Abstract
Ammonia (NH3) is a carbon-free hydrogen (H2) carrier because it enables liquid-phase H2 storage and transport under mild conditions. Although the concept of NH3-to-H2 has been frequently proposed, the practical application of NH3 as the energy source for H2 power automotive systems is rarely reported. In this work, an NH3-powered fuel cell electric golf cart system was developed and demonstrated as a proof of concept for NH3-powered fuel cell vehicles. The integration of NH3 cracker (installed with catalyst), gas purifier, fuel cell, and energy management system formed a successful powertrain that thrusts a golf cart into motion. The catalytic performance of both nickel (Ni) and iron (Fe)-based catalysts were measured, and the optimal catalyst demonstrated a > 99.9 % NH3 conversion at 600 ℃. The gas purifier was confirmed to be capable of removing the residual NH3 for a proton exchange membrane fuel cell (PEMFC). The fuel cell, when powered by the cracked and purified gas mixture, revealed comparable performance and power output as compared with the pre-mixed fuel gas mixture (75 %H2/25 %N2), demonstrating the feasibility of the whole system. The integration can successfully power 300 and 600 W fuel cells and continuously charge the energy storage system, offering sufficient energy for a 3kW golf cart for>500 km at 25 km/h. This work is an innovative demonstration of an NH3-powered fuel cell vehicle system, giving rise to a future reference and inspiration for the practical developments of NH3-based H2 fuel applications.
Original language | English |
---|---|
Article number | 139390 |
Journal | Chemical Engineering Journal |
Volume | 452 |
DOIs | |
Publication status | Published - 15 Jan 2023 |
Externally published | Yes |
Keywords
- Ammonia decomposition
- Fuel cell
- Heterogeneous catalyst
- Hydrogen carrier
- Zero carbon fuel
ASJC Scopus subject areas
- General Chemistry
- Environmental Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering