Abstract
The global concerns of energy crisis and climate change, primarily caused by carbon dioxide (CO2), are of utmost importance. Recently, the electrocatalytic CO2 reduction reaction (CO2RR) to high value-added multi-carbon (C2+) products driven by renewable electricity has emerged as a highly promising solution to alleviate energy shortages and achieve carbon neutrality. Among these C2+ products, ethylene (C2H4) holds particular importance in the petrochemical industry. Accordingly, this review aims to establish a connection between the fundamentals of electrocatalytic CO2 reduction reaction to ethylene (CO2RR-to-C2H4) in laboratory-scale research (lab) and its potential applications in industrial-level fabrication (fab). The review begins by summarizing the fundamental aspects, including the design strategies of high-performance Cu-based electrocatalysts and advanced electrolyzer devices. Subsequently, innovative and value-added techniques are presented to address the inherent challenges encountered during the implementations of CO2RR-to-C2H4 in industrial scenarios. Additionally, case studies of the techno-economic analysis of the CO2RR-to-C2H4 process are discussed, taking into factors such as cost-effectiveness, scalability, and market potential. The review concludes by outlining the perspectives and challenges associated with scaling up the CO2RR-to-C2H4 process. The insights presented in this review are expected to make a valuable contribution in advancing the CO2RR-to-C2H4 process from lab to fab.
Original language | English |
---|---|
Pages (from-to) | 540-564 |
Number of pages | 25 |
Journal | Journal of Energy Chemistry |
Volume | 90 |
DOIs | |
Publication status | Published - Mar 2024 |
Keywords
- CO electroreduction reaction
- Density functional theory
- Ethylene
- Gas diffusion electrode
- Machine learning
- Techno-economic analysis
ASJC Scopus subject areas
- Fuel Technology
- Energy Engineering and Power Technology
- Energy (miscellaneous)
- Electrochemistry