Abstract
Solid electrolyte interphase (SEI) formed at the interface in lithium-ion batteries plays an important role in isolating electrons and permeating ions during charging/discharging processes. Therefore, the formation of a good interface is crucial for better battery performance. In this study, additives based on adiponitrile (ADN) and trimethyl borate (TMB) were employed to broaden the electrochemical window and form a good SEI layer. Electrochemical Atomic force microscopy (EC-AFM) was used for in situ studies of film-formation mechanisms in high-voltage electrolytes on high-temperature pyrolytic graphite (HOPG), as well as Li- and Mn-rich (LMR) materials. X-ray photoelectron spectroscopy (XPS) combined with electrochemical methods revealed a synergistic reaction between the two additives to form a more stable interfacial film during charging/discharging processes to yield assembled batteries with improved cycle performance, its capacity increased from below 100 mAh/g to 200 mAh/g after 50 cycles. In sum, these findings would have great significance for the development of high voltage lithium-ion batteries with enhanced performance.
Original language | English |
---|---|
Article number | 3662 |
Number of pages | 12 |
Journal | Materials |
Volume | 15 |
Issue number | 10 |
DOIs | |
Publication status | Published - 20 May 2022 |
Keywords
- solid electrolyte interphase
- high-voltage electrolyte
- additives
- electrochemical atomic force microscopy
- lithium-ion batteries