Dynamic facial models for video-based dimensional affect estimation

Siyang Song, Enrique Sanchez-Lozano, Mani Kumar Tellamekala, Linlin Shen, Alan Johnston, Michel Valstar

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

20 Citations (Scopus)

Abstract

Dimensional affect estimation from a face video is a challenging task, mainly due to the large number of possible facial displays made up of a set of behaviour primitives including facial muscle actions. The displays vary not only in composition but also in temporal evolution, with each display composed of behaviour primitives with varying in their short and long-term characteristics. Most existing work models affect relies on complex hierarchical recurrent models unable to capture short-term dynamics well. In this paper, we propose to encode these short-term facial shape and appearance dynamics in an image, where only the semantic meaningful information is encoded into the dynamic face images. We also propose binary dynamic facial masks to remove 'stable pixels' from the dynamic images. This process allows filtering of non-dynamic information, i.e. only pixels that have changed in the sequence are retained. Then, the final proposed Dynamic Facial Model (DFM) encodes both filtered facial appearance and shape dynamics of a image sequence preceding to the given frame into a three-channel raster image. A CNN-RNN architecture is tasked with modelling primarily the long-term changes. Experiments show that our dynamic face images achieved superior performance over the standard RGB face images on dimensional affect prediction task.

Original languageEnglish
Title of host publicationProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1608-1617
Number of pages10
ISBN (Electronic)9781728150239
DOIs
Publication statusPublished - Oct 2019
Externally publishedYes
Event17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019 - Seoul, Korea, Republic of
Duration: 27 Oct 201928 Oct 2019

Publication series

NameProceedings - 2019 International Conference on Computer Vision Workshop, ICCVW 2019

Conference

Conference17th IEEE/CVF International Conference on Computer Vision Workshop, ICCVW 2019
Country/TerritoryKorea, Republic of
CitySeoul
Period27/10/1928/10/19

Keywords

  • Deep learning
  • Dimensional affect estimation
  • Facial dynamic modelling

ASJC Scopus subject areas

  • Computer Science Applications
  • Computer Vision and Pattern Recognition

Fingerprint

Dive into the research topics of 'Dynamic facial models for video-based dimensional affect estimation'. Together they form a unique fingerprint.

Cite this