Abstract
We investigate the impact of macroeconomic variables on bond risk premia prediction via machine learning techniques. On the basis of Chinese treasury bonds from March 2006 to December 2022, we show that adding macroeconomic factors improves bond return forecasts and generates higher economic benefits to investors. This is achieved when the nonlinear relationship between macroeconomic variables and bond returns is modelled via machine learning methods. Furthermore, the importance of macroeconomic determinants changes along the yield curve. Our study sheds new light on the information contained in macroeconomic variables for treasury bond valuation and highlights the importance of utilizing appropriate machine learning methods.
Original language | English |
---|---|
Pages (from-to) | 2596-2627 |
Number of pages | 32 |
Journal | European Financial Management |
Volume | 30 |
Issue number | 5 |
DOIs | |
Publication status | Published - Nov 2024 |
Keywords
- Chinese bond market
- government bond returns forecasting
- machine learning
- unspanned macroeconomic information
- yield term structure
ASJC Scopus subject areas
- Accounting
- General Economics,Econometrics and Finance