Hard Exudate Segmentation Supplemented by Super-Resolution with Multi-scale Attention Fusion Module

Jiayi Zhang, Xiaoshan Chen, Zhongxi Qiu, Mingming Yang, Yan Hu, Jiang Liu

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

10 Citations (Scopus)

Abstract

Hard exudates (HE) is the most specific biomarker for retina edema. Precise HE segmentation is vital for disease diagnosis and treatment, but automatic segmentation is challenged by its large variation of characteristics including size, shape and position, which makes it difficult to detect tiny lesions and lesion boundaries. Considering the complementary features between segmentation and super-resolution tasks, this paper proposes a novel hard exudates segmentation method named SSMAF with an auxiliary super-resolution task, which brings in helpful detailed features for tiny lesion and boundaries detection. Specifically, we propose a fusion module named Multi-scale Attention Fusion (MAF) module for our dual-stream framework to effectively integrate features of the two tasks. MAF first adopts split spatial convolutional (SSC) layer for multi-scale features extraction and then utilize attention mechanism for features fusion of the two tasks. Considering pixel dependency, we introduce region mutual information (RMI) loss to optimize MAF module for tiny lesions and boundary detection. We evaluate our method on two public lesion datasets, IDRiD and E-Ophtha. Our method shows competitive performance with low-resolution inputs, both quantitatively and qualitatively. On E-Ophtha dataset, the method can achieve ge 3% higher dice and recall compared with the state-of-the-art methods.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
EditorsDonald Adjeroh, Qi Long, Xinghua Shi, Fei Guo, Xiaohua Hu, Srinivas Aluru, Giri Narasimhan, Jianxin Wang, Mingon Kang, Ananda M. Mondal, Jin Liu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1375-1380
Number of pages6
ISBN (Electronic)9781665468190
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 - Las Vegas, United States
Duration: 6 Dec 20228 Dec 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022

Conference

Conference2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
Country/TerritoryUnited States
CityLas Vegas
Period6/12/228/12/22

Keywords

  • Attention
  • Dual-Stream Learning
  • Hard exudates
  • Semantic Segmentation

ASJC Scopus subject areas

  • Psychiatry and Mental health
  • Information Systems and Management
  • Biomedical Engineering
  • Medicine (miscellaneous)
  • Cardiology and Cardiovascular Medicine
  • Health Informatics

Fingerprint

Dive into the research topics of 'Hard Exudate Segmentation Supplemented by Super-Resolution with Multi-scale Attention Fusion Module'. Together they form a unique fingerprint.

Cite this