Abstract
With the advance of deep learning technology, convolutional neural network (CNN) has been wildly used and achieved the state-of-the-art performances in the area of medical image classification. However, most existing medical image classification methods conduct their experiments on only one public dataset. When applying a well-trained model to a different dataset selected from different sources, the model usually shows large performance degradation and needs to be fine-tuned before it can be applied to the new dataset. The goal of this work is trying to solve the cross-domain image classification problem without using data from target domain. In this work, we designed a self-supervised plug-and-play feature-standardization-block (FSB) which consisting of image normalization (INB), contrast enhancement (CEB) and boundary detection blocks (BDB), to extract cross-domain robust feature maps for deep learning framework, and applied the network for chest x-ray-based lung diseases classification. Three classic deep networks, i.e. VGG, Xception and DenseNet and four chest x-ray lung diseases datasets were employed for evaluating the performance. The experimental result showed that when employing feature-standardization-block, all three networks showed better domain adaption performance. The image normalization, contrast enhancement and boundary detection blocks achieved in average 2%, 2% and 5% accuracy improvement, respectively. By combining all three blocks, feature-standardization-block achieved in average 6% accuracy improvement.
Original language | English |
---|---|
Pages (from-to) | 70-77 |
Number of pages | 8 |
Journal | Methods |
Volume | 202 |
DOIs | |
Publication status | Published - Jun 2022 |
Externally published | Yes |
Keywords
- Chest x-ray
- Computer-aided diagnosis
- Deep learning
- Domain adaption
- Lung disease detection
ASJC Scopus subject areas
- Molecular Biology
- General Biochemistry,Genetics and Molecular Biology