TY - GEN
T1 - Advantages of a double three-phase winding layout for a dual rotor e-bike motor considering third current harmonic injection technique
AU - De Gaetano, Daniele
AU - Golovanov, Dmitry
AU - Sala, Giacomo
AU - Galassini, Alessandro
AU - Degano, Michele
AU - Mahmoud, Hanafy
AU - Gerada, Chris
N1 - Publisher Copyright:
© 2020 IEEE.
PY - 2020/6
Y1 - 2020/6
N2 - The transportation electrification process is rapidly demanding for drivers with enhanced performance. Modern systems are moving from fossil fuel technologies toward hybrid and fully electric solutions. Consequently, in automotive and motorcycle sectors the complete electrification process requires significant power and energy capabilities, and high efficiency. Also, to minimize the mechanical power loss and save the battery energy, the weight and volume of the vehicle have to be minimized. These features are significantly stressed in race applications, where the power density of the drive and its efficiency has to push the limits of state of the art. In this work, a multiphase machine with dual rotor architecture is employed, aiming at maximizing the performance of a full electric motorcycle (E-Bike). In particular, it is already known that in multi-phase machines it is possible to inject high frequency current component to increase the power density of the drive. Therefore, the analytical model for the injection of a third harmonic in the currents waveforms is presented for a case study of E-Bike featuring a dual rotor with Halback permanent magnet array. The third current harmonic is injected keeping the same peak current, when compared with the control technique without injection. The three-phase and multiphase winding layout of the machine are compared with and without current injection control by means of analytical equations. Finally, finite element results are shown in order to validate the model, the advantage of the multiphase winding and the current injection technique.
AB - The transportation electrification process is rapidly demanding for drivers with enhanced performance. Modern systems are moving from fossil fuel technologies toward hybrid and fully electric solutions. Consequently, in automotive and motorcycle sectors the complete electrification process requires significant power and energy capabilities, and high efficiency. Also, to minimize the mechanical power loss and save the battery energy, the weight and volume of the vehicle have to be minimized. These features are significantly stressed in race applications, where the power density of the drive and its efficiency has to push the limits of state of the art. In this work, a multiphase machine with dual rotor architecture is employed, aiming at maximizing the performance of a full electric motorcycle (E-Bike). In particular, it is already known that in multi-phase machines it is possible to inject high frequency current component to increase the power density of the drive. Therefore, the analytical model for the injection of a third harmonic in the currents waveforms is presented for a case study of E-Bike featuring a dual rotor with Halback permanent magnet array. The third current harmonic is injected keeping the same peak current, when compared with the control technique without injection. The three-phase and multiphase winding layout of the machine are compared with and without current injection control by means of analytical equations. Finally, finite element results are shown in order to validate the model, the advantage of the multiphase winding and the current injection technique.
UR - http://www.scopus.com/inward/record.url?scp=85096578870&partnerID=8YFLogxK
U2 - 10.1109/ITEC48692.2020.9161620
DO - 10.1109/ITEC48692.2020.9161620
M3 - Conference contribution
AN - SCOPUS:85096578870
T3 - 2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020
SP - 1159
EP - 1164
BT - 2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2020 IEEE Transportation Electrification Conference and Expo, ITEC 2020
Y2 - 23 June 2020 through 26 June 2020
ER -