Context Aware 3D UNet for Brain Tumor Segmentation

Parvez Ahmad, Saqib Qamar, Linlin Shen, Adnan Saeed

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

23 Citations (Scopus)

Abstract

Deep convolutional neural network (CNN) achieves remarkable performance for medical image analysis. UNet is the primary source in the performance of 3D CNN architectures for medical imaging tasks, including brain tumor segmentation. The skip connection in the UNet architecture concatenates features from both encoder and decoder paths to extract multi-contextual information from image data. The multi-scaled features play an essential role in brain tumor segmentation. However, the limited use of features can degrade the performance of the UNet approach for segmentation. In this paper, we propose a modified UNet architecture for brain tumor segmentation. In the proposed architecture, we used densely connected blocks in both encoder and decoder paths to extract multi-contextual information from the concept of feature reusability. In addition, residual-inception blocks (RIB) are used to extract the local and global information by merging features of different kernel sizes. We validate the proposed architecture on the multi-modal brain tumor segmentation challenge (BRATS) 2020 testing dataset. The dice (DSC) scores of the whole tumor (WT), tumor core (TC), and enhancing tumor (ET) are 89.12%, 84.74%, and 79.12%, respectively.

Original languageEnglish
Title of host publicationBrainlesion
Subtitle of host publicationGlioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries - 6th International Workshop, BrainLes 2020, Held in Conjunction with MICCAI 2020, Revised Selected Papers
EditorsAlessandro Crimi, Spyridon Bakas
PublisherSpringer Science and Business Media Deutschland GmbH
Pages207-218
Number of pages12
ISBN (Print)9783030720834
DOIs
Publication statusPublished - 2021
Externally publishedYes
Event6th International MICCAI Brainlesion Workshop, BrainLes 2020 Held in Conjunction with 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020 - Virtual, Online
Duration: 4 Oct 20204 Oct 2020

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume12658 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference6th International MICCAI Brainlesion Workshop, BrainLes 2020 Held in Conjunction with 23rd Medical Image Computing for Computer Assisted Intervention Conference, MICCAI 2020
CityVirtual, Online
Period4/10/204/10/20

Keywords

  • Brain tumor segmentation
  • CNN
  • Contexual information
  • Dense connections
  • Residual inception blocks
  • UNet

ASJC Scopus subject areas

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'Context Aware 3D UNet for Brain Tumor Segmentation'. Together they form a unique fingerprint.

Cite this