Abstract
For fuel cell vehicles, the fuel cell stack has a soft output characteristic whereby the output voltage drops quickly with the increasing output current. In order to interface the dynamic low voltage of the fuel cell stack with the required constant high voltage (400 V) of the inverter DC link bus for fuel cell vehicles, an enhanced hybrid switching-frequency modulation strategy that can improve the voltage-gain range is proposed in this paper for the boost three-level DC-DC converter with a quasi-Z source (BTL-qZ) employed in fuel-cell vehicles. The proposed modulation strategy retains the same advantages of the original modulation strategy with more suitable duty cycles [1/3, 2/3) which avoids extreme duty cycles. Finally, the experimental results validate the feasibility of the proposed modulation strategy and the correctness of its operating principles. Therefore, the BTL-qZ converter is beneficial to interface the fuel cell stack and the DC bus for fuel cell vehicles by using the proposed modulation strategy.
Original language | English |
---|---|
Article number | 1026 |
Journal | Energies |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - 2018 |
Keywords
- Flying capacitor
- Low voltage stress
- Phase-shifted modulation strategy
- Switching states
- Wide voltage-gain range
ASJC Scopus subject areas
- Renewable Energy, Sustainability and the Environment
- Fuel Technology
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Control and Optimization
- Electrical and Electronic Engineering