TY - GEN
T1 - Discriminative feature selection for multiple ocular diseases classification by sparse induced graph regularized group lasso
AU - Chen, Xiangyu
AU - Xu, Yanwu
AU - Yan, Shuicheng
AU - Chua, Tat Seng
AU - Wong, Damon Wing Kee
AU - Wong, Tien Yin
AU - Liu, Jiang
N1 - Publisher Copyright:
© Springer International Publishing Switzerland 2015.
PY - 2015
Y1 - 2015
N2 - Glaucoma, Pathological Myopia (PM), and Age-related Macular Degeneration (AMD) are three leading ocular diseases worldwide. Visual features extracted from retinal fundus images have been increasingly used for detecting these three diseases. In this paper, we present a discriminative feature selection model based on multi-task learning, which imposes the exclusive group lasso regularization for competitive sparse feature selection and the graph Laplacian regularization to embed the correlations among multiple diseases. Moreover, this multi-task linear discriminative model is able to simultaneously select sparse features and detect multiple ocular diseases. Extensive experiments are conducted to validate the proposed framework on the SiMES dataset. From the Area Under Curve (AUC) results in multiple ocular diseases classification, our method is shown to outperform the state-of-the-art algorithms.
AB - Glaucoma, Pathological Myopia (PM), and Age-related Macular Degeneration (AMD) are three leading ocular diseases worldwide. Visual features extracted from retinal fundus images have been increasingly used for detecting these three diseases. In this paper, we present a discriminative feature selection model based on multi-task learning, which imposes the exclusive group lasso regularization for competitive sparse feature selection and the graph Laplacian regularization to embed the correlations among multiple diseases. Moreover, this multi-task linear discriminative model is able to simultaneously select sparse features and detect multiple ocular diseases. Extensive experiments are conducted to validate the proposed framework on the SiMES dataset. From the Area Under Curve (AUC) results in multiple ocular diseases classification, our method is shown to outperform the state-of-the-art algorithms.
UR - http://www.scopus.com/inward/record.url?scp=84951093680&partnerID=8YFLogxK
U2 - 10.1007/978-3-319-24571-3_2
DO - 10.1007/978-3-319-24571-3_2
M3 - Conference contribution
AN - SCOPUS:84951093680
SN - 9783319245706
SN - 9783319245706
SN - 9783319245706
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 11
EP - 19
BT - Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015 - 18th International Conference, Proceedings
A2 - Hornegger, Joachim
A2 - Frangi, Alejandro F.
A2 - Wells, William M.
A2 - Frangi, Alejandro F.
A2 - Navab, Nassir
A2 - Hornegger, Joachim
A2 - Navab, Nassir
A2 - Wells, William M.
A2 - Wells, William M.
A2 - Frangi, Alejandro F.
A2 - Hornegger, Joachim
A2 - Navab, Nassir
PB - Springer Verlag
T2 - 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015
Y2 - 5 October 2015 through 9 October 2015
ER -