TY - GEN
T1 - Analysis-Synthesis dictionary learning for universality-particularity representation based classification
AU - Yang, Meng
AU - Liu, Weiyang
AU - Luo, Weixin
AU - Shen, Linlin
N1 - Publisher Copyright:
© Copyright 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2016
Y1 - 2016
N2 - Dictionary learning has played an important role in the success of sparse representation. Although synthesis dictionary learning for sparse representation has been well studied for universality representation (i.e., the dictionary is universal to all classes) and particularity representation (i.e., the dictionary is class-particular), jointly learning an analysis dictionary and a synthesis dictionary is still in its infant stage. Universality-particularity representation can well match the intrinsic characteristics of data (i.e., different classes share commonality and distinctness), while analysis-synthesis dictionary can give a more complete view of data representation (i.e., analysis dictionary is a dual-viewpoint of synthesis dictionary). In this paper, we proposed a novel model of analysis-synthesis dictionary learning for universalityparticularity (ASDL-UP) representation based classification. The discrimination of universality and particularity representation is jointly exploited by simultaneously learning a pair of analysis dictionary and synthesis dictionary. More specifically, we impose a label preserving term to analysis coding coefficients for universality representation. Fisher-like regularizations for analysis coding coefficients and the subsequent synthesis representation are introduced to particularity representation. Compared with other state-of-The-Art dictionary learning methods, ASDL-UP has shown better or competitive performance in various classification tasks.
AB - Dictionary learning has played an important role in the success of sparse representation. Although synthesis dictionary learning for sparse representation has been well studied for universality representation (i.e., the dictionary is universal to all classes) and particularity representation (i.e., the dictionary is class-particular), jointly learning an analysis dictionary and a synthesis dictionary is still in its infant stage. Universality-particularity representation can well match the intrinsic characteristics of data (i.e., different classes share commonality and distinctness), while analysis-synthesis dictionary can give a more complete view of data representation (i.e., analysis dictionary is a dual-viewpoint of synthesis dictionary). In this paper, we proposed a novel model of analysis-synthesis dictionary learning for universalityparticularity (ASDL-UP) representation based classification. The discrimination of universality and particularity representation is jointly exploited by simultaneously learning a pair of analysis dictionary and synthesis dictionary. More specifically, we impose a label preserving term to analysis coding coefficients for universality representation. Fisher-like regularizations for analysis coding coefficients and the subsequent synthesis representation are introduced to particularity representation. Compared with other state-of-The-Art dictionary learning methods, ASDL-UP has shown better or competitive performance in various classification tasks.
UR - http://www.scopus.com/inward/record.url?scp=85007179632&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85007179632
T3 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
SP - 2251
EP - 2257
BT - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
PB - AAAI Press
T2 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
Y2 - 12 February 2016 through 17 February 2016
ER -