E. coli-Assisted Eco-Friendly Production of Biogenic Silver Cobalt Oxide (AgCoO2) Nanoparticles: Methanolysis-Based Hydrogen Production, Wastewater Remediation, and Pathogen Control

Aisha Irshad, Sajid Mahmood, Tanzeela Fazal, Shahid Iqbal, Mujaddad ur Rehman, Ammar Zidan, Mazloom Shah, Ali Bahadur, Azam Hayat, Asma Khan, Attiya Abdul Malik, Nasser S Awwad, Hala A Ibrahium

Research output: Journal PublicationArticlepeer-review

Abstract

Herein, bacterial-assisted synthesis of AgCoO2 is carried out. In the first step, E. coli was separated from soil samples via the “serial dilution method.” Ten milliliters of bacterial supernatant was mixed with cobalt chloride and silver nitrate hatched at 38°C for 24 h to get AgCoO2 nanoparticles (NPs). XRD results confirm the synthesis of AgCoO2 NPs while EDX results confirm the absence of any other elements than Ag, Co, and O. An average NP size of 12-26 nm was determined by TEM examination, and the surface of the particles was seen rough, irregularly shaped borders. The antibacterial activity of the constructed NPs was checked against S. aureus, E. coli, Bacillus subtilus, and Pseudomanas areguinosa using agar well diffusion method. The maximum zone of inhibition was 27 mm at 40 mg/mL against Bacillus subtilus. The performance of the synthesized NPs as photocatalysts was also assessed, and several operational parameters that control the photodegradation of the harmful dyes were tried to tune as well, and 85% degrading efficiency was obtained at 60oC for 240 min for 30 mg of catalyst dose These NPs were also used to produce hydrogen by methanolysis.

Original languageEnglish
JournalMicroscopy Research and Technique
DOIs
Publication statusAccepted/In press - 2024

Keywords

  • AgCoO
  • adsorption
  • antibacterial performance
  • bacterial-assisted synthesis
  • dye degradation

ASJC Scopus subject areas

  • Anatomy
  • Histology
  • Instrumentation
  • Medical Laboratory Technology

Fingerprint

Dive into the research topics of 'E. coli-Assisted Eco-Friendly Production of Biogenic Silver Cobalt Oxide (AgCoO2) Nanoparticles: Methanolysis-Based Hydrogen Production, Wastewater Remediation, and Pathogen Control'. Together they form a unique fingerprint.

Cite this