Abstract
Background: Machine learning algorithms have very high predictive ability. However, no study has used machine learning to estimate historical concentrations of PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 μm) at daily time scale in China at a national level. Objectives: To estimate daily concentrations of PM2.5 across China during 2005–2016. Methods: Daily ground-level PM2.5 data were obtained from 1479 stations across China during 2014–2016. Data on aerosol optical depth (AOD), meteorological conditions and other predictors were downloaded. A random forests model (non-parametric machine learning algorithms) and two traditional regression models were developed to estimate ground-level PM2.5 concentrations. The best-fit model was then utilized to estimate the daily concentrations of PM2.5 across China with a resolution of 0.1° (≈10 km) during 2005–2016. Results: The daily random forests model showed much higher predictive accuracy than the other two traditional regression models, explaining the majority of spatial variability in daily PM2.5 [10-fold cross-validation (CV) R2 = 83%, root mean squared prediction error (RMSE) = 28.1 μg/m3]. At the monthly and annual time-scale, the explained variability of average PM2.5 increased up to 86% (RMSE = 10.7 μg/m3 and 6.9 μg/m3, respectively). Conclusions: Taking advantage of a novel application of modeling framework and the most recent ground-level PM2.5 observations, the machine learning method showed higher predictive ability than previous studies. Capsule: Random forests approach can be used to estimate historical exposure to PM2.5 in China with high accuracy.
Original language | English |
---|---|
Pages (from-to) | 52-60 |
Number of pages | 9 |
Journal | Science of the Total Environment |
Volume | 636 |
DOIs | |
Publication status | Published - 15 Sept 2018 |
Keywords
- Aerosol optical depth
- China
- Machine learning
- PM
- Random forests
ASJC Scopus subject areas
- Environmental Engineering
- Environmental Chemistry
- Waste Management and Disposal
- Pollution