@inproceedings{8091c069db1949d4bf9bed9adf6c89e3,
title = "Construction of a linear unbiased diffeomorphic probabilistic liver atlas from CT images",
abstract = "The construction of probabilistic liver atlases has received little attention in the past. Existing methods are based on landmarks and are sensitive to their choices and placements. We propose an iterative landmark-free method based on dense volumes to construct linear unbiased diffeomorphic probabilistic atlases from liver CT images. The linear averaging of the transformed images is set as the common target space followed by pairwise diffeomorphic registrations to warp all images to the target using a recent-proposed efficient deformation approach during each iteration cycle. Iterative pairwise registrations are directly used to handle possible large deformations without the need for an extra step to remove global deformations such as the use of affine transformations in traditional methods. Compared with those approaches estimating the unbiased atlas and the transformations groupwise simultaneously, the current method is more efficient. The efficiency and the convergence of our method have been demonstrated experimentally by validation using 25 CT liver sets.",
keywords = "CT, Diffeomorphic, Linear unbiased, Liver, Probabilistic atlas",
author = "Wei Xiong and Ong, {S. H.} and Qi Tian and Guozhen Xu and Jiayin Zhou and Jiang Liu and Venkatash, {S. K.}",
year = "2009",
doi = "10.1109/ICIP.2009.5414550",
language = "English",
isbn = "9781424456543",
series = "Proceedings - International Conference on Image Processing, ICIP",
publisher = "IEEE Computer Society",
pages = "1773--1776",
booktitle = "2009 IEEE International Conference on Image Processing, ICIP 2009 - Proceedings",
address = "United States",
note = "2009 IEEE International Conference on Image Processing, ICIP 2009 ; Conference date: 07-11-2009 Through 10-11-2009",
}