Influence of plasticiser type and nanoclay on the properties of chitosan-based materials

Pei Chen, Fengwei Xie, Fengzai Tang, Tony McNally

Research output: Journal PublicationArticlepeer-review

34 Citations (Scopus)

Abstract

Chitosan, a biocompatible polysaccharide having antimicrobial efficacy, is highly useful for biomedical and other applications. How chitosan properties can be tailored continues to attract intense research interest. Herein, chitosan and chitosan/carboxymethyl cellulose (CMC) materials filled with montmorillonite (MMT) were thermomechanically processed resulting in excellent nanoclay dispersion. Inclusion of MMT significantly increased molecular relaxation temperatures, tensile mechanical properties, and film surface hydrophobicity. When plasticisers such as 1-ethyl-3-methylimidazolium acetate ([C2mim][OAc]) or glycerol were introduced, the effect of MMT on the biopolymer properties largely depends on whether the MMT alters plasticiser–biopolymer interactions. [C2mim][OAc]-plasticised chitosan exhibited a relatively high contact angle (100 ± 7°) similar to the un-plasticised chitosan/MMT material, derived from the strong hydrogen-bonding capability of [C2mim][OAc]. Polyelectrolyte complexation (PEC) allowed the glycerol-plasticised chitosan/CMC material to have a hydrophobic surface (contact angle: 90 ± 6°) similar to that of the un-plasticised chitosan/CMC/MMT material. Specifically, further inclusion of MMT interrupted biopolymer–plasticiser interactions, leading to increased surface wettability. However, while addition of [C2mim][OAc] resulted in reduced hydrophilicity of the chitosan/CMC matrix, addition of MMT counteracted this effect by interacting with the IL. This work shows the plasticisers and MMT influence surface hydrophilicity mainly by determining the availability of free biopolymer polar groups.

Original languageEnglish
Article number110225
JournalEuropean Polymer Journal
Volume144
DOIs
Publication statusPublished - 5 Feb 2021
Externally publishedYes

Keywords

  • Biopolymer thermomechanical processing
  • Chitosan nanocomposites
  • Ionic liquid
  • Nanoclay
  • Polysaccharide plasticisation
  • Surface hydrophilicity

ASJC Scopus subject areas

  • General Physics and Astronomy
  • Polymers and Plastics
  • Organic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Influence of plasticiser type and nanoclay on the properties of chitosan-based materials'. Together they form a unique fingerprint.

Cite this