TY - GEN
T1 - Group-wise Inhibition based Feature Regularization for Robust Classification
AU - Liu, Haozhe
AU - Wu, Haoqian
AU - Xie, Weicheng
AU - Liu, Feng
AU - Shen, Linlin
N1 - Publisher Copyright:
© 2021 IEEE
PY - 2021
Y1 - 2021
N2 - The convolutional neural network (CNN) is vulnerable to degraded images with even very small variations (e.g. corrupted and adversarial samples). One of the possible reasons is that CNN pays more attention to the most discriminative regions, but ignores the auxiliary features when learning, leading to the lack of feature diversity for final judgment. In our method, we propose to dynamically suppress significant activation values of CNN by group-wise inhibition, but not fixedly or randomly handle them when training. The feature maps with different activation distribution are then processed separately to take the feature independence into account. CNN is finally guided to learn richer discriminative features hierarchically for robust classification according to the proposed regularization. Our method is comprehensively evaluated under multiple settings, including classification against corruptions, adversarial attacks and low data regime. Extensive experimental results show that the proposed method can achieve significant improvements in terms of both robustness and generalization performances, when compared with the state-of-the-art methods. Code is available at https://github.com/LinusWu/TENET_Training.
AB - The convolutional neural network (CNN) is vulnerable to degraded images with even very small variations (e.g. corrupted and adversarial samples). One of the possible reasons is that CNN pays more attention to the most discriminative regions, but ignores the auxiliary features when learning, leading to the lack of feature diversity for final judgment. In our method, we propose to dynamically suppress significant activation values of CNN by group-wise inhibition, but not fixedly or randomly handle them when training. The feature maps with different activation distribution are then processed separately to take the feature independence into account. CNN is finally guided to learn richer discriminative features hierarchically for robust classification according to the proposed regularization. Our method is comprehensively evaluated under multiple settings, including classification against corruptions, adversarial attacks and low data regime. Extensive experimental results show that the proposed method can achieve significant improvements in terms of both robustness and generalization performances, when compared with the state-of-the-art methods. Code is available at https://github.com/LinusWu/TENET_Training.
UR - http://www.scopus.com/inward/record.url?scp=85127741457&partnerID=8YFLogxK
U2 - 10.1109/ICCV48922.2021.00053
DO - 10.1109/ICCV48922.2021.00053
M3 - Conference contribution
AN - SCOPUS:85127741457
T3 - Proceedings of the IEEE International Conference on Computer Vision
SP - 468
EP - 476
BT - Proceedings - 2021 IEEE/CVF International Conference on Computer Vision, ICCV 2021
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 18th IEEE/CVF International Conference on Computer Vision, ICCV 2021
Y2 - 11 October 2021 through 17 October 2021
ER -