Abstract
Face recognition using 3D point clouds is gaining growing interest, while raw point clouds often contain a significant amount of noise due to imperfect sensors. In this paper, an end-to-end 3D face recognition on a noisy point cloud is proposed, which synergistically integrates the denoising and recognition modules. Specifically, a Conditional Generative Adversarial Network on Three Orthogonal Planes (cGAN-TOP) is designed to effectively remove the noise in the point cloud, and recover the underlying features for subsequent recognition. A Linked Dynamic Graph Convolutional Neural Network (LDGCNN) is then adapted to recognize faces from the processed point cloud, which hierarchically links both the local point features and neighboring features of multiple scales. The proposed method is validated on the Bosphorus dataset. It significantly improves the recognition accuracy under all noise settings, with a maximum gain of 14.81%.
Original language | English |
---|---|
Journal | Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing |
DOIs | |
Publication status | Published - 2023 |
Event | 48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece Duration: 4 Jun 2023 → 10 Jun 2023 |
Keywords
- 3D Point Cloud
- Conditional Generative Neural Network on Three Orthogonal Planes
- Face Recognition
- Linked Dynamic Graph Convolutional Neural Network
ASJC Scopus subject areas
- Software
- Signal Processing
- Electrical and Electronic Engineering