Data-Driven Materials Innovation and Applications

Zhuo Wang, Zhehao Sun, Hang Yin, Xinghui Liu, Jinlan Wang, Haitao Zhao, Cheng Heng Pang, Tao Wu, Shuzhou Li, Zongyou Yin, Xue Feng Yu

Research output: Journal PublicationReview articlepeer-review

82 Citations (Scopus)

Abstract

Owing to the rapid developments to improve the accuracy and efficiency of both experimental and computational investigative methodologies, the massive amounts of data generated have led the field of materials science into the fourth paradigm of data-driven scientific research. This transition requires the development of authoritative and up-to-date frameworks for data-driven approaches for material innovation. A critical discussion on the current advances in the data-driven discovery of materials with a focus on frameworks, machine-learning algorithms, material-specific databases, descriptors, and targeted applications in the field of inorganic materials is presented. Frameworks for rationalizing data-driven material innovation are described, and a critical review of essential subdisciplines is presented, including: i) advanced data-intensive strategies and machine-learning algorithms; ii) material databases and related tools and platforms for data generation and management; iii) commonly used molecular descriptors used in data-driven processes. Furthermore, an in-depth discussion on the broad applications of material innovation, such as energy conversion and storage, environmental decontamination, flexible electronics, optoelectronics, superconductors, metallic glasses, and magnetic materials, is provided. Finally, how these subdisciplines (with insights into the synergy of materials science, computational tools, and mathematics) support data-driven paradigms is outlined, and the opportunities and challenges in data-driven material innovation are highlighted.

Original languageEnglish
Article number2104113
JournalAdvanced Materials
Volume34
Issue number36
DOIs
Publication statusPublished - 8 Sept 2022

Keywords

  • data-driven research
  • machine learning
  • material applications
  • material informatics
  • material innovation

ASJC Scopus subject areas

  • General Materials Science
  • Mechanics of Materials
  • Mechanical Engineering

Fingerprint

Dive into the research topics of 'Data-Driven Materials Innovation and Applications'. Together they form a unique fingerprint.

Cite this