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Abstract

Building Information Modeling (BIM) has greatly aided lean management
in construction, providing cost savings, efficiency improvements, collabo-
ration, and sustainability throughout the building lifecycle. Several coun-
tries and industries promote the development and practical application of
BIM. However, the current scan-based reconstruction process of BIM re-
quires costly specialized equipment and extensive manual data collection
and processing, hindering rapid reconstruction and continuous updating.
As a solution, Autonomous Mobile Robots (AMR) are expected to be the
most promising platform for autonomous 3D BIM reconstruction.

This thesis achieves a brief review of robot-based BIM reconstruction
methods through a data flow-based classification approach, identifying three
main challenges to robots: limited Field of View (FOV) of sensors, lack
of scan quality assessment, and rough autonomous movement control. To
address these challenges, a novel rotating Light Detection and Ranging
(LiDaR) gimbal design is presented, along with scan distortion removal
and scan quality evaluation algorithms. A three-step autonomous naviga-
tion method that integrates scan quality and scan parameters is proposed,
enabling efficient, reconstruction-oriented autonomous navigation. A robot
is designed and built to validate the proposed algorithms, and real-world
testing demonstrates their effectiveness.

Keywords

BIM reconstruction, Mobile Robotic, Optimal Scanning Parameters, LiDAR
Gimbal, Autonomous Navigation.
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Chapter 1

Introduction

1.1 Background
Under the challenge of building a resource-efficient, environment-friendly
and sustainable society, the global building industry is seeking more intel-
ligent and efficient ways of designing and building to meet global demand
and help create more intelligent and more resilient spaces. Throughout the
long life cycle of a building, site construction, maintenance, upkeep, and
renovation must be based on a thorough knowledge and assessment of the
building’s structure and current condition to achieve sound management
and resource conservation and recycling. With the development of infor-
mation science, the digitalisation of buildings has become mainstream, and
BIM has come into being.

Figure 1.1: The overview of BIM. BIM facilitates a collaborative project
process which integrates all stakeholders at the beginning of the design and
allows connection through the project life cycle [1].
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Early BIM is often closely associated with digital drawings that orig-
inated in the 1950s. Along with the birth of Computer-Aided Design
(CAD) technology, architectural design and construction digitalisation were
first seen. In the initial stage, computers mainly assisted engineers in 2-
dimensions(2D) drafting to save time and reduce errors. Over time, CAD
gradually became more widely used, and the software evolved so that CAD
could communicate product design information directly from the drawing
to the computer-driven manufacturing tool. In other words, products could
be manufactured directly from the computer without further processing.
With the further development of CAD software, engineers were no longer
satisfied with 2D drawings, and 3D modelling capabilities were gradually
developed. In the 1980s, 3-dimensions(3D) modelling function-assisted ar-
chitectural design appeared in the industry, showing the powerful ability
of information science. In the early 1990s, software integrating graphical
analysis and simulation was developed to provide information about how
buildings would behave under different conditions, including building orien-
tation, geometry, material properties, and building systems. Shortly after
this, parametric modelling software emerged, meaning that if some model
element changed, other relevant elements would automatically change. The
digital simulation of the construction process model with construction time
as a variable was also proposed in this era.

At the beginning of this century, information science developed rapidly,
and the above software functions were brought together and further en-
riched. 3D models of buildings, monitoring of construction progress and
quality, and other functions were integrated into a virtual platform that
allowed interactive access to all data models. This stage is often referred to
as 3D BIM.

Figure 1.2: To better describe the geometric features of BIM, Level of De-
tail (LoD) was proposed by CityGML [2] to describe the geometric feature
richness of BIM. the geometric feature model described by LoD is usually
considered to be 2D and 3D BIM [3].

The addition of BIM over time, which gives BIM a temporal attribute,
is called 4-dimensional(4D) BIM. Similarly, adding the cost of construction,
maintenance and many other items to BIM is called 5-dimensional(5D)BIM.
N-dimensional(N-D) BIM adds more dimensions to BIM, such as energy,
carbon footprint analysis [6,7], environmental effect and other perspectives,
which has gradually shown great vitality in the past few years. It has gained
wide attention both from academia and industry.

One such example is the UK Government’s mandate for BIM Level 2 in
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Figure 1.3: The expansion of the dimensions of BIM is essentially an up-
grade of the implementation methods. From drawings to construction and
maintenance, there are different methods of implementing BIM in each
stage. It is worth noting that although the research of BIM has reached
more to the dimension, in Implement, BIM is still in the 3D/4D stage.

April 2016 [8]. Similarly, the Ministry of Housing and Urban-Rural Devel-
opment of the People’s Republic of China released new policies and require-
ments for the BIM industry in 2022 [9]. Reviewing the development history
and current application of BIM, it is foreseeable that BIM will develop into
a standard platform and tool in the coming years.

In contrast to the potential for development offered by BIM, implement-
ing this technology takes time and effort. In many cases, BIM is simply a
model that can be accessed virtually and is more akin to a virtual demon-
stration. From a commercial perspective, implementing BIM entails a sig-
nificant financial outlay in terms of project migration costs and the expense
of training personnel to use BIM software. Technically, builders must have
faith in a hypothetical model. At the same time, technical managers tend
to prefer that BIM coexists alongside traditional design and construction
methods to verify BIM’s credibility.

The application of BIM for new buildings is often ideal and generated
as-planned. However, the reality of the building is often different from the
as-planned BIM, which is further complicated when considering existing
buildings, as the BIM of many is often composed of architectural sketches
and construction drawings that need 3D models and detailed documenta-
tion. In many cases, heritage sites’ architectural sketches and construction
drawings are completely missing. These discrepancies between BIM and
actual buildings have led to the need for automatic generation and updat-
ing of BIM for existing buildings, which has both academic significance and
essential engineering applications, as well as the potential to be extended to
other usage scenarios of general significance, such as rescue and firefighting
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operations.

Table 1.1: Common Laser Total Station Scanners and Parameters
Model Range Data Noise Density Price

Trimble
X12 [10]

365 m 2mm @ 10m 2,180,000
Points per
second

$280,000

Leica
RTC360
[11]

130 m 3mm @ 10m 2,000,000
Points per
second

$78,000

Topcon
GLS-
2000
[12]

500 m 3mm @ 50m 120,000
Points per
second

$100,000

Generating BIM from scan data is a state-of-the-art method, with the
scan data typically being derived from expensive laser-total station scanners.
The typical field BIM generation method involves fixing the laser-total sta-
tion scanners in the building and measuring the installation position of the
total station scanner accurately by operators, followed by manual conversion
of the scanning data to BIM. Another popular method is using hand-hold
laser scanner to replace the laser-total station, but it suffered precision is-
sues. Common models and their specifications are shown in Fig.1.1. The
scanning data is typically stored in the form of a point cloud, named after
its cloud-like point data storage structure. This process is labour-intensive
and error-prone, thus making it challenging to guarantee BIM precision,
efficiency and regular updating. This procedure is usually referred to as
building 3D reconstruction.

Given their excellent task-carrying capabilities, mobile robots have demon-
strated their potential in several aspects. Automating the BIM generation
process through robotics could bring significant progress to the BIM in-
dustry, further exploring the functional scenarios of mobile robots and ex-
panding their scope of applications. Compared to manual methods, mo-
bile robot-based approaches to BIM generation are quite different, which
presents several challenges:

• The sensors of mobile robots are designed for navigation and obstacle
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avoidance. They have a narrow FOV and low information density,
making it challenging to meet the dense data requirements needed
for 3D reconstruction. At the same time, the locomotion of mobile
robots will bring motion distortion to the scanning data, which will
lose accuracy if the distortion is not dealt with properly.

• Robotic sensors are not able to evaluate scan quality. The uniformity
of the point cloud, the range of the distribution and the scanning
time per frame can have a significant impact on the quality of the
reconstruction. These parameters are closely coupled to the robot’s
motion.

• Mobile robots need to be able to scan buildings autonomously, which
means that the robot should avoid omissions, reduce repeated paths,
and scan and explore buildings autonomously. This is a challenge for
the robot’s navigation and planning algorithm.

1.2 Aims and Objectives

The aim of the project is to develop a mobile robot based solution for BIM
3D reconstruction of building interior scenes. The robot should be able to
scan and collect data autonomously, thus reducing the need for expensive
specialized equipment and extensive manual data collection and processing,
and should address the challenges of robot-based BIM reconstruction meth-
ods. In the face of the above challenges, the following objectives should be
achieved by this project:

• Determine, through a literature review method, the feasibility of ap-
plying robotic-level sensors to BIM reconstruction to meet Level of
Detail (LOD) 300 requirements.

• Design a novel structure that extends the FOV of robotic-level sensors
to cover roofs, walls, and floors within the robot’s operating area.

• Design algorithms to eliminate sensor motion distortion caused by the
added structure and calibrate the sensor with the new structure.

• Design algorithms to evaluate scan quality and establish relationships
between scan quality and scan parameters.

• Fulfill two different navigation needs with navigation algorithms: ex-
ploration navigation and scanning task navigation.

• Design and build the robot, including both software and hardware
components. Deploy the above structures and methods on the robot
to verify their feasibility.
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1.3 Contributions and Overview

This dissertation is organised around several chapters presenting the context
for the RoboBIM(Robot BIM) project at UNNC and reporting the findings
of this master by research(MRes) as reflected in the most significant output
it produced.

Chapter 1 introduces the concept, history, level and significance of BIM
and elaborates on the issues of implementing BIM in practice. The con-
tradiction between the vital role of BIM and the current immature BIM
implementation method brings this topic. This MRes work shows an effec-
tive way to realise robot-based BIM automation. The proposed subtopic
and methods will be explained in the following parts.

Chapter 2 summarises the procedure and detail of mobile robot-based
BIM, explains how the data of the BIM scanning method is produced from
robotic-level sensors hardware and sensing algorithms, and how the robot
realised localisation and mapping by itself. It also summarises how the data
are further processed for BIM and BIM generation methods. In addition,
a brief overview of existing robotic-based BIM methods is included in this
chapter.

The current robotic-level sensors and sensing algorithms have many
drawbacks. The Field of View(FOV) of light detection and ranging(LiDAR)
is usually limited due to its mechanical structure, and the scanning density
cannot be evaluated by sensing algorithms. In order to improve the per-
formance of robotic-level sensors and the density of point cloud, Chapter 3
presents a novel structure of sensor gimbal and a new sensing methodology
based on a locomotion compensation method. This research revealed a novel
view of LiDAR-based scanning and the evaluation of scanning density. This
research provides information that can guide LiDAR scanning parameters
selection and the design of the BIM robot and contributes a new method
for locomotion compensation.

The significance of the robot-based BIM method is automation. After
reviewing all related works and papers, as far as the author’s knowledge,
no such navigation method can take good care of scanning quality based
on the scanning data. Motivated by the scanning method of the chapter
3, a novel three-step navigation approach is proposed in the chapter 4. By
which the robot can realise a fast, well-organised and 3D reconstruction
quality-orientation automatic navigation. This method is a vital part of the
RoboBIM project and is summarised as a deliverable part of the RoboBIM
project overview paper.

With the overview of existing methods and work of BIM robots and
knowledge, a new all-in-one BIM mobile robot solution is proposed in Chap-
ter 5, where the hardware and software systems of the RoboBIM robot are
illustrated here. The workflow, implementation detail and experiment result
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are further explained in this chapter. The RoboBIM robot is the integration
of the algorithms and devices of the aforementioned chapters. This project
shows great progress on the robot-based and robot-assist BIM reconstruc-
tion.

Chapter 6 summarises the research in this MRes, synthesises the main
findings, and provides a discussion of future research directions and appli-
cations of this work.
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Chapter 2

Background

2.1 Robotic-based BIM Automatic Reconstruc-
tion Workflow

As explicated in the introduction chapter 1, the production of BIM still
requires human involvement, including the crucial steps of data gathering,
processing, and management. Recent advancements in mobile robot tech-
nology have shown promise in enabling automation of the BIM generation
process by leveraging their autonomous positioning, navigation, mapping,
and obstacle avoidance capabilities [13, 14]. The robotic-based BIM gen-
eration process can be divided into five distinct stages based on the flow
of data and the goals of the algorithms used, namely, Data Acquisition,
Simultaneous Localization and Mapping (SLAM), Path-planning
and Navigation, Data Processing, and BIM Reconstruction, with
the former four stages being facilitated by mobile robots. By automating
these stages, mobile robots have the potential to significantly reduce the
need for human intervention, resulting in increased efficiency and accuracy
in BIM generation.

It is noteworthy that these five stages are partially independent, yet they
may also have an effect on each other. For example, the path generated by
the navigation stage may lead to low quality of the scanning data, affecting
the BIM reconstruction results.

• Data acquisition refers to the procedure of collecting scanning data
and the robot itself information from sensors installed on the robot,
such as LiDaR, radar, Red-Green-Blue-Depth (RGB-D) camera, In-
ertial Measurement Unit (IMU), and built-in rotation encoders.

• The SLAM stage aims to position (localization) the robot and creates
a rough map to mark the obstacles and reachable zone.

• The Path-planning and Navigation part is vital to the robot-based
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automatic BIM reconstruction method. It can guide the robot in
working in the known, semi-known or unknown environment.

• Compared to the rough data filter and cluster method of the SLAM
stage, the data processing is the preparation for BIM reconstruction
where coloured image, background segmentation information, temper-
ature distribution and other time-variable elements will be added to
the final BIM.

• BIM reconstruction is the most mature part. Many methods and
algorithms have been developed to transfer and convert the input
data from the abovementioned stages into BIM.

Data Acquisition

SLAM

Data Processing

Navigation and 

Path-planning
Point Cloud

LiDAR/

RGB-D 

Camera/

Radar/

Ultrasonic

Robot State

Velocity/

Orientation/

Pose

Odometry Obstacle Map Full coverage 

path-planning

Trajectory 

planning
Filtering Feature extraction

BIM reconstruction

Direct method Semantic method
BIM 

Automation

Velocity CommandSensor data

Figure 2.1: The mobile robot-based BIM automatic reconstruction work-
flow.
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2.1.1 Data acquisition

Researchers are concerned about the point cloud and robot state in the data
acquisition stage. The point cloud is a discrete set of data points in cartesian
coordinates space. The points may represent a 3D shape or object with the
coordinates (X, Y, Z). The individual point can not represent complete
information about the object being described. In addition, usually, point
cloud data does not have an order. Point cloud in any order is equivalent.

LiDaR is the most popular way to get the scanning point cloud [15–18],
named after its working principle and function, Light Detection and Rang-
ing. The authors of [19–21] conducted comprehensive reviews of the princi-
ples and applications of LiDaR systems. Based on its working principles,
LiDaR can be categorized into Time of Flight (TOF) LiDaR and Triangu-
lation LiDaR. ToF LiDaR measures range by comparing the elapsed time
between the transmitted and received signal. It dominates the market due
to its simple structure, such as laser total stations on the construction site
and high-end robotic devices. However, it suffers issues such as interfer-
ence from sunlight or other LiDaR devices. Triangulation method LiDaR
usually has two or more laser transmitting and receiving devices, and the
measurement accuracy is obtained by the measurement difference obtained
from triangulation. It is usually simple in structure and low in cost and has
been widely cited in low-cost scenarios like the sweeping robot and logistics
Autonomous Guided Vehicle (AGV) [13, 14].

Based on the laser beam steering mechanism, LiDaR can be further cat-
egorized into mechanical LiDaR and solid-state LiDaR. There are motor-
driven moving parts where the laser transmitters and receivers are installed
in mechanical LiDaR. Solid-state LiDaR comes in multiple forms, includ-
ing Microelectromechanical System (MEMS) LiDaR, FLASH LiDaR, and
Optical Phased Array (OPA) LiDaR [22]. It refers to a steering system
without bulky mechanical moving parts, resulting in a relatively small FOV
(typically 20–50 degrees horizontally).

However, LiDaR is an optic-based sensor that suffers from some com-
mon issues. Tibebu Haileleo et al. [23] found that using LiDaR sensors in
an environment with transparent entities, like windows and undecorative
glass walls, causes the sensor to report inaccurate range data, leading to a
potential collision triggered by errors. Zhou Haoyu et al. found that undec-
orated walls may degrade the LiDaR with cone FOV from acquiring point
cloud information [24]. In the BIM application, they may cause drift and
tracking lost issues.

Radar stands for radio detection and ranging, another type of rangefinder
[25,26]. It is based on the emission and detection of electromagnetic waves
in radio frequencies ranging from 3 MHz to 300 GHz (with wavelengths
from 100 m to 1 mm) [22]. Compared with its counterpart LiDaR, radar
has superior detection performance under extreme weather conditions since
waves within this spectrum have weak interaction with dust, fog, rain, and
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snow. The Millimeter Wave (MM-W) spectrum ranges from 30 GHz to
300 GHz, which provides broad bandwidth and narrow beams for sensing,
thus allowing finer resolution [27,28]. The shortcomings of millimetre-wave
radar, such as high cost, small field of view, and low resolution for small
objects, restrict its development. In recent years, the concept of Frequency
Modulated Continuous Wave (FMCW) radar has been gradually applied
in the development of mm-w radar, which can determine the range and
velocity of the object simultaneously and has shown good performance [22].

Ultrasonic is the most mature method of the ranging method, it is based
on the TOF principle, but the medium is ultrasonic wave rather than light
and radio wave [29]. The core part of the ultrasonic sensor is the trans-
ducer, which is used to convert some other type of energy into an ultra-
sonic vibration. The transducer can be further classified by energy source
into mechanical, magnetostrictive and mechatronic types [30]. Compared
to LiDaR and Radar, its advantages are simple, robust and easy to read.
However, the feedback frequency is relatively low, and the ultrasonic wave
speed can be influenced by temperature, moisture and air pressure [31,32].

The vision method, which has recently been a hot research topic, can be
concluded by hardware and software categories. The depth camera is the
hardware method. Structured Light (SL) and Stereo cameras are the main
principles of depth cameras. Structured light uses light of a known pattern
projected onto the scene, and then the way the pattern deforms is used in
constructing the depth map [33, 34]. SL method is vulnerable to sunlight
since interference may occur with the projected light pattern, but it does
not require an external light source. Stereo cameras try to mimic human
vision by using two cameras facing the scene with some distance between
them [35, 36]. The images from these cameras are acquired and then used
to perform visual feature (relevant visual information) extraction and to
match to obtain a disparity map between the cameras’ views.

The generation of scanning point cloud data by software method is usu-
ally related to the stage of SLAM. Generally speaking, the software-based
method has no limitation on the sensor. Monocular cameras [37,38], binoc-
ular cameras, depth cameras [39, 40], event cameras [41, 42], infrared cam-
eras [43, 44], fisheye cameras [45, 46], and even mobile phone and tablet
cameras can be used as input devices [47].

Besides the point cloud, the robot’s orientation, velocity, and acceler-
ation are vital to the data acquisition and SLAM stage. Generally, IMU
is the first choice. The principle and structure of IMU have been widely
studied by many researchers [48, 49]. Moden robot-level IMU comprises a
gyroscope, an accelerometer, and a magnetometer (optional). The gyro-
scope measures the three-axis angular rate and estimates the relative ori-
entation of the robot to the world frame. The accelerometer measures the
acceleration and then projects it to the world frame with the subtracted
gravity vector. The velocity and position can be obtained via integration
and double integration, respectively [50,51].
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Different gyroscopes and accelerometers have been constructed based
on working principles. Most modern robot-level IMUs are MEMS types.
Since these devices output the acceleration and the angular rate, the robot’s
velocity and position are obtained by integrating the measured data. There-
fore, any drift or bias in measuring acceleration and angular rate will cause
an accumulation of errors in the estimation of velocity and position [22].
The common sensors of the data acquisition stage and their properties are
shown in table 2.1.

Comparing the table 2.1 and 1.1, it can be easily found that robot-level
sensors’ range density and precision are weaker than laser total station scan-
ners. Nevertheless, the gap is not too huge to cover, and the precision of
robot-level sensors satisfies the BIM reconstruction LOD 300 level require-
ment. It is foreseeable that robot-level sensors could achieve BIM recon-
struction if a proper scanning and data enhancement approach is adopted.

2.1.2 SLAM

SLAM technology is the most promising direction of modern robotic re-
search, whose applications are widely used in robotic, autonomous driving
and daily life. Many comprehensive reviews of SLAM technology from the
view of computer vision, LiDaR, ultrasonic and mm-w Radar can be found
in [52–58].

Odometry is a method for estimating the change of the robot’s position
over time in the SLAM stage. Usually, the coordinate system where the
odometry information is located will have a fixed positional relationship
with the global/earth coordinate system, as shown in figure 2.2.

X

YZ

X
Y

Z

Odometry Frame

Robot Frame

X

YZ

Map/Global Frame

Figure 2.2: The odometry plays a huge role in SLAM. The odometry co-
ordinate is fixed on the earth/global coordinate system while the robot
coordinates are varying.

The most direct method is Global Navigation Satellite System (GNSS).
In the BIM reconstruction area, the GNSS method is often used on the
drone-based scanning system [59, 60]. Another mature and well-developed
way to get odometry is robot built-in wheel encoders [61–63], which are

25



Table 2.1: Common sensors of data acquisition step and their types, prin-
ciple and parameters
Type Sensors Model Principle Range Precision

LiDaR

RpLiDAR
S2

Triangulation 40m 2cm

Livox Mid
70

TOF 260m 5cm

Sick
LMS531

TOF 80m 2cm

Velodyne
VLP32C

TOF 200m 2cm

RGB-D
Realsense
D455

Stero Vision 4m 2%

Kinect V1 SL 2m 1%

Zed 2 Stero Vision 20m 5%

Radar Continental
ARS408

77Ghz 250m 1.7m

TI
AWR2243

81GHz 4m 2%

IMU CH108 MEMS 8g and
1000deg/s

0.5%

Xsens
MTI-630

MEMS 1g and
2000deg/s

0.2%
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counting the wheel’s rotation while spinning. However, the building in-
side scenario is GNSS-denied, and the slippery wheels will jeopardize the
state estimation of the encoder odometry. Due to these issues, scanning
data-based odometry methods are becoming increasingly popular due to
their robustness to different environments. The scanning data (point cloud
and robot information) from the last stage will be further processed into
odometry and map in this stage.

The core problem of the scanning-based odometry method can be de-
scribed as follows: with several consecutive frames of given scanning data
from the robot, find a rotation R and translation t to describe the locomo-
tion of the robot. Mathematically, what needs to be built is a loss function
E(R,t)on R and t obtained from several frames of data. Through optimiza-
tion, an acceptable solution is obtained.

Many famous matching and optimization algorithms are proposed to
solve this classic problem. After the odometry has already been obtained,
mapping is no longer complicated. By superimposing all the scan data on
the odometry in a certain way, a map relative to the global coordinate sys-
tem will be obtained. In the case of mapping large scenes where there may
be no overlapping areas between scanned data, the concept of closure-loop
detection is proposed to optimize the accuracy. Specifically, a localization
algorithm can correct the global map when it can identify an area the robot
has reached twice or more before and correct the local and global map.
Clustering, semantics and many other methods are used for closure-loop
detection.

Due to the different characteristics of the sensors, the mileage calculation
method can be further divided according to the types of sensors. At the
same time, they can generally include matching-based, feature-based, grid-
based, surface element-based and semantic-based methods.

In the field of LiDaR sensors, Iterative Closest Point (ICP) and Nor-
mal Distribution Transform (NDT) are traditional matching-based methods
widely adopted for mobile robots’ SLAM problems. A comprehensive re-
view of the ICP algorithms and application evaluation of NDT can be found
in [64,65].

The general idea of the ICP algorithm is the most basic and direct way,
which is to find a relationship between several scanning data. The workflow
is shown in algorithm1.

Where X = {x1, x2, · · · , xNx} and Y =
{
y1, y2, · · · , yNy

}
are any frame

of point cloud with number of Nx or Ny of points in the frame with con-
secutive timestamp. Tmax is the maximum mathcing timeout and Et is the
threshold value of error for stopping solving.

A complete ICP algorithm should include functional blocks such as a
data filter, initial transformation, associate solver, outlier filter, and error
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Algorithm 1:
Input: PointCloud : Xt0 = {x1, x2, · · · , xNx} , Y ={

y1, y2, · · · , yNy

}
, Nx = Ny, Tmax, Et

Output: R,t
1 while RunningT ime ≤ Tmax or E(R,t) ≥ Et do
2 E(R,t) = 1

Ny

∑Ny

i=1 Difference
{
(Nx, Ny)Xframe

}
;

3 min(E(R,t)) via Optimization ;
4 end

minimization [22]. The advantages of the ICP method are easy to imple-
ment and high precision with less noise at initialization, but ICP is easily
trapped in local minima in noise and dynamic environment [66]. There are a
lot of improved works for the ICP and formed the ICP algorithm family. For
the matching step, besides basic point coordinate, surface normal [67], cur-
vature [68]), descriptor matching (laser intensity [69]), and mixed method
are proposed. The finding process is often accelerated by data structures
such as k-D trees [70] to find the correspondences with the shortest dis-
tance and/or similar properties. The error function is where most ICP
family members differ. The basic ICP method takes the Euclidean distance
between selected point sets as the index; Park, Soon-Yong et al. proposed
the point-to-plane error index method [71]; the generalized ICP [72], which
introduces a probabilistic representation of the points and plane-to-plane
error-index to ICP family.

Compared to ICP, NDT is more robust and protective of the raw point
cloud because it does not downsample the scanning point cloud. NDT can
solve the both 2D registration [73] and 3D registration [74]. The NDT al-
gorithm is a probabilistic model-based implementation of point cloud align-
ment, where the input point cloud is partitioned into several grids. Then
the Gaussian probability distribution of the pair point clouds in the grid is
computed, and the distribution is matched to obtain the odometry solution.
The NDT algorithm avoids the nearest neighbour search and whole point
cloud storage and improves the execution efficiency.

LiDAR Odometry and Mapping (LOAM) is a typical method based on
feature matching, which has occupied the first place in the public dataset
KITTI since Zhang Ji et al. first proposed it [75]. LOAM computation-
ally selects and classifies feature points with smoothness into three four
types: sharp, less_sharp, flat and less_flat, and then uses the Levenberg-
Marquardt (L-M) method to find the transition between successive scans
by minimizing the point-to-edge distance for selected points and the point-
to-plane distance for plane points. Inspired by LOAM, several methods
have been proposed, including LeGO-LOAM [76], which first segments the
original point cloud using the range image and then extracts features by
a similar process to LOAM with a two-step L-M optimization. Table 2.2
shows other LOAM family methods.
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Table 2.2: The characteristics and comparisons of some well-known algo-
rithms

Category Method Loop-Closure Detection Downsampling

Scan-matching

ICP [72] No Yes
NDT [74] No No
GMM [82] No Yes
IMLS [83] No No
DLO [84] No No

MULL [85] Yes No

Feature-based

LOAM [75] No No
F-LOAM [86] No Yes
A-LOAM [87] No No

Lego-LOAM [76] No No
SA-LOAM [88] Yes No

Grid-Matching

Cartographer [77] Yes Yes
Hector SLAM [79] No Yes
CoreSLAM [89] No Yes
KartoSLAM [80] No Yes

Surfel-Based Suma [81] Yes No

Segmentation-Based Suma++ [90] Yes No
Segmap [91] Yes No

Cartographer algorithm [77], integrated into Robot Operation Sytem
(ROS), is an algorithm grid-based method proposed by Google for mobile
robot localization and mapping, which is small in code, fast in solving, and
widely used in service robots such as floor sweepers. The grid voxel filter
downsamples the collected point clouds. Although some details are lost, the
obstacle features can be preserved. The known odometry is differentiated
to obtain the guess of angular and linear velocities. The new odometry is
then obtained by combining the IMU sensor and odometry guesses after
transferring them into the downsampled point cloud data for an optimal
solution. Another feature of the Cartographer algorithm is the closer-loop
detection based on all the local maps that have been generated and the
current scan, which significantly improves its robustness.

In addition to these mentioned algorithms, there are many other well-
known algorithms in the LiDaR field, such as Gmapping [78], Hector [79],
Karto [80] and Suma [81]. They all use characteristic matching methods
and play a great role in various applications. The characteristics and com-
parisons of some well-known algorithms are shown in the table 2.2.

Radar odometry and mapping algorithms have yet to be well studied
compared to LiDaR. An overview of radar applications in robotics can be
found in [92, 93]. In analogy to LiDaR methods, radar-related algorithms
can be classified into two main categories, direct and indirect methods [94,
95]; the indirect methods involve feature extraction and association, whereas
direct methods forego these procedures. The advantage of the radar is the
capability of radial velocity measurement, [96, 97] taking full use of these
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properties, where a RANSAC algorithm is invoked for non-stationary outlier
removal.

Radar measurements are noisy and, thus, may worsen the performance
of scan-matching algorithms used for LiDaR, such as ICP and NDT [22].
However, some matching and mapping methods for LiDaR have also shown
good performance after modification, such as G-ICP [98], NDT with clus-
tering [99, 100]and Surfel-Based method with a new feature-extraction al-
gorithm [95].

SLAM technology, which relies solely on ultrasonic sensors, is typically
used in underwater robots and is rarely used in ground robots.

Due to the rising of computer vision technology, CV-based SLAM tech-
nology has been a hot topic for a long time. The visual SLAM technique
is comprehensively summarized annually and found at [56, 57]. According
to the technology base, the technology of visual SLAM can be divided into
four types: Filter, Key Frame, Direct Tracking and Spatial Occupancy.

In summary, sensors and sensing technologies for robot sensing have
been developed very maturely and are of great value in practical applica-
tions. This chapter on data acquisition and SLAM technology only reviews
sensor fundamentals, configurations and algorithms and does not provide
complete coverage of sensor materials, analysis principles and other issues.
A comprehensive review of the above two stages is published as part of this
project and can be found in the publication list.

2.1.3 Path-planning and Navigation

Autonomous motion is one of the significant advantages of mobile robots
in BIM reconstruction applications. In addition to SLAM, path planning
and navigation are other important technical point for autonomous robot
movement. In the field of BIM reconstruction, robot path planning and
navigation refer that the robot should plan a continuous path in a semi-
known building environment autonomously (rough obstacle map and odom-
etry only), enabling the scanning sensors to collect all important scanning
information of the building (e.g. corners, windows, corridors) without miss-
ing them. The process is to find several essential path points in the environ-
ment, connect them to form a continuous path, send them to the trajectory
planner for smoothing, and finally send to the robot velocity, acceleration
and trajectory tracking commands.

Coverage Path Planning (CPP) determines a path that passes over all
points of an area or volume of interest while avoiding obstacles [101]. Many
robotic applications require autonomous robots with CPP capabilities, such
as windows cleaning [102], automated harvester [103], robotic demining [104]
and robotic painting [105]. Cao et al. defined the requirements for full cov-
erage trajectory planning of robots in a flat 2D environment [106], which are
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also applicable to other coverage scenarios, with the following requirements.

• The robot must avoid all obstacles.

• The robot must move through all points in the target area, covering
it completely.

• Simple motion trajectories (e.g., straight lines or circles) should be
used (to simplify control)

• The robot fills the area without overlapping paths as much as possible

• The "best" path is required under the available conditions.

During actual task execution, the robot must balance these above re-
quirements to achieve the task. Coverage algorithms can be classified into
heuristic, complete algorithms based on the guarantee of complete coverage,
or online and offline methods based on whether they incorporate dynamic
sensor data information, a classification originally proposed by Choset et
al. [107]. Complete literature reviews of the CPP problem can be found
in [101, 107–110]. It is worth mentioning that in recent years, with the
development of machine learning and artificial intelligence, especially Re-
inforcement Learning (RL). New solutions to the CPP problem have been
proposed in large numbers. A further classification of the CPP algorithm
based on the unknown region segmentation method can be found in the
table 2.3.

Initially, an effective way to solve the CPP problem was randomization.
Early sweeping robots such as Karcher’s RC3000, Electrolux’s Trilobite, and
iRobot’s Roomba [111] represented this approach, moving randomly across
the floor so that if the motion time were long enough, the floor would
be completely cleaned. The advantages of this approach are low sensor
dependency and low computational resource requirements, but the runtime
is entirely unpredictable, and the cost is enormous.

The CPP approach based on cell decomposition usually involves decom-
posing the free space (i.e., the space without obstacles) into simple, non-
overlapping regions called meta-cells [131]. All meta-cells fill exactly the
available space. These regions have no obstacles, are "easy" to cover, and
can be swept by the robot using simple movements. Of these, Breadth-first
Search (BFS) and Depth-first Search (DFS) are the most basic algorithms.
DFS is a traversal algorithm that starts at the root and continues searching
in a specific direction to the end of a branch; breadth-first search BFS is
also a traversal algorithm that starts at the root and explores all nodes at
the current depth before moving to the next depth level. The algorithm
starts at the root node (in the case of graphs, choose any node as the root)
and explores each branch as far as possible before backtracking. Additional
memory (usually stacks) is needed to keep track of the nodes discovered
so far along the specified branches, which helps in the backtracking of the
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Table 2.3: Coverage Path Planning Algorithms
Category Heruistic Method

Direct Method

N/A Zigzag

Random Walk Brownian motion [86]
Levy Fight [112]

Contact Sensor Rectilinear
decomposition [113]

Cellular Decomposition

Breadth Breadth-first search
Depth Depth-first search

Motion Cost A-Star
D-Star

Chaotic
Function

Chaotic Coverage [114]

Tree Search Spanning Tree Coverage [115]
Imaginary Field Artificial Potential Field [116]

Bio-Heruistic
Genetic-Algorithm [117]

Particle Swarm [118]
Ant Colony [119]

Ecology-based Invasive Weed
Optimization [120]

Graph Decomposition Tree Search

Rapidly Exploration Random
Tree [121]

Motion Planning [122]
View Planning [123]
Next-best-view [124]

Learning-based

Value-based RL Q-Learning [125]
Deep Q-Network [126]

Policy-based RL Proximal Policy
Optimization [127]

Actor-based RL DDPG [128]
Asynchronous Advantage

Actor-critic [129]
Model-based RL Markov Decision

Process [130]

32



graph, and both stacks will usually be referred to as the open set and the
closed set. The BFS and DFS algorithms are the ideas underlying the CPP
method and are widely used in tree searches. Even in other CPP methods,
they are usually used as inspiration.

Chaotic CPP is a deterministic technique that consists of chaotic systems
that generate coverage trajectories based on chaotic motions. Since the
motion is predetermined, faster coverage in the workspace is guaranteed.
However, the algorithm relies on the kinematic motion of the robot subject
to kinematic constraints, which requires an exhaustive modelling analysis.

The CPP algorithm based on Spanning Tree Coverage (STC) subdivides
the workspace into a finite sequence of disjoint cells. Then it uses a tree
traversal algorithm such as DFS or BFS to find the best path to cover each
unoccupied cell. It has the advantages of being fast and efficient but low
processing power for huge obstacles and a high path overlap rate. Artificial
Potential Field (APF) algorithms typically generate a fictitious repulsive
and attractive force around the surrounding obstacles and the target, re-
spectively, to ensure that the robot reaches the target while maintaining the
distance between the robot and the obstacles [132]. GA is a meta-heuristic
population-based stochastic algorithm inspired by the natural laws of bio-
genetics [133] and the survival of the fittest and reproduction for solving
search problems [133].GA can generate near-optimal solutions to achieve
fast solutions to path planning problems through parallel processing. The
genetic algorithm has good global search capability in the area coverage but
needs better stability and long computation time due to the large search
space complexity [134].

Graph decomposition-based methods usually mean that the decomposi-
tion of unknown regions does not rely on grids or cells but is directly based
on coordinates and graphs. Among them, RRT is the typical representa-
tive. It uses incremental techniques in tree structures to construct a graph
to search and explore in the space of free or obstacle configurations [121].
The algorithm is designed to search the high-dimensional space and handle
motion dynamics planning efficiently. The advantages of such algorithms
come from their non-metric decomposition prior operations that allow such
algorithms to reach non-regular points; however, they also bring obvious
drawbacks, such as the difficulty for the robot to pass through unstructured
environments.

RL is a type of machine learning in which an agent learns to achieve a
desired goal by processing sequential decisions [135]. RL is neither super-
vised nor unsupervised learning but learns from experience through trial-
and-error rules.RL is widely used in robotics applications [136], and in the
context of CPP problems. In short, the adaptability of RL methods using
suitable robotic platforms in dynamically changing environments remains a
major challenge in robotics.
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2.1.4 Data processing

The workflow diagram presented in Figure 2.1 illustrates that the input
for the data processing step primarily comprises scanning data and robot
information from the first step discussed in Chapter 2.1.1, as well as odome-
try and rough positioning map information obtained in the subsequent step
described in Chapter 2.1.2. Although BIM reconstruction can be accom-
plished without data processing if the input data is free from imperfections,
such data often contains significant noise, irrelevant information, and un-
classified data points. To address this issue, robot information, including
the IMU, is typically processed in the SLAM stage utilizing a Kalman filter
to minimize noise and generate optimal estimates. Consequently, this stage
will focus on the data processing for point cloud data.

The processing of point clouds starts with filtering, smoothing and noise
reduction of the point cloud data. After reducing noise interference, it will
be easier to realize the classification and feature extraction of the point
cloud. By combining the classification and features, the semantic segmen-
tation information of the point cloud can be obtained, and the point cloud
can be well used for BIM 3D reconstruction.

Point cloud filtering has been extensively studied, [137–139] reviewed
the point cloud filtering methods from the view of signal processing, per-
formance and data structure, respectively. MATLAB has several toolbox
built-in methods for de-noising, down-sampling, estimating normal direc-
tion and nearest neighbour finding for point cloud, making it one of the
easiest-to-use point cloud processing tools [140].

Common numerical filter methods can be divided into several categories
based on statistics, neighbourhood, projection and signal processing.

Bayesian filters [141], iterative least squares filters [142], and kernel func-
tion clustering filters [143] are all statistical-based filters. Neighbourhood-
based filters use a similarity measure between a point and its neighbourhood
to filter conditions, and the similarity can be determined by point, normal
or plane methods [144]. Bilateral filters are representative of this type of
method [145]. Projection-based methods handle point clouds by adjusting
the position of each point in the point cloud with different projection strate-
gies [146]; Laplace transforms, as an important fundamental tool in signal
processing, can also obtain better results with point cloud filters based on
it [147]. In addition, partial differential equations, voxel grids [148] and
other methods have also played a great role in point cloud filtering.

It should be noted that since point clouds are disordered and structured,
it is necessary to design point cloud filters to preserve these characteristics.
Otherwise, they will corrupt the point cloud data.

After filtering, the point cloud’s classification operation and feature ex-
traction is the most important step. Feature points, such as ground, wall,
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and poles, can be extracted to increase the data dimension and enrich the
details. From the technical basis classification, it can be divided into three
main categories: numerical, model-matching and learning-based algorithms.

Principal Component Analysis (PCA) and clustering methods are the
most commonly used numerical algorithms. PCA methods are based on
calculating the normal to the point cloud to extract the point cloud plane
and are widely used in the open-source library PCL. Clustering-based meth-
ods are not based on a specific mathematical theory but group points with
similar geometric features, spectral features, or spatial distribution into the
same uniform pattern. k-means [149], mean shift [150, 151] and fuzzy clus-
tering [152] methods are widely used.

The core idea of model matching is to match the point clouds to different
original geometries. The most widely used model-fitting methods are based
on two classical algorithms: the Hough Transform (HT) and Random Sam-
ple Consistency (RANSAC). HT is a classical feature detection technique
in digital image processing. It originally appeared in [153] for line detection
in 2D images. One of the main drawbacks of HT is the lack of boundaries in
the parameter space, which can lead to high memory consumption and long
computation times [154]. Therefore, several studies have been conducted,
and such algorithms include Probabilistic Hough Transform (PHT) [155],
adaptive PHT [156], progressive PHT [157], and Kernel-based Hough Trans-
form (KHT) [158]. In addition to planes, other basic geometric elements
can also be segmented by HT. For example, reference [159] comprehensively
describes the HT-based method for sphere identification. A comprehensive
review of the RANSAC method can be found in [160,161]. RANSAC meth-
ods are widely used for planar segmentation, such as building facades [162]
and indoor scenes [163]. RANSAC is a non-deterministic algorithm. There-
fore the model detected by the RANSAC-based algorithm may not exist.
Many RANSAC-based algorithms have emerged in the last decades to im-
prove their efficiency, accuracy, and robustness.

Recent research has focused on learning-based point cloud classification
and feature extraction, which has been aided by open-source point cloud
databases. This area of research has gained popularity due to its poten-
tial applications, and several detailed reviews can be found in [164–166].
Learning-based point cloud classification and feature extraction can be cate-
gorized into unsupervised, semi-supervised, and supervised learning. Point-
Net is a widely recognized deep learning framework that operates directly
on points without using convolution operators. However, it is important
to note that annotating point cloud datasets is a significantly more time-
consuming and laborious task than annotating ordinary image data.
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2.1.5 BIM reconstruction

Given a point cloud of a facility, BIM modelling involves three tasks: mod-
elling geometry, object classes and material properties, and establishing re-
lationships between components. These tasks are not necessarily performed
sequentially; depending on the workflow, they may be staggered [167].

The goal of geometric modelling tasks is to create a simplified repre-
sentation of building components by fitting geometric primitives to point
cloud data. Geometric primitives can be individual surfaces or volumetric
shapes. Simple geometric elements may not model surfaces such as mould-
ing or decorative sculpture. More complex structures can be modelled non-
parametrically, for example, using triangular meshes such as STL, or mod-
elled from a database of known object models [168]. Since BIM usually uses
solid shape definitions, surface-based representations need to be converted
to solid models.

The modelled components are labelled with object categories. Standard
BIM categories include walls, roofs, floor slabs, beams, and columns [169].
In addition, custom object categories can be created based on the needs of
each project. Objects can be further expanded with additional metadata,
such as material properties or links to custom component specifications.

Topological relationships between components and spaces are important
in BIM and must be established. Connection relationships indicate which
objects are connected to each other and where they are connected. For
example, adjacent walls and the floor slab at the bottom will be connected
at their boundaries. In addition, containment relationships are used to code
the location of components embedded in each other, such as windows and
doors embedded in a wall.

In current practice, the creation of BIM is primarily a manual process
performed by service providers who are contracted to scan and model the
facility [170]. A project can take several months to complete, depending
on the complexity of the facility and the modelling requirements [171]. No
single software tool can complete all aspects of the process, and information
may be lost due to limitations in data exchange standards or errors in the
implementation of standards in software tools [172].

There are two main approaches to geometric modelling. The first ap-
proach is to fit geometric elements directly to 3D data. Geometric mod-
elling software typically includes tools for fitting geometric primitives to
data, as well as specialized tools for pattern modelling. These tools are
semi-automated and require a large amount of user input. The second geo-
metric modelling approach uses cross-sectional and surface extrusion. First,
horizontal and vertical cross-sections are extracted from the data. Then,
vertical cross sections are extracted to determine the height of walls and
any windows and doors relative to the floor and ceiling. Finally, the walls
are modelled by vertically extruding the horizontal cross-sections according
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to the constraints of the vertical cross-sections. This method is less compu-
tationally intensive than surface-fitting methods. However, it can lead to
errors when components do not follow their idealized geometry (for example,
if the walls are not truly vertical).

For a medium-sized building [173], manual merge modelling can take up
to several months, which is often a bottleneck for completing completed BIM
creation projects. Ideally, a system could be developed that takes a point
cloud of the facility as input and produces a fully annotated as-built BIM
of the facility as output. However, building such a system is a challenging
problem for several reasons. Facilities can be complex environments, often
with many unrelated objects, such as furniture and wall hangings, that ob-
scure the view of the components to be modelled. These unrelated objects
(called clutter) often do not need to be included in the BIM, and obscured
surfaces can result in incomplete BIM representations unless assumptions
are made about them (e.g., walls extend until they touch the floor). Even
without clutter and occlusion, the geometry of a facility can be so complex
that the resulting model is essentially a CAD model. The level of modelling
accuracy and detail required for a particular use case remains an open ques-
tion, but GSA provides accuracy tolerances ranging from ± 51 mm to ± 3
mm, with artefact sizes ranging from 152 mm to 13 mm [170]. Commonly
used commercial and free softwares are Autodesk Netfabb [174], Revit [169],
and mashlab [175].

2.2 Related work

The utilization of robots in BIM reconstruction is undoubtedly an innovative
concept being explored in both the commercial and academic sectors. Some
conferences and journal papers have shown BIM-related robotic research
in the last two decades. Robot-based solutions for BIM reconstruction are
not a simple overlay of various related BIM and robotic algorithms but a
coupled combination of robot configuration, dynamic model, motion param-
eters, sensor characteristics and reconstruction methods. This section will
briefly overview multiple perspectives on various relevant research studies
and industrial work concerning robots and BIM reconstruction.

Boston Dynamics is a famous robotics company from the United States
known for its walking robots. Based on the SPot quadruped robot dog,
Boston Dynamics has introduced a robot 3D reconstruction and digital
twin solution. Based on the built-in RGB-D camera and external multi-line
rotating LiDaR of the Spot robot, the robot’s localization and rough map-
ping are realized. The robot is equipped with a laser total station scanner,
which scans and 3D reconstructs the robot by the positioning information
given by the robot, as shown in the figure. The overall cost of this solution
is high, and the stability of the walking robot is yet to be investigated. In
addition, the massive amount of data from the laser total station is difficult
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to handle on the robot’s built-in computing platform.

The QuicaBot robot from Singapore’s Nanyang Technological Univer-
sity and Transforma company is a wheeled robot-based building scanning
and reconstruction robot. It can move autonomously to scan a room, with
a structured light camera and LiDaR, to detect building defects such as
cracks and uneven surfaces in about half the time it takes to inspect them
manually. The robot can upload the scanned 3D data to the cloud and
notify operators of the project, which aims to perform quality finishing
inspections according to the Construction Authority of Singapore (BCA)
Quality Assessment System CONQUAS-9 standard. The advantage is the
reliable mobility and high efficiency granted by the wheeled robot chas-
sis. However, due to the shortcomings of its sensor solution, the maximum
scanning height is only 3 meters, and the positioning capability is weak.

In academia, BIM reconstruction has attracted concern since the begin-
ning of this century. The concept of learning 3D models of indoor environ-
ments with mobile robots was proposed by Yufeng LIU et al. in 2001 [176].
The output result is VRML format, a universal BIM format. Then, in
2004, Nuchter et al. proposed a wheeled robot for scanning data-based
reconstruction [177]. Ding Lieyuan et al. proposed a BIM-based robotic
assembly model that contains all the required information for planning was
proposed [178]. Sungjin Kim et al. proposed a prototype built upon a
robot operating system (ROS), focusing on reconstruction robot task plans
for indoor wall painting based on BIM [179].

A summary of the BIM reconstruction robots containing state-of-art
work from industry and academia can be found in table 2.4.

The brief review of automatic robot-based BIM reconstruction technolo-
gies reveals that, despite the challenges of robot use in BIM reconstruction,
the ability of robots to automate real-time BIM updates will bring about a
huge industrial change. Existing solutions in the industrial world focus on
using robots as carriers with expensive laser total station scanners for BIM
reconstruction, which brings not only a considerable increase in cost but also
the laser total station is not designed for robots, and issues such as data
storage, time synchronization and motion distortion, can bring unexpected
errors and mistakes. Over time, the robotics of BIM reconstruction based
entirely on robotic sensors has gradually been recognized by the academic
community. In this thesis, an automated BIM reconstruction robot scheme
called RoboBIM is proposed at UNNC to solve the two main challenges
of low performance of robot-level sensors and automatic robot navigation
in BIM reconstruction circumstances. A well-developed autonomous robot
platform is designed on which the relevant algorithms are verified. The
results demonstrate the novelty and reliability of the RoboBIM scheme.
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Chapter 3

Structure and Control of LiDAR
Rotation Gimbal

Compared with LiDAR total station scanners, robot-level sensors usually
have apparent shortcomings in terms of FOV, the density of scanning points,
and the uniformity of scanning, as shown in table 1.1 and table 2.1. Taking
Leica RTC360 and Velodyne VLP32c as examples for comparison, VLP32c’s
number of scanning points per second is only one-third of that of RTC360,
and the FOV is only one-twelfth of that of RTC360. Using LiDAR Scanning
the building without any augmentation for BIM reconstruction can cause
many issues, such as broken surfaces and missing scans, as shown in the
figure 3.1.

Figure 3.1: Point clouds without data augmentation are directly used for
BIM reconstruction. Broken surfaces, distortions and noise can be clearly
noticed. The data comes from the robot-level LiDAR Velodyne VLP32C.
Fig. 3.1.A is the Ball-Pivoting surface method. Fig. 3.1.B is the Poisson
reconstruction method.

In order to improve the performance of robot-level LiDAR in the field
of BIM reconstruction, a LiDAR gimbal was proposed to improve the FOV
and data density of LiDAR. Its mechanical structure, control and data pro-
cessing methods are also presented together. Since its scanning parameters
can be adjustable, an optimal scanning parameter identification method
based on it is proposed and performs well.
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This idea comes from the camera gimbal mounted on the drone, which
has multiple degrees of freedom and allows the camera to rotate freely
around the x, y, and z axes. With such a gimbal, detection without dead
angles can be realized. However, LiDAR has mechanical structures inside
that cause gyroscopic effects and vibrations compared to drone cameras. It
requires the LiDAR gimbal more strong in mechanics and robust in control.
The data of the LiDAR usually has the characteristic of a time pattern: the
scanning data is sent from a specific angle and gradually according to the
scanning time, instead of transmitting one frame of an image at a time like
a camera, which will take a while to obtain an entire scanning data. While
LiDAR moves, the sending data will be based on time-variable coordinate
frames, distorting the data. In short, it is challenging to solve the design
of the mechanical structure. The stability of the control system and the
distortion of the data caused by the gimbal movement must be considered.
This design is one of the deliverables of this project, which has obtained
Chinese patent authorization, and a related paper is ongoing.
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3.1 Design of gimbal

3.1.1 Mechanical design

Considering the structure, control, and motion distortion compensation of
the gimbal, the main mechanical structure of the gimbal is designed as a
cantilever structure. The LiDAR’s base part (L-Arm) rotates around the Y-
axis with a rotation angle of ±90 degrees. It is driven by a Brushless Direct
Current (BLDC) motor, and the angle and angular velocity are closed-loop
controlled, respectively. The specific structure is shown in the figure3.2.

Mobile 

robot base

Navigation 

LiDaRScanning 

LiDaR

L-Arm for 

LiDaR

LiDaR IMU

LiDaR-IMU

base

Rotation 

servo motor

X

Y

Z
X

Y

Z

X

Y

Z

LiDaR 

Frame

IMU Frame Mobile 

robot 

Frame

Figure 3.2: Schematic diagram of the structure of LiDAR Rotation Gimbal.
The LiDAR Base is the main structure used to be fixed on the robot chassis.
The motor drives the LiDAR to rotate about the Y-axis, controlled by an
STM32MCU. The L-Arm is the base of the LiDAR, which is used to connect
the rotating motor, LiDAR and IMU.

In this example, a Velodyne VLP-32c is used as a scanning LiDAR
sensor. The Y axes of the IMU and LiDAR are pointing approximately
collinearly. The other parts, including L-Arm and base, are made of ABS
plastic with 3D printing. The scanning FOV has been improved significantly
with the gimbal workspace, as shown in the figure3.3.
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Figure 3.3: FOV of Velodyne VLP32C original (a) and gimbal extended
(b). There is no dead angle in the scanning area anymore, so the robot-
level sensor has the FOV and control capabilities of a laser total station
scanner.

3.1.2 Control system design

The gimbal is a vital part of RoboBIM. The robot’s controller should be
able to control its movement directly, and the scanning results can be opti-
mized by controlling the scanning parameters. The controller of the robot
is implemented based on ROS. More details are in Chapter 5. This section
mainly describes the control system of the gimbal. The gimbal controller is
developed based on STM32 and receives messages from ROS through the
USB-VCPinterface. The specific commands are serialized via JSON and
contain the gimbal’s angle and angular velocity information, which corre-
spond to the angle control mode and angular velocity control mode of the
gimbal, respectively. The control system’s block diagram is shown in fig 3.4.

Angle PID 

Controller

Angular Speed 

PD Controller

/gimbal/angle

/gimbal/angular_spd

+

+

+

Encoder

--

Figure 3.4: The control system of the head consists of a dual-loop PID, with
an outer-loop position-loop PID control and an inner-loop velocity-loop PD
control. The feedback information comes from the encoder of the BLDC
motor.
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3.2 Motion distortion compensation

LiDAR does not take single snapshots of the environment, which is the
principle of global-shutter cameras. On the contrary, LiDAR collects a suc-
cession of 3D points generally grouped in scans [189]. The interval between
each data frame causes a time difference in the scanning data. During this
time difference, the motion of the LiDAR itself will bring distortion in the
scanning data.

In SLAM research, the impact caused by the aberration of LiDAR is
not negligible. There are three proposed solutions. The first solution is to
increase the data rate of LiDAR. When the data frame rate of the LiDAR
is high enough, the aberrations caused by the motion can be ignored. The
second solution is to assume that the robot is moving at a uniform speed
and then calculate the coordinate transformation of each scan data by linear
interpolation. The third option is to combine the IMU with other external
sensors for calibration.

Unlike traditional LiDAR robotics applications, in the gimbal, the Li-
DAR data distortion is not only from the robot’s motion but also from the
swing of the gimbal around the Y-axis. Figure 3.5 shows six consecutive
frames of scan at 1s intervals, and the distortion due to the robot’s motion
and the swing of the gimbal can be detected.

Figure 3.5: Six consecutive scans at 1s interval, the robot is doing uniform
linear motion at 1m/s, the gimbal swing rate is 30° per second

Most of the LIDAR point cloud data transfer is based on the frame as
the smallest unit. Frame holds the range data in an angular range. For the
Velodyne VLP-32C LiDAR used in this project, the following fundamental
values can be obtained according to its user manual. The interval between
each two adjacent data frames is 46.08µs. The angular difference between
two adjacent frames is related to the rotation speed, assuming a rotation
speed of 600RPM , the resolution = 600RPM ∗ 1/60 ∗ 360 ∗ 46.08 ∗ 10−6 =

47



0.165888(deg/frame). Correspondingly, if the speed is set 50% lower to
300RPM , the resolution will be doubled to 0.082944(deg/frame). Within
a data frame, the 32 lasers are not transmitted simultaneously but sequen-
tially, with a time interval of 1.152µs and a delay of 9.216µs after 32 trans-
missions.

Due to the small time interval between laser frames, it can be approxi-
mately assumed that the coordinate changes between consecutive frames are
small. Therefore, interpolation can be used to supplement the time interval
of coordinate transformation updates. As shown in fig 3.6, the LiDAR’s
scanning pattern and beam are modelled.

(a)

(b) (c)

Blue: Frame Plane

Yellow: LiDAR Plane

Red: Wall Plane

Grey: Ground Plane

Beam Angle α

Gimbal Rotation Angle β

Rotation Angle β

Internal Frame Angle φ

Figure 3.6: (a) is the normal scanning LiDAR result pattern, (b) is the
rotating LiDAR result pattern, (c) is the scan model of a single beam,
where the robot structure is simplified to focus on the beam shot angle
model of the LiDAR itself.

For each laser beam, the following conclusions exist. The vertical angle
and internal rotation angle α and ϕ of the LIDAR are known, the gimbal
rotation angle β is collected by an encoder, and the real linear and angular
velocities of the vehicle noted as v = [vx, vy, 0]

T and ω are obtained by an
IMU and an odometer model. Thus, for a laser beam measurement result
X(t)LiDAR = [xt, yt, zt]

T, it is expressed on the robot coordinate system as:

X(t)Body =

 1 0 0
0 cos β − sin β
0 sin β cos β

X(t)LiDAR =

 1 0 0
0 cos β − sin β
0 sin β cos β

 xt

yt
zt


(3.1)

Further, converted to the world coordinate system/odometer coordinate
system, it is expressed as:

48



X(t)World/Odom =


cos β − sin β 0 vx
sin β cos β 0 vy
0 0 1 0
0 0 0 1

[
X(t)Body

1

]
(3.2)

Finally, the calculation is performed on all the laser beams of a single
rotation scan of the LiDAR, resulting in the undistorted raw point cloud
PWorld/Odom of a single scan.

PWorld/Odom =
∑
α

∑
ϕ

X(t)World/Odom (3.3)
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3.3 Scanning parameter evaluation

The rotation speed of the internal structure of the LiDAR and the robot’s
gimbal and movement speed can significantly affect the scanning results. In
order to evaluate the quality of the scan, Ripley’s K function is used, which
is named after the statistician W. O. Ripley, a statistical method used to
analyze and measure the spatial distribution pattern of a set of points in a
two-dimensional plane. The K function calculates the expected number of
points within a certain distance from each point in the data set and then
averages the results across all points. This function can identify the data’s
clustering or dispersion patterns. The results of the K function analysis
can be plotted on a graph, where the y-axis represents the K value and
the x-axis represents the distance between points. The graph can be used
to determine whether the points are randomly distributed or if the spatial
pattern has clustering or regularity.

K̂(t) = λ̂−1
∑
i

∑
j ̸=i

w (li, lj)
−1 I (dij < t)

N
(3.4)

By considering the rotation model and scanning mode of each laser beam of
the LiDAR, as well as the robot’s movement speed and the gimbal’s rotation
speed, the impact of these factors on the quality of the scan was analyzed.
The results are shown in the figure 3.7.

In conclusion, the robot’s movement speed, the gimbal’s rotation angle,
and the distance between the robot and the wall can all be used to generate
the optimal scanning parameters. The point cloud data obtained under the
optimal scanning parameters is more uniform than that obtained under the
fine-tuned scanning parameters. The LiDAR gimbal is feasible for practical
use in BIM reconstruction.
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D = 2m D = 3m

D = 4m D = 5m

D = 6m D = 7m

No Gimbal Rotation, Vrobot = 2m/s 

Gimbal Rotating at 30°/s, Vrobot = 2m/s 

(a) (b)

Figure 3.7: Calculation was performed on several scanning parameters of
the gimbal. In the (a) group of figures, the horizontal axis represents the
movement speed of the robot, and the vertical axis represents the angular
velocity of the gimbal. In the (b) group of figures, the impact of having
or not having a rotating gimbal on the uniformity of the LIDAR data at a
specific distance is intuitively presented.
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Chapter 4

BIM Reconstruction Oriented
Robot Scanning Approach

Autonomous of a robot usually refers to the process of a robot performing
work without commands. It requires the robot can deal with task scheduling
and planning autonomously. Specifically for BIM reconstruction-oriented
workflows, its autonomy usually means the robot can achieve two main
tasks: autonomous motion and scanning. In the task of autonomous mo-
tion, there are three sub-tasks to be implemented: navigation point setting,
path planning and trajectory generation. Navigation point setting reflects
the autonomous nature of the robot, and automatic navigation point gener-
ation allows the robot to be free from command and remote control. Path
planning refers to generating usable routes directly at the navigation points
(avoiding obstacles). Trajectory generation is the conversion of paths into
usable velocity and acceleration commands for the robot, allowing the robot
to achieve paths in a manner that satisfies kinematic and dynamic con-
straints. The trajectory tracking capability is one of the critical metrics for
evaluating robot motion controllers. Autonomous scanning is a new con-
cept in robotic, laser total station scanners usually have exclusive scanning
modes to enable automatic scanning. This chapter describes an automatic
scanning method based on the dynamic adjustment of scanning parame-
ters of the gimbal described in chapter 3. A novel framework called the
three-step method is proposed for solving the problem.

4.1 Robot’s three-step autonomous scanning
workflow

The three-step workflow with optimal scanning parameters is one of the
innovations of this project, as shown in fig4.1. To the best of the authors’
knowledge, this is the first framework for automatic BIM reconstruction
work that combines scanning optimal parameters, robot environment ex-
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ploration and path planning. This framework solves the situation where
robots have to trade off between scan quality, scan speed, safety and relia-
bility when used for BIM reconstruction. It provides an effective solution to
the problems of potential scan misses, low scan quality and low automation.

Start RoboBIM

Generate Full-Coverage Path and Static 

Scanning Points

Odometry and Obstacle 

Map

Heuristic-Oriented Motion

Point Cloud Alignment 

and Registration

Finish All Paths and 

Points?

BIM Level

Point Cloud

Optimal 

Scanning Parameters

End RoboBIM

Exploration-Oriented Motion

Finish Rough 

Mapping?

Explore unknown 

environment

Optimal scan trajectory, point 

and parameter calculation

Automatic scanning in semi-

known environment

Figure 4.1: The workflow of RoboBIM automatic scanning robot. The
three-step scanning method with optimal scanning parameters is one of the
novelties of this project, which is highly automated, accurate and easy to
implement.

In the first stage, when the robot enters an entirely new environment
(newly constructed building, renovated and redecorated existing building),
The robot slowly advances through the unknown environment executing
an exploration-oriented autonomous movement., and a high-frequency nav-
igation LiDAR and RGB-D camera obtain a rough map through loosely
coupled sensor fusion, which contains the boundaries of the working area,
the reachable zone and the location of obstacles.

In the second stage, the robot generates scan waypoints based on the
existing rough map and calculates the optimal scan parameters based on
the scan distance and moving speed, as described in the chapter. Based on
the generated waypoints and moving speed constraints, full coverage path
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and static scan points (scan waypoints where the robot is not moving while
scanning) are generated.

In the third stage, the environment is no longer utterly unknown to
the robot but semi-unknown. The robot can execute heuristic-oriented au-
tonomous motions, sequentially passing scan waypoints at the optimal speed
calculated in the second stage and stopping at static scan points for detailed
scanning. Commercial and free software can then use the resulting point
cloud and other information to produce 3D and N-D BIM.

In this process, the robot’s awareness of the environment gradually in-
creases. In the first stage, exploration-oriented autonomous motion ensures
the robot can fully explore the unknown environment. The second stage
of the path, waypoints and scanning parameter calculation can ensure that
the scanning sensors work under the appropriate parameters as much as
possible, which can bridge the performance gap between robot-level sensors
and laser total station scanners and improve the automation of BIM recon-
struction. The third stage of heuristic-oriented motion is based on partial
knowledge of the environment, which can ensure the safety of the robot
scanning process and improve the safety compared with the conventional
method of building a map while scanning to avoid the robot getting lost,
falling, and getting trapped in an unknown environment.

4.2 Path planning and trajectory generation

Both exploratory and heuristic trajectory planning algorithms require the
robot to be able to first reach the order target point accurately from the
starting point, avoid the collision, and update whether the target point
is reachable in time. In this phase, the target point constraint usually also
includes the final pose of the robot. When designing exploration algorithms,
the first consideration is the robot’s motion constraints, such as velocity
and position constraints. Specifically, if the robot is omnidirectional and
unconstrained in both velocity and position, such as the mecanum wheel and
walking robot, then any exploration algorithm can be employed. Suppose
the robot can move omnidirectionally in position but not in velocity, such
as a differential drive chassis like a sweeping robot. In that case, its most
basic exploration method can be zigzag. While the robot has non-holonomic
constraints on velocity and non-strict positional constraints, such as an
Ackermann chassis, the available exploration algorithms for the robot are
significantly limited, such as the head-first problem in parking.

In the RoboBIM project, a chassis with an Ackermann-like configuration,
which has the properties of an Ackermann structure, was adopted as the
robot carrier. Its structural and kinematic relationships are shown in fig.4.2.
The body’s central reference point is located at the rear axle of the chassis.
The track noted as L measures the distance between the front and rear
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axles, while the wheelbase noted as D measures the distance between the
left and right wheels. The steering angle, labelled as Θ, is the angle between
the front axle and the body’s Y-axis direction. Lastly, the diameter of the
wheels is noted as d.

X

Y

Wheelbase, D

Track, L

String angle, Θ

Wheel diameter, d

Centre of turning circle, R

Figure 4.2: Structural and kinematic relationships of Robobim vehicle chas-
sis.

Unlike the standard Ackermann chassis, it has an integrated front axle
design, thus simplifying the Ackermann quadrilateral. The vehicle’s forward
and reverse kinematics can be obtained, where V _L and V _R are the linear
speed of the left and right wheels at the rear end, ω and v are the angular
and linear speed of the vehicle.
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(4.1)

Based on the kinetic model, the odometry model can be obtained, where
Xr, Yr and φ are the position of the middle point of the robot’s rear axle
and heading angle on global or odometry frame, vr is the linear velocity
projected on global or odometry frame.

 Ẋr

Ẏr

φ̇

 =

 cosφ
sinφ
tanΘ
L

 vr (4.2)

For a robot chassis with kinematic constraints, its global and local tra-
jectory planners need to satisfy the kinematic constraints. In this project,
the Kinodynamic-RRT* is chosen as the global path planner, and the lattice
planner is chosen as the local trajectory planner.
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RRT algorithm, Rapid-exploration Random Tree, is an algorithm that
extends the search by random sampling in a wholly known environment.
The RRT algorithm is probabilistically complete, and as long as the plan-
ning time is long enough, a path does exist to get from the start point to
the goal point. It will be found, but the paths planned by the RRT algo-
rithm are usually not optimal, and the paths need to be smoother. The
kinodynamic-RRT* algorithm selects the points that satisfy the kinematic
constraints at each iteration in the workspace so that the generated paths
satisfy the kinematic constraints better, as shown in figure 4.3. (a) and (b).
Its specific algorithm flow is shown as the algorithm. 2.

Algorithm 2:
Input: Map, Xinit, Xinit

Output: A path P from Xinit to Xinit

1 P.init();
2 for i = 1 to n do do
3 Xrand ← KinematicSmaple(M);
4 Xnear ← Near(Xrand, P );
5 Xnew ← Update(Xrand, Xnear, Step);
6 if CollisionFree(Xnew) then
7 Xnear ← NearC(P,Xnew);;
8 Xmin ← FindParentNode(Xnear, Xnew);
9 P.addNodeEdge(Xmin, Xnew);

10 P.reWrite();
11 end
12 end

Lattice Planner is named for its discrete approach to the robot motion
workspace, and the visualization is similar to that of lattice, as shown in
the figure 4.3. (c). Its advantage is that it satisfies the robot motion con-
straint with low computational overhead, and the resulting trajectory is
straightforward. Hence, it is also widely used for autonomous driving. The
disadvantage is that the motion constraint at the trajectory connection is
difficult to guarantee, so it usually requires more constraint parameters than
the actual degrees of freedom of the robot, resulting in more parameters and
cumbersome debugging.

4.3 Exploration and Scanning path-planning

Exploring unknown environments is one of the challenges of autonomous
robots and has been widely researched. Various approaches have been used
to address this challenge, from the most basic zigzag method to complex
and diverse learning-based methods. In this project, due to the robot’s
kinematic constraints, the zigzag method would obviously lead to repeated
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(a) (c)(b)

Figure 4.3: The figures of global and local planning algorithms. (a) is the
normal RRT algorithm while (b) is the Kinodynamic-RRT*, it can be found
that Kinodynamic-RRT* can search new nodes following kinetic constrain
rather than straight lines [4]. (c) is the result of the discretization of the
state space has a shape similar to that of a lattice, from which the lattice
planning algorithm gets its name [5].

reversing. A method based on right-hand priority is proposed for the ex-
ploration path planning of this project. Specifically, the robot keeps the
right-hand edge along the wall to move forward. This method ensures that
the robot moves along the edge of the environment. If the robot encoun-
ters a dead end or an unreachable area, it will backtrack and return to
the edge of the environment after bypassing the obstacle. The termination
condition of the exploration is determined by detecting mixed loop closure
information, which means that the robot undergoes both loop closure de-
tection and is in an approximate pose state. The distance between the
robot and the right-hand wall is variable. It can be updated promptly after
each planning failure, ensuring the robot can always find a feasible closed
trajectory. This method is particularly suitable for building reconstruction
applications, where the relationship between the walls inside the building
is usually straightforward, so the robot can easily find a path and complete
the mapping of the interior of the building. However, the right-hand rule
may only be applicable to some environments, especially when there are no
edges in the environment or multiple exits. The flowchart of the algorithm
is shown in the algorithm.3.

Several common cases are discussed and studied separately, including
corners, inaccessible and accessible slits, and many other cases, as shown in
the figure.

After completing a rough obstacle map, it becomes easy to plan the
trajectory for scanning the interior of the building. The scanning path
follows the same pattern of right-hand priority, except that the distance
between the robot and the right-hand wall is determined by the optimal
scanning parameters calculated in Chapter 3. The robot’s motion speed is
also provided to the trajectory planner as a constraint. In some cases, the
optimal scanning parameters cannot be satisfied, and the robot chooses one
feasible path randomly to finish the scanning task. The flowchart of the
algorithm is shown in the algorithm.4.
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Algorithm 3:
Input: Pose, Scan, ClosureLoop
Output: Xgoal

1 Position.init();
2 Tolerance.reset();
3 while ClosureLoop = False do
4 Pose.update();
5 Scan.update();
6 Xnext ← Lookup(Scan, Pose, Tolerance);
7 if CollisionFree(Xnext) then
8 Tolerance.reset();
9 Xgoal ← Xnew;

10 end
11 else
12 Tolerance.update();
13 end
14 end

Algorithm 4:
Input: Map,Dgimbal, Pose, V elgimbal, Xgoal, ClosureLoop
Output: Xscan

1 Position.init();
2 while ClosureLoop = False do
3 Pose.update();
4 Dgimbal.update();
5 Xnext ← Update(Dgimbal, Xgoal);
6 if CollisionFree(Xnext) then
7 Xscan ← Lookup(Map,Xgoal, Pose,Dgimbal);
8 GlobalP lanner ← (Xscan, V elgimbal);
9 end

10 else
11 Xscan ← Xgoal;
12 V elgimbal.reset();
13 end
14 Xgoal.next();
15 end
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4.4 Experimental results

The actual test and experiment of the above algorithm were carried out in
IMAET 2F at UNNC. It should be noted that during the test period, the
scanning parameters calculated by the LiDAR gimbal were not the optimal
parameters and only merely met the coverage scanning requirements.

(a) (b)

Figure 4.4: The exploration and scanning approaches test. (a) is the
exploration planning method, while (b) is the scanning one. It can be
clearly observed that the scanning path planning algorithm ignores many
dead ends and narrow passages that cannot be entered or optimally scanned.
On the other hand, the exploration path planning algorithm scans all corners
without omission, leading to the presence of turning points in the robot’s
path.
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Chapter 5

All-in-one BIM Reconstruction
Mobile Robot-based Solution

RoboBIM project is named after Robots and Building Information Mod-
elling; specifically, it is based on AMR technology to realize BIM generation
automation. Through a comprehensive review of related works in the indus-
try and academic research and an overview of several key technology points
in the chapters mentioned above, an all-in-one BIM generation solution is
proposed at UNNC. The RoboBIM project consists of an automated scan-
ning robot and a remote database. The automated scanning robot scans the
building, acquires dense point clouds and other information, and loads the
information to the remote database; the remote database converts the col-
lected information into BIM using commercial or free software and adds the
information needed for N-D BIM. In addition, a RoboBIM simulator based
on the physical simulation engine gazebo was developed for researchers to
study relevant robotics algorithms and verify experimental results. The
structure of the RoboBIM project is shown in figure 5.1.
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Figure 5.1: The overview of RoboBIM project, 5.1.A is the automatic scan-
ning robot, 5.1.B is the remote database and workstation with a user inter-
face to construction and BIM engineers, and commercial and free software
are installed to deal with the point cloud. The reconstruction result of
IMAET 2F at UNNC is also shown in 5.1.B. 5.1.C is the physical engine-
based RoboBIM simulator to help robotic researchers and engineers develop
related algorithms.

5.1 Hardware Design of RoboBIM Robot

5.1.1 Mechanical Design

Considering various factors such as movement ability, stability, load capac-
ity, and off-road capability, the robot carrier of this project chooses Segway
rmp401 chassis, which adopts a similar structure to Ackermann’s layout and
BLDC motors from Bosch directly drive four wheels. It has barrier-crossing
solid performance and an open interface, which is convenient for secondary
development.

A multi-layered payload bay was designed for the RoboBIM project, with
its overall frame built from aluminium profiles and divided into three layers.
The bottom layer mainly installs hardware facilities for external communica-
tion and internal power supply; the middle layer installs on-board computing
devices, high-precision on-board IMU sensors and mechanical narrow FoV
high-density LiDaR; the top layer installs low-precision LiDaR for naviga-
tion, sensor gimbal and display screen for human-robot interaction. Figure
5.2 shows the overall layout.
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Figure 5.2: The overview of the automatic scanning robot of RoboBIM
project, the payload bay was designed based on the chassis of the Segway
RMP401 robot, with a three-layer layout that houses multiple sensors, com-
puting units, power distribution units, and communication units.

5.1.2 Sensors and hardware

After considering the task requirements and sensor performance, the sensors
and hardware attributes are shown in the table 5.1.

Table 5.1: Sensor and hardware for RoboBIM automatic scanning robot.
Type Application Note

Intel NUC11 I7 Computation Unit CPU I7-1165G7
GPU Nvidia
RTX2060

Go bigger Display
Touch

Human Robot Interaction 1920x1080 with
Touch

Velodyne VLP32C Scanning LiDAR
RpLiDAR S2 Navigation LiDAR

HikVision
MV-CA020

Point Cloud Color
Information

Luvox Mid-70 High density Point Cloud
Intel Realsense

D455
Back RGB-D Camera

Xsens MTI-630 Robot Chassis IMU
Quectel QM-500 5G Communication Module
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5.1.3 Circuit and Communication Design

In order to integrate as many functions as possible and enhance motion, the
robot should be designed to be cable-free driven and can rely on its electrical
power to perform tasks. Because the body is equipped with multiple sen-
sors, computing units and communication devices, the structure is complex,
and the power distribution requirements are different, so a complex power
distribution system is required. The chassis’s battery power passes through
circuit breakers and fuses, then enters the inverter, which is converted to
220V voltage. Since the chassis’s voltage is 48V, which comes directly from
the power battery, using the inverter can stabilize the downstream voltage,
simplify the system structure, ensure the response of the leakage protector
and improve safety. 220V voltage is further passed through the AC leakage
protector and subsequently through multiple AC-DC converters, i.e., con-
verted to 5V, 12V, 19V, 24V and 48V, respectively, for the controller, status
indicator, scanning radar, computing units and communication devices, the
overview of power system is shown in fig 5.3.

Figure 5.3: The power circuit of the automatic scanning robot of Robo-
BIM project with inverter-based DC-to-AC power supply and distribution
schemes are chosen. Compared to the DC-to-DC scheme, this scheme pro-
vides step-down failure protection and reduces the number of distribution
components, ensuring the sensitivity of leakage protection.

The communication part mainly considers internal communication and
external communication. Internal communication is mainly the two-way
communication between the computing unit and the robot chassis, each
sensor and the gimbal; external communication is the high-speed commu-
nication between the computing unit and the remote database and work-
station. The internal communication is via Gigabit Ethernet with LiDaR
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and industrial cameras and via USB with IMU, LiDaR, gimbal and robot
chassis. External communication is divided into two modes, 5G and WiFi.
For on-site robot debugging and development, WiFi is mainly used, and for
remote databases, remote transmission is performed via 5G. It is worth not-
ing that the communication part is implemented using a web video server
based on FTP technology to improve bandwidth utilization. The main pro-
cess is to package the data and forward it with the help of the video API
interface. The remote server unpacks the data according to a predefined
protocol. The overview of communication of the RoboBIM robot is shown
in fig 5.4.

Figure 5.4: The communication system of the automatic scanning robot
of RoboBIM project, the industrial camera and the 5G module are powered
by Power on Ethernet (POE) technology.

5.2 Multi-sensor co-calibration

Robots are fitted with a variety of sensors whose coordinate translation re-
lationships to each other are important. For single sensor, the calibration
is realized in different way, the internal reference calibration of the cam-
era is performed using a checkerboard calibration board, while the internal
reference calibration of the LiDaR follows the instruction manual.

Multi-sensor calibration works by determining the relative position and
attitude relationships between multiple sensors so that they can sense and
measure the same scene in a consistent manner. This process is typically
accomplished using a known scene and a known reference point. Before
calibration, the time synchronization between the network devices should be
achieved. On RoboBIM robot, there are two lines of internal communication
as shown in 5.4, one ethernet line and one USB line. For ethernet port
sensors such as Velodyne, Livox and industrial camera, pps For USB port
devices including chassis, RpLiDAR and IMU, the Linux system of the
computing unit is installed with a real-time patch [191] to achieve relative
time synchronization between the network port and these devices.

The joint calibration of the industrial camera and the Livox radar was
performed using the LiDAR_camera_calib toolkit [190], and the Livox and
the Velodyne LiDAR were indirectly aligned using a measurement approach.
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Indirect alignment between the back Realsense RGB-D camera and the nav-
igation LiDaR is also performed by measurement. This alignment method
does not jeopardize the accuracy and stability of the system due to the
loosely coupled sensor fusion of the localization method.

The calibration of gimbal and navigation LiDaR to the robot base is
realized in another way. The mounting errors between the robot chassis and
the LiDaR gimbal and navigation LiDaR, respectively, can be represented
by two sets of coordinate transformation relations that incorporate displace-
ments and rotations. Three independent sets of odometry information are
computed via the navigation LiDaR mounted on the robot chassis, the
built-in encoders inside the robot drive wheels and the LiDaR gimbal data,
respectively. Then the coordinate transformation relationship between the
three sets of odometers is obtained by the L-M method to realize the joint
calibration. The detailed sensors coordinate conversion relationships are
shown in the appendix 1.
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5.3 Framework of RoboBIM software system

The software framework for RoboBIM’s automated scanning machine was
developed based on ROS. The open-source Robot Operating System is
widely used in modern robotics development, first proposed by Stanford
University [192]. The ROS is not an operating system in the strict sense,
such as Windows or Linux, but a software framework that enables and stan-
dardizes the communication between software packages and robot hardware
components. ROS follows the computational graph principle, i.e., each exe-
cutable program is a node, and nodes communicate with each other in three
ways: Topic communication, which requires no answer, Service communica-
tion, which requires an answer, and Action communication, which requires
action as feedback. ROS package refers to a container of several nodes with
functions organized via Cmake [193]. ROS message refers to the protocol
in the communication. Note that there is a base node called ROS Master,
which is responsible for maintaining the ROS computation graph, log and
parameter server.

The overview of RoboBIM software framework is shown in fig 5.5.
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Figure 5.5: The overview of RoboBIM project software framework. Every
block stands for a group of related ROS nodes. The framework is based on
ROS and consists of nine parts, with a universal robot control interface and
an interface for human-robot interaction.

There are nine parts to this framework. The ROS master node contains
the log and parameter server, which maintains the software framework logs
and dynamically updates the parameters. The parameter server interac-
tion interface is shown in the Rviz visualization section of the human-robot
interaction part.

All sensor drivers and control drivers for the robot chassis are contained
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in the driver package. Sensor data are transmitted through the structure
shown in figure 5.4.

The coordinate information of the sensor data is unified and managed
by the Coordinate Transformation node (TF). The coordinate transforma-
tion between the sensors fixed on the robot and the chassis is handled by
the static TF service. The dynamic TF service handles the one between
the gimbal and the robot chassis and between the robot and the global
coordinate system.

The SLAM part first uses the Pose_EKF open-source toolkit for data
fusion of visual odometry and laser odometry to obtain high-precision odom-
etry information. Then it obtains a rough map by Cartographer open-source
slam package. The map server is responsible for maintaining the global map
with a low-frequency update (0.5hz) and the local map information with a
high-frequency update (2hz).

The state machine package part is implemented based on the SMACH
state machine, a robust and scalable hierarchical state machine library based
on python that supports multi-conditional transfer. The state list and state
transfer relationship are shown in the table.

Two sub-packages are included in the path-planning part. The CPP
package generates scanning waypoints and publishes them to the trajectory
generation package by topic, described in the previous chapter. The trajec-
tory generation package is implemented based on lattice planning, a method
for finding available trajectories in control space based on Sobel’s operator
and kinematic constraints. Its output trajectory is a smooth and safe local
without collisions satisfying the vehicle’s kinematic and velocity constraints.
The specific implementation is based on the sbpl_lattice_planning package
with customized parameter [194].

The gimbal controller package contains the node for control parameters
and functions of the gimbal, the node for serialization and deserialization of
ROS serial data and the node for relative coordinate system release of the
gimbal. Details are described in the previous chapter.

The Human-robot interaction package is the sum of the RViZ node for
data visualization, the parameter modification node, the pointing navigation
function node, and the safety control node. This part mainly provides the
operator with a visual data monitoring and command interface.

The communication package is used to achieve high bandwidth utiliza-
tion communication, as mentioned above.
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5.4 Physical engine-based RoboBIM simula-
tor

Using computer-based simulations to develop new robot designs and al-
gorithms is good practice before building and executing code on physical
robotic systems. To rapidly develop and verify relevant robotics algorithms
and reduce time and testing costs, a physics-based simulator, Robobim Sim-
ulator, was developed. With real-time factors, physics engine support and
simulation accuracy as the primary reference criteria, Gazebo was chosen for
the development of the RoboBIM simulator after a detailed comparison of
four common robot simulators, CoppeliaSim (formerly known as V-REP),
Gazebo, MORSE and Webots [195,196].

After assigning mass to the CAD model of the robot, export it as a
Universal Robot Description Format (URDF) file, and program the driver
node for the robot simulation file, then add simulation programs for various
sensors to it. By replacing the part of the RoboBIM program framework
that interacts with the real robot with ROS_Gazebo_bridge, the simulator
can be used as the main development tool to verify the algorithm, as shown
in fig 5.6.
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Figure 5.6: The overview of RoboBIM project simulator. 5.6.A is a CAD
model of a robot, which can be converted into a URDF file, as shown in
fig. 5.6.B with adding inertia matrix. fig. 5.6.C shows the sensor and data
visualization in the simulator.
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5.5 Experiment result

Tests for the RoboBIM project were conducted in the IAMET building
at UNNC, testing the robot’s autonomous motion capabilities, scanning
capabilities, workflow and the feasibility of the LiDaR gimbal, with the
results shown in the figure 5.7, figure 5.8 figure 5.9 and table 5.2.

Figure 5.7: A showed test of the SLAM function of the robot in November
2021. B shows a test of the robot with the SLAM function separated from
the scanning function in February 2022. C shows the first test of the robot
with the LiDaR gimbal installed in June 2022. D showed a joint test of the
robot with the eccentric distance-free gimbal in September 2022.
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Figure 5.8: RoboBIM automatic scanning robot undergoes fully functional
testing at IAMET 2f at UNNC. Fig.5.8.1-4 demonstrate the robot’s con-
tinuous autonomous motion.
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Figure 5.9: Reconstruction results of IAMET 2F indoor from RoboBIM
robot, 1-4 are four selected measure points.

Table 5.2: The error estimation was performed for four selected points in
the reconstruction results obtained by the RoboBIM robot at IAMET 2F,
UNNC.
Selected
Point

Truth
Data (cm)

Reconstruction
Data (cm)

Error (cm) Percentage(%)

Figure.5.9.(1) 243.5 242.5 -0.95 0.392
Figure.5.9.(2) 1951.5 1947.8 -3.7 0.190
Figure.5.9.(3) 229.4 228.7 -0.7 0.305
Figure.5.9.(4) 1270.3 1268.4 -1.9 0.149
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Chapter 6

Conclusion

In the face of many challenges in building intelligence, longevity, and low
new construction rates, BIM has played an irreplaceable role. This thesis
presents a BIM reconstruction method based on mobile robot technology
and comprehensively reviews the method required for BIM reconstruction
using robot-level sensors. The main conclusions are as follows.

• The LiDAR rotating gimbal proposed in Chapter 3 effectively extends
the FOV of the LiDAR so that the robot-level LiDAR meets the needs
for use in scanning BIM reconstruction, i.e., the LOD300 accuracy
requirement. This makes it possible to realize BIM reconstruction at
low cost.

• The rotational speed and the measured distance of the rotating gimbal
can be composed into a set of parameters to optimize the scanning
uniformity of the LiDAR in indoor building scanning operations and to
improve the smoothness of the scanning results, which in turn affects
the reconstruction results. The calculation of this set of parameters
is presented in Chapter 3.

• The three-step navigation algorithm proposed in Chapter 4 can effec-
tively improve the automatic performance of the BIM reconstruction
robot, which is tested and validated in some scenarios. The results
prove that the navigation strategy of separating exploration and build-
ing effectively improves the scanning efficiency and reduces the pos-
sibility of scanning failure, and the scanning process with optimized
scanning parameters is more reasonable.

• Testbed and hardware built on a mobile robot, software configuration
in Chapter 5. It fully demonstrates the feasibility of the mobile robot
for use as an indoor BIM reconstruction and proves the reliability and
superiority of the above algorithms.

This project provides a low-cost, high-autonomy BIM reconstruction
method and robot platform, which can effectively improve the automation
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of BIM reconstruction, increase the speed and efficiency of building BIM
reconstruction, and make BIM reconstruction an important part of building
renovation and maintenance.

6.1 Future work

This project has some limitations that can be further improved in future
work. These are described below:

• Create a dataset for indoor BIM reconstruction based on the Robo-
BIM project, containing a variety of information such as robot status,
LIDAR, cameras, etc., for setting up a benchmark.

• Consider extending the range of motion of the robot to the building
exterior. The challenge is to handle joint state estimation of GNSS and
existing sensors by installing a GNSS system to enable task execution
both indoors and outdoors.

• To improve scan quality assessment of the gimbal section, rotational
parameters within the radar are added to the scan parameters to ob-
tain better scan optimization parameters and adaptability in narrow
spaces.

• For sensor calibration of the gimbal section, an IMU is installed on the
radar rotating axis, and the gimbal is changed to continuous rotation,
eliminating initial installation errors of the IMU through continuous
integration and improving the accuracy of the rotating section of the
gimbal.

• The autonomous navigation algorithm of the robot performed well in
testing, but further verification is required to determine whether it
can achieve the same results in more complex environments.

• This project relies relatively more on distance measurement informa-
tion from sensors and less on image information. In recent years, algo-
rithms such as Neural Radiance Fields (NERF) have shown excellent
performance in the field of 3D reconstruction. The expected research
direction of this project could focus on combining machine learning,
deep learning algorithms, and distance measurement information.
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Figure 1: The detailed sensors coordinate conversion relationships of Robo-
BIM automatic scanning robot.
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