Bagasse cellulose grafted with an amino-terminated hyperbranched polymer for the removal of Cr(VI) from aqueous solution

Lu Xia, Zhonghang Huang, Lei Zhong, Fengwei Xie, Chak Yin Tang, Chi Pong Tsui

Research output: Journal PublicationArticlepeer-review

33 Citations (Scopus)

Abstract

A novel bio-adsorbent was fabricated via grafting an amino-terminated hyperbranched polymer (HBP-NH2) onto bagasse cellulose. The morphology and microstructure of the HBP-NH2-grafted bagasse cellulose (HBP-g-BC) were characterized and its adsorption capacity for Cr(VI) ions in aqueous solutions was investigated. The rough surface structure of HBP-g-BC that is beneficial for improving the adsorption capacity was observed by scanning electron microscopy (SEM). The grafting reaction was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. The adsorbent performance was shown to be better with a lower pH value, a higher adsorbent dosage, or a higher initial Cr(VI) concentration. Moreover, the kinetics study revealed that the adsorption behavior followed a pseudo-second-order model. The isotherm results showed that the adsorption data could be well-fitted by the Langmuir, Freundlich, or Temkin models. Moreover, HBP-g-BC could maintain 74.4% of the initial removal rate even after five cycles of regeneration. Thus, the high potential of HBP-g-BC as a bio-adsorbent for heavy metal removal has been demonstrated.

Original languageEnglish
Article number931
JournalPolymers
Volume10
Issue number8
DOIs
Publication statusPublished - 2018
Externally publishedYes

Keywords

  • Adsorption capacity
  • Bagasse cellulose
  • Cr(VI) removal
  • Hyperbranched polymer

ASJC Scopus subject areas

  • General Chemistry
  • Polymers and Plastics

Fingerprint

Dive into the research topics of 'Bagasse cellulose grafted with an amino-terminated hyperbranched polymer for the removal of Cr(VI) from aqueous solution'. Together they form a unique fingerprint.

Cite this