TY - JOUR
T1 - Crystalline lens nuclear age prediction as a new biomarker of nucleus degeneration
AU - Guo, Mengjie
AU - Higashita, Risa
AU - Lin, Chen
AU - Hu, Lingxi
AU - Chen, Wan
AU - Li, Fei
AU - Lai, Gilda Wing Ki
AU - Nguyen, Anwell
AU - Sakata, Rei
AU - Okamoto, Keiichiro
AU - Tang, Bo
AU - Xu, Yanwu
AU - Fu, Huazhu
AU - Gao, Fei
AU - Aihara, Makoto
AU - Zhang, Xiulan
AU - Yuan, Jin
AU - Lin, Shan
AU - Leung, Christopher Kai Shun
AU - Liu, Jiang
N1 - Publisher Copyright:
© Author(s) (or their employer(s)) 2024. No commercial re-use. See rights and permissions. Published by BMJ.
PY - 2023/7/26
Y1 - 2023/7/26
N2 - Background The crystalline lens is a transparent structure of the eye to focus light on the retina. It becomes muddy, hard and dense with increasing age, which makes the crystalline lens gradually lose its function. We aim to develop a nuclear age predictor to reflect the degeneration of the crystalline lens nucleus. Methods First we trained and internally validated the nuclear age predictor with a deep-learning algorithm, using 12 904 anterior segment optical coherence tomography (AS-OCT) images from four diverse Asian and American cohorts: Zhongshan Ophthalmic Center with Machine0 (ZOM0), Tomey Corporation (TOMEY), University of California San Francisco and the Chinese University of Hong Kong. External testing was done on three independent datasets: Tokyo University (TU), ZOM1 and Shenzhen People's Hospital (SPH). We also demonstrate the possibility of detecting nuclear cataracts (NCs) from the nuclear age gap. Findings In the internal validation dataset, the nuclear age could be predicted with a mean absolute error (MAE) of 2.570 years (95% CI 1.886 to 2.863). Across the three external testing datasets, the algorithm achieved MAEs of 4.261 years (95% CI 3.391 to 5.094) in TU, 3.920 years (95% CI 3.332 to 4.637) in ZOM1-NonCata and 4.380 years (95% CI 3.730 to 5.061) in SPH-NonCata. The MAEs for NC eyes were 8.490 years (95% CI 7.219 to 9.766) in ZOM1-NC and 9.998 years (95% CI 5.673 to 14.642) in SPH-NC. The nuclear age gap outperformed both ophthalmologists in detecting NCs, with areas under the receiver operating characteristic curves of 0.853 years (95% CI 0.787 to 0.917) in ZOM1 and 0.909 years (95% CI 0.828 to 0.978) in SPH. Interpretation The nuclear age predictor shows good performance, validating the feasibility of using AS-OCT images as an effective screening tool for nucleus degeneration. Our work also demonstrates the potential use of the nuclear age gap to detect NCs.
AB - Background The crystalline lens is a transparent structure of the eye to focus light on the retina. It becomes muddy, hard and dense with increasing age, which makes the crystalline lens gradually lose its function. We aim to develop a nuclear age predictor to reflect the degeneration of the crystalline lens nucleus. Methods First we trained and internally validated the nuclear age predictor with a deep-learning algorithm, using 12 904 anterior segment optical coherence tomography (AS-OCT) images from four diverse Asian and American cohorts: Zhongshan Ophthalmic Center with Machine0 (ZOM0), Tomey Corporation (TOMEY), University of California San Francisco and the Chinese University of Hong Kong. External testing was done on three independent datasets: Tokyo University (TU), ZOM1 and Shenzhen People's Hospital (SPH). We also demonstrate the possibility of detecting nuclear cataracts (NCs) from the nuclear age gap. Findings In the internal validation dataset, the nuclear age could be predicted with a mean absolute error (MAE) of 2.570 years (95% CI 1.886 to 2.863). Across the three external testing datasets, the algorithm achieved MAEs of 4.261 years (95% CI 3.391 to 5.094) in TU, 3.920 years (95% CI 3.332 to 4.637) in ZOM1-NonCata and 4.380 years (95% CI 3.730 to 5.061) in SPH-NonCata. The MAEs for NC eyes were 8.490 years (95% CI 7.219 to 9.766) in ZOM1-NC and 9.998 years (95% CI 5.673 to 14.642) in SPH-NC. The nuclear age gap outperformed both ophthalmologists in detecting NCs, with areas under the receiver operating characteristic curves of 0.853 years (95% CI 0.787 to 0.917) in ZOM1 and 0.909 years (95% CI 0.828 to 0.978) in SPH. Interpretation The nuclear age predictor shows good performance, validating the feasibility of using AS-OCT images as an effective screening tool for nucleus degeneration. Our work also demonstrates the potential use of the nuclear age gap to detect NCs.
KW - degeneration
KW - imaging
KW - lens and zonules
UR - http://www.scopus.com/inward/record.url?scp=85166429977&partnerID=8YFLogxK
U2 - 10.1136/bjo-2023-323176
DO - 10.1136/bjo-2023-323176
M3 - Article
C2 - 37495263
AN - SCOPUS:85166429977
SN - 0007-1161
VL - 108
SP - 513
EP - 521
JO - British Journal of Ophthalmology
JF - British Journal of Ophthalmology
IS - 4
ER -