f) that, for a given equivalent stiffness

ratio, the optimal IMD design variables required to achieve a maximum response

reduction in story acceleration are generally smaller than those parameters showing in

Figure 7.4 for maximizing the story drift response reduction, which indicates that the

optimal IMD parameters for the story drift performance may be too large for the story

acceleration performance of the atrium building, namely, optimize one performance

may deteriorate the other.
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Figure 7.7: Mesh and contour plots of story acceleration response reduction versus
inertial mass ratio and damping ratio of the IMD for different equivalent stiffness
ratios (ν = 0.4).

Figure 7.8: (a) Maximum response reductions in story acceleration, (b) corresponding
optimal inertial mass ratios and (c) optimal damping ratios for the atrium building
under white-noise excitation.

Figure 7.8 shows the achievable maximum story acceleration response reductions

of the atrium building, and the corresponding optimal inertial mass ratios and damp-

ing ratios, against the equivalent stiffness ratio for different velocity exponents. Sim-

ilar to the maximum story drift response reduction, RRA,max increases sharply when

η < 0.1 and tends towards a diminishing return, as can be seen from Figure 7.8(a).

However, in terms of the optimal IMD inertance, for the examined range of η, unlike

λD,opt that increases continuously with η, λA,opt stops growing when η > 0.5. More-
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over, it can be observed from Figures 7.8(a) and (b) that the optimal inertance and

damping for story acceleration are generally smaller than those for maximizing the

story drift performance.

7.3 Multi-objective optimal design of a truss-IMD system

To further assess the effectiveness of the proposed truss-IMD system on mitigating

seismic response of atrium buildings, a six-story shear-type building is considered with

the following properties: the story mass and stiffness of the building are identical for

all floors, namely, m1 = m2 = · · · = m6 = 50× 103 kg and k1 = k2 = · · · = k6 = 40

MN/m; the fundamental period of the structure T1 is 0.92 second. A 3% inherent

damping is assigned to the building, and a truss-IMD system is used to connect

the roof with a core structure. The building is designated occupancy category II

based on ASCE 7-05 (ASCE 2005), and it is assumed to locate in downtown Los

Angeles in California, USA, on stiff soil that is classified as site class D. The seismic

design parameters considered are summarized in Table 7.1. A controlled elitist genetic

algorithm developed based on the NSGA-II (Deb et al. 2002) will be used to solve

a multi-objective optimization problem that is defined to minimize the interstory

drift and story acceleration of the building simultaneously. The description of the

multi-objective optimization algorithm can be found in Section 3.3.

Table 7.1: Seismic design parameters.
Parameters value

Risk/Occupancy category II
Importance factor 1
Seismic design category D
Site class D
MCE1 spectral response acceleration parameter at short periods SS (g) 1.947
MCE spectral response acceleration parameter at period of 1 sec S1 (g) 0.733
Short period site coefficient Fa 1
Long period site coefficient Fv 1.5
Spectral response acceleration parameter at short periods SDS (g) 1.298
Spectral response acceleration parameter at period of 1 sec SD1 (g) 0.733
Long-period transition period TL (s) 8

1Maximum Considered Earthquake.

7.3.1 Optimization problem formulation

A practical design problem in structural engineering often requires multiple per-

formance objectives to be satisfied simultaneously; for instance, minimizing interstory

drift and story acceleration at the same time. However, the improvement of a per-

formance objective may lead to degrading of others. To solve such a design problem,
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multi-objective optimization shall be implemented, which can output the Pareto front

for satisfying different combinations of the performance objectives. Notably, any so-

lution lies on the Pareto front of a multi-objective optimization problem is deemed

an acceptable solution, as none of the solutions can be identified as the “best” one,

namely, none of the solution dominates. In this study, a controlled elitist genetic

algorithm based on NSGA-II (Deb et al. 2002) that has been introduced in Section

3.3 is adopted to solve the multi-objective optimization problems.
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Figure 7.9: Design response spectrum at downtown Los Angeles (based on parameters
in Table 7.1) and acceleration response spectrums of the selected earthquakes.

The optimal design present here aims at finding the combinations of IMD in-

ertance and damping coefficient to minimize structural responses in interstory drift

and story absolute acceleration simultaneously under multiple earthquake inputs, for

a given equivalent stiffness of the truss and core structure. To achieve the optimal

design, an optimization problem is first formulated as:

Find : λopt and βopt

Minimize : f1 = max

(
PID(j)

PID,org(j)

)
f2 = max

(
PIA(j)

PIA,org(j)

)
j = 1, 2, ..., w

(7.11)

where λopt and βopt are the optimal solutions (design parameters) of the formulated

problem, f1 and f2 are the fitness functions for interstory drift and story acceleration

of the building, respectively, and w is the total number of earthquakes considered.

Noting that a larger ratio of PID(j) to PID,org(j) (or PIA(j) to PIA,org(j)) represents
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a larger structural response under the j-th earthquake.

7.3.2 Numerical analyses and discussion

In this numerical example, five ground motion records were selected for design

and analysis of the example building. These ground motions were scaled to have a

mean response spectrum that approximately matches the design response spectrum of

the construction site, especially between periods of 0.2T1 and 1.5T1, as illustrated in

Figure 7.9. The design spectrum is computed based on the parameters listed in Table

7.1 per ASCE 7-05 (ASCE 2005). The selected earthquake events are summarized in

Table 7.2.

Table 7.2: Selected ground motions used in the numerical example.

Code Earthquake event Year Station Magni- PGA Scale
tude (g) factor

EQ1 Imperial Valley-02 1940 El Centro Array #9 6.95 0.48 1.83
EQ2 Managua, Nicaragua-01 1972 Managua - ESSO 6.24 0.60 1.79
EQ3 Coyote Lake 1979 Gilroy Array #4 5.74 0.53 2.29
EQ4 Imperial Valley-06 1979 EC County Center FF 6.53 0.47 2.21
EQ5 Corinth, Greece 1981 Corinth 6.60 0.53 2.33

The inertial mass damper installed in between the building roof and the core

structure has been designed for minimizing the interstory drift and story absolute ac-

celeration simultaneously under the selected earthquakes, through solving the multi-

objective problem formulated in Eq. (7.11) using the controlled elitist GA. In this

study, the size of population and the maximum number of generations of the genetic

algorithm are set to 60 and 50, respectively, and a constant mutation probability of

0.02 is used. For a given equivalent stiffness, all the parameter combinations lie on

the Pareto front are deemed optimal solutions for the optimization problem, denoted

as λopt and βopt for the optimal inertial mass ratios and damping ratios, respectively.

Although the upper and lower bounds of the two parameters have no significant in-

fluence on the optimal solutions if being included, to increase the convergence rate

of the algorithm, the upper and lower bounds for both the inertial mass ratio and

damping ratio have been set to 0.1 (for β the unit is (s/m)0.5) and 0, respectively, for

η equals 0.5 and ν equals 0.5. These bounds were decided through trial-and-error to

ensure the inclusion of optimal solutions. As can be seen from Table 7.3, the optimal

design variables are within the decided bounds.
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Table 7.3: Optimal design parameters of the IMD (η = 0.5, ν = 0.5).

Optimal parameter combinations of IMD λopt βopt (s/m)0.5

Combo 1 0.0473 0.0471
Combo 2 0.0398 0.0397
Combo 3 0.0381 0.0342

90˚

M
idpoint

Combo 1

Combo 3

Combo 2

Figure 7.10: Pareto fronts of the multi-objective optimization problem for the atrium
building under the selected earthquakes (η = 0.5, ν = 0.5).

To ensure accuracy of the optimal solutions, the design problem has been solved

several times using the genetic algorithm. Figure 7.10 shows the Pareto optimal

solutions computed from three different runs of the algorithm for η equals 0.5 and

ν equals 0.5. It can be seen from the figure that the three Pareto fronts generally

match with each other, and there exist multiple combinations of the ratios of per-

formance indices in interstory drift and story acceleration that can be achieved by

the truss-IMD system. All these combinations are considered as optimal solutions

to design the IMD, and designers of the atrium building can select desired combina-

tions according to the design requirements. Here, the performances of a combination

that minimizes the interstory drift, denoted as “Combo 1”, a combination minimizing

the the story acceleration, denoted as “Combo 3”, and a “Combo 2” lies between the

combinations 1 and 3, are compared in this study. The location of Combo 2 is de-

termined from a perpendicular extending from the midpoint of a line that connects

Combo 1 and Combo 3, as shown in Figure 7.10, and the optimal design parameters

of the three combinations are listed in Table 7.3. To evaluate the effectiveness of the

truss-IMD systems with these optimal parameter combinations, the mean structural
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responses and the average base shear force of the building under the five earthquakes

are summarized in Table 7.4. It can be seen from the table that all of the three pa-

rameter combinations can significantly alleviate the examined structural responses.

When equipped with the truss-IMD systems, the mean values of interstory drift,

story displacement, story acceleration and base shear force are reduced by around

45%, 35%, 27% and 36%, respectively (these percentages show the average response

reductions of the three combinations). It can also be observed from Table 7.4 that the

IMD system with parameter Combo 1 mitigates more structural interstory drift and

story displacement among the three combinations, while Combo 3 performs better in

reducing base shear force of the building under the five earthquakes.

Table 7.4: Mean responses of the atrium building with different parameter combina-
tions under selected ground motions (η = 0.5, ν = 0.5).

Parameter combinations Interstory Story displ. Story accel. Base shear
drift (mm) (mm) (m/s2) (kN)

Uncontrolled 1.04 3.51 0.44 55.52
Combo 1 0.55 2.17 0.32 36.47
Combo 2 0.57 2.29 0.32 35.31
Combo 3 0.59 2.40 0.32 34.88

  

Figure 7.11: Maximum roof displacements and base shear forces of the atrium build-
ing under different earthquakes.

Figure 7.11 shows the maximum roof displacement and base shear force of the

atrium building with the optimal truss-IMD-core structure systems and the uncon-

trolled structure under the five selected earthquakes. From the figure it can be ob-

served that the maximum roof displacements of the controlled building with pa-

rameter Combo 1 are generally smaller than those with the other two parameter

combinations, and the truss-IMD system with parameter Combo 3 outperformed
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those with Combo 1 and Combo 2 in reducing the peak base shear forces. How-

ever, as root-mean-square of the responses are used as the performance indices, and

five earthquakes have been considered in the optimizations, not all of the optimal

combinations can reduce the maximum response of the building. For example, the

maximum base shear force under the EQ1 excitation is amplified with the optimal

IMD systems. To further illustrate the seismic behaviour of the atrium building with

an optimal truss-IMD-core structure system, the time-histories of story displacement

and absolute acceleration of the first, fourth and sixth floors with parameter Combo

2 under the EQ5 Corinth earthquake are plotted, as shown in Figure 7.12. As can be

seen, the supplemental control system can effectively mitigate the overall structural

responses of the building during the earthquake.
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Figure 7.12: Story displacement and acceleration time-histories of the uncontrolled
building and with the parameter Combo 2 IMD system under the EQ5 Corinth earth-
quake.

7.4 Conclusions

This chapter further evaluated the performance of the truss-IMD system in miti-

gating seismic response of atrium buildings using a simplified model for the truss-IMD

system and the core structure. In addition to the response reduction in interstory

drift, a story acceleration response reduction index was adopted to assess the effective-

ness of the proposed system on suppressing structural accelerations of the building.
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Results from the parametric studies on a simple structure showed that the dynamic

performance of the atrium building generally improved with an increasing equivalent

stiffness of the cantilever truss and the core structure, and a minimum equivalent stiff-

ness was required to achieve a target response reduction of the building. For a preset

damper nonlinearity, the inertance and damping coefficient of the IMD can also be op-

timally determined to maximize a response reduction for a given equivalent stiffness.

A multi-objective optimization approach has been developed for the truss-IMD sys-

tem to minimize the structural interstory drift and story acceleration simultaneously

under multiple earthquake inputs. The optimization results of a 6-story building

suggested good performance of the optimal truss-IMD systems designed based on the

developed approach, e.g., the mean responses in interstory drift and base shear force

of the building were reduced by around 45% and 36% respectively when equipped

with the optimal control systems, and the maximum responses in roof displacement

and base shear force were also alleviated by the optimal systems.
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Chapter 8 Conclusions and future research

8.1 Conclusions

Passive energy dissipation devices such as fluid viscous dampers are frequently

adopted in seismic vibration control of civil engineering structures. This thesis in-

vestigated the effectiveness of the fluid vicious damper and an inertial mass damper

with nonlinear damping characteristic on improving seismic performance of building

structures, when the devices are installed in conjunction with supporting elements.

Different numerical approaches include state-space technique and Runge-Kutta meth-

ods were adopted to compute the dynamic response-histories of structures with differ-

ent damper systems, and the correctness and feasibility of a numerical time-history

approach developed for a nonlinear damper-brace system were evaluated in Chap-

ter 4. The effects of brace stiffness and nonlinearity of the viscous dampers on the

seismic performance of a building were investigated in Chapter 5 through parametric

studies, and an optimization approach for the damper-brace systems was developed.

In addition to the damper-brace assembly for conventional frame buildings without

a large internal open space, a truss-damper configuration was proposed in Chapter

6, which is specifically for the vibration mitigation of atrium buildings. The thesis

also introduced a simplified model for a truss-IMD-core structure system in Chapter

7, and a multi-objective optimization approach for the simplified system was also

presented to minimize structural interstory drift and story acceleration of an atrium

building simultaneously. The following important observations have been made from

the investigations of different damper systems:

1. There exists an infinite combination of design parameters for a damper-brace

system, or a truss-damper system, to achieve a specific response reduction of a

building, yet a minimum stiffness of the supporting elements will be required to

obtain the desired performance. For a given stiffness of the supporting elements,

the damper parameters can be optimally determined to maximize the response

reduction of the building, as shown in Chapters 5, 6, and 7.

2. The structural performance can generally be improved as the stiffness of the

supporting elements increases; however, a large stiffness is not necessary for a

building to achieve an acceptable performance level, as a diminishing return

can generally be observed in the maximum response reductions of the structure

as the support stiffness becomes larger, as shown in Chapters 5, 6, and 7.
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3. The velocity exponent of FVDs and IMDs has a significant influence on the seis-

mic performance of a building for given damping coefficients of the FVDs, or

preset inertances and damping coefficients of the IMDs. However, the damper

nonlinearity generally has an insignificant effect on the maximum response re-

ductions of the structure, as shown in Chapters 5 and 6; the velocity exponent

also has no significant influence on the optimal inertance of the IMD, as shown

in Chapters 6 and 7.

4. In a linear structural system, if the intensity of ground excitation is uniformly

changed, the original optimal linear dampers still exhibit their best perfor-

mance, yet the optimal nonlinear dampers may no longer be the optimal ones.

However, compared with linear viscous dampers, the nonlinear ones with a ve-

locity exponent smaller than unity is capable of reducing peak damper force

while achieving a similar structural response reduction, as shown in Chapter 5.

5. The use of the optimal dampers for maximizing displacement-based response

reductions may not obtain a desirable acceleration-based response reduction

of a building, and an increase in displacement-related performance may be at

the expense of deteriorations in structural acceleration and base shear perfor-

mances, as shown in Chapter 5. However, multi-objective optimization allows

one to select the design parameters to achieve performance objectives in dis-

placement and acceleration simultaneously, as shown in Chapter 7.

6. For a given set of damper nonlinearity and truss stiffness, there exists an optimal

combination of inertance and damping coefficient for the truss-IMD system to

maximize a response reduction of an atrium building, as shown in Chapter 6.

7. The proposed truss-damper configuration is effective in the mitigation of dy-

namic response of atrium buildings, and the optimal truss-IMD system generally

outperforms the optimal truss-FVD system in suppressing structural responses

in story displacement, acceleration, interstory drift and story shear force, as

shown in Chapter 6.

8. For the truss-damper configuration, the core structure stiffness also has a great

influence on the seismic performance of an atrium building, and the maximum

response reduction of the building could be enhanced by using a larger equiva-

lent stiffness of the truss and core structure, followed by an optimization of the

damper parameters, as shown in Chapter 7.

The thesis makes several contributions to the literature. First, this study investi-
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gated the influences of supporting element stiffness and damper nonlinearity on the

effectiveness of fluid viscous damper and inertial mass damper in mitigating seismic

response of building structures, especially when optimal performance of a building

was reached. Second, a novel truss-damper configuration was proposed in this study

that can achieve an effective vibration control of atrium-type buildings during earth-

quakes. Third, whereas much research analysed the nonlinear dampers based on

equivalent linearization approaches, this study explicitly dealt with the damper non-

linearity in the analysis of different damper systems, especially for the truss-IMD

system, which yielded results that enable one to gain new insight into the dynamic

behaviours of the nonlinear dampers with supporting elements. Finally, this study

presented approaches to achieve robust designs of the brace-damper and truss-damper

assemblies in building structures, which could facilitate the design and application of

such “supporting element-damper” configurations in practical projects.

8.2 Future research

In addition to the topics investigated in this thesis, several research problems re-

lated to the passive energy dissipation systems still need to be addressed and warrant

future exploration:

• Inerter shows high potential in upgrading conventional seismic control systems,

while the real application of inerters in civil engineering is rather limited. Fur-

ther investigations are still required in (i) inerter-based seismic control systems

for specific types of civil structures (e.g., offshore structures) and (ii) practical

applications of the inerter-based seismic control technology.

• Evaluating the extent of damage suffered by a structure and by its structural

components under seismic loads is an important topic in the framework of

performance-based design, yet few works have been reported on the damage

assessment of a building or a certain structural component with an inerter-

based control system (e.g., an IMD). Further investigations on this topic are

warranted.

• The thesis adopted Chevron braces as the supporting elements of FVDs. Ap-

proaches that incorporate the stiffness of different brace components in more

complicate brace configurations, such as toggle braces and scissor-jack braces,

into the design of different types of dampers should be developed to facilitate

practical design of the damper-brace systems.

• Unlike a negative stiffness device that exhibits a constant stiffness coefficient

during its operation, the force-displacement relationship of an inerter has a neg-
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ative slope that changes with excitation frequency. Therefore, it is worthwhile

to conduct further investigations on the dynamic behaviour of IMDs at different

excitation frequencies and develop new strategies to control the large damper

forces that may be possibly induced.

• Experimental work is required to validate the proposed analytic models and

numerical approaches, especially for the IMD systems. Cyclic element tests

should be performed on the damper-brace assembly and the truss-damper sys-

tems to verify the assumptions made in their rheological behaviours, and the

numerical simulation approaches should be further evaluated by shaking table

tests with white-noise and realistic earthquake excitation.
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