TY - GEN
T1 - Content-Preserving Diffusion Model for Unsupervised AS-OCT Image Despeckling
AU - Li, Sanqian
AU - Higashita, Risa
AU - Fu, Huazhu
AU - Li, Heng
AU - Niu, Jingxuan
AU - Liu, Jiang
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023.
PY - 2023
Y1 - 2023
N2 - Anterior segment optical coherence tomography (AS-OCT) is a non-invasive imaging technique that is highly valuable for ophthalmic diagnosis. However, speckles in AS-OCT images can often degrade the image quality and affect clinical analysis. As a result, removing speckles in AS-OCT images can greatly benefit automatic ophthalmology analysis. Unfortunately, challenges still exist in deploying effective AS-OCT image denoising algorithms, including collecting sufficient paired training data and the requirement to preserve consistent content in medical images. To address these practical issues, we propose an unsupervised AS-OCT despeckling algorithm via Content Preserving Diffusion Model (CPDM) with statistical knowledge. At the training stage, a Markov chain transforms clean images to white Gaussian noise by repeatedly adding random noise and removes the predicted noise in a reverse procedure. At the inference stage, we first analyze the statistical distribution of speckles and convert it into a Gaussian distribution, aiming to match the fast truncated reverse diffusion process. We then explore the posterior distribution of observed images as a fidelity term to ensure content consistency in the iterative procedure. Our experimental results show that CPDM significantly improves image quality compared to competitive methods. Furthermore, we validate the benefits of CPDM for subsequent clinical analysis, including ciliary muscle (CM) segmentation and scleral spur (SS) localization.
AB - Anterior segment optical coherence tomography (AS-OCT) is a non-invasive imaging technique that is highly valuable for ophthalmic diagnosis. However, speckles in AS-OCT images can often degrade the image quality and affect clinical analysis. As a result, removing speckles in AS-OCT images can greatly benefit automatic ophthalmology analysis. Unfortunately, challenges still exist in deploying effective AS-OCT image denoising algorithms, including collecting sufficient paired training data and the requirement to preserve consistent content in medical images. To address these practical issues, we propose an unsupervised AS-OCT despeckling algorithm via Content Preserving Diffusion Model (CPDM) with statistical knowledge. At the training stage, a Markov chain transforms clean images to white Gaussian noise by repeatedly adding random noise and removes the predicted noise in a reverse procedure. At the inference stage, we first analyze the statistical distribution of speckles and convert it into a Gaussian distribution, aiming to match the fast truncated reverse diffusion process. We then explore the posterior distribution of observed images as a fidelity term to ensure content consistency in the iterative procedure. Our experimental results show that CPDM significantly improves image quality compared to competitive methods. Furthermore, we validate the benefits of CPDM for subsequent clinical analysis, including ciliary muscle (CM) segmentation and scleral spur (SS) localization.
KW - ASOCT
KW - Diffusion model
KW - Unsupervised despeckling
UR - http://www.scopus.com/inward/record.url?scp=85174703837&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-43990-2_62
DO - 10.1007/978-3-031-43990-2_62
M3 - Conference contribution
AN - SCOPUS:85174703837
SN - 9783031439896
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 660
EP - 670
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2023 - 26th International Conference, Proceedings
A2 - Greenspan, Hayit
A2 - Greenspan, Hayit
A2 - Madabhushi, Anant
A2 - Mousavi, Parvin
A2 - Salcudean, Septimiu
A2 - Duncan, James
A2 - Syeda-Mahmood, Tanveer
A2 - Taylor, Russell
PB - Springer Science and Business Media Deutschland GmbH
T2 - 26th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2023
Y2 - 8 October 2023 through 12 October 2023
ER -