Abstract
High-performance bismaleimide (BMI) matrix composites reinforced with graphite fibers were prepared and toughened with a thermoplastic component (PEK-C) by using different toughening methods. Four experimental options were conducted using the neat BMI matrix, toughened BMI matrix with PEKC, BMI laminates periodically interleaved with neat PEK-C films (Ex-situ concept 1) and BMI laminates periodically interleaved with BMI/PEK-C blend films (Ex-situ concept 2), respectively. The laminates were tested for compression strength after impact using an impact energy of 2 J mm-1. The highest impact damage resistance was obtained for the laminates toughened using the Ex-situ concept 2, especially, when PEK-C/BMI two-component films, cast from a mixture of PEK-C: BMI = 60: 40 were interleaved between the BMI laminate plies. Interleaving the pure thermoplastic film also gave good results (Ex-situ concept 1). There were two peak temperatures evident in the dynamic mechanical thermal analyses of the ex-situ toughened laminates implying that phase separation had occurred. The glass transition temperature of the toughened BMI laminates was slightly reduced due to the lower glass transition temperature of PEK-C. Morphological investigations revealed that a granular structure was present in the interply region presumably due to spinodal decomposition and coarsening. The results of this study are presented herein.
Original language | English |
---|---|
Pages (from-to) | 907-917 |
Number of pages | 11 |
Journal | High Performance Polymers |
Volume | 18 |
Issue number | 6 |
DOIs | |
Publication status | Published - Dec 2006 |
Externally published | Yes |
Keywords
- Compression after impact
- Interlaminar morphology
- Toughened BMI
ASJC Scopus subject areas
- Organic Chemistry
- Polymers and Plastics
- Materials Chemistry