TY - GEN
T1 - Content and Gradient Model-driven Deep Network for Single Image Reflection Removal
AU - Zhang, Ya Nan
AU - Shen, Linlin
AU - Li, Qiufu
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/10/10
Y1 - 2022/10/10
N2 - Single image reflection removal (SIRR) is an extremely challenging, ill-posed problem with many application scenarios. In recent years, massive deep learning-based methods have been proposed to remove undesirable reflections from a single input image. However, these methods lack interpretability and do not fully utilize the intrinsic physical structure of reflection images. In this paper, we propose a content and gradient-guided deep network (CGDNet) for single image reflection removal, which is a full-interpretable and model-driven network. Firstly, using the multi-scale convolutional dictionary, we design a novel single image reflection removal model, which combines the image content prior and gradient prior information. Then, the model is optimized using an optimization algorithm based on the proximal gradient technique and unfolded into a neural network, i.e., CGDNet. All the parameters of CGDNet can be automatically learned by end-to-end training. Besides, we introduce a reflection detection module into CGDNet to obtain a probabilistic confidence map and ensure that the network pays attention to reflection regions. Extensive experiments on four benchmark datasets demonstrate that CGDNet is more efficient than state-of-the-art methods in terms of both subjective and objective evaluations. Code is available at https://github.com/zynwl/CGDNet.
AB - Single image reflection removal (SIRR) is an extremely challenging, ill-posed problem with many application scenarios. In recent years, massive deep learning-based methods have been proposed to remove undesirable reflections from a single input image. However, these methods lack interpretability and do not fully utilize the intrinsic physical structure of reflection images. In this paper, we propose a content and gradient-guided deep network (CGDNet) for single image reflection removal, which is a full-interpretable and model-driven network. Firstly, using the multi-scale convolutional dictionary, we design a novel single image reflection removal model, which combines the image content prior and gradient prior information. Then, the model is optimized using an optimization algorithm based on the proximal gradient technique and unfolded into a neural network, i.e., CGDNet. All the parameters of CGDNet can be automatically learned by end-to-end training. Besides, we introduce a reflection detection module into CGDNet to obtain a probabilistic confidence map and ensure that the network pays attention to reflection regions. Extensive experiments on four benchmark datasets demonstrate that CGDNet is more efficient than state-of-the-art methods in terms of both subjective and objective evaluations. Code is available at https://github.com/zynwl/CGDNet.
KW - deep unfolding
KW - model-driven
KW - single image reflection removal
UR - http://www.scopus.com/inward/record.url?scp=85151047308&partnerID=8YFLogxK
U2 - 10.1145/3503161.3547918
DO - 10.1145/3503161.3547918
M3 - Conference contribution
AN - SCOPUS:85151047308
T3 - MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
SP - 6802
EP - 6812
BT - MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 30th ACM International Conference on Multimedia, MM 2022
Y2 - 10 October 2022 through 14 October 2022
ER -