TY - JOUR
T1 - Influence of urban morphological factors on building energy consumption combined with photovoltaic potential: a case study of residential blocks in central China
AU - Xu, Shen
AU - Sang, Mengcheng
AU - Xie, Mengju
AU - Xiong, Feng
AU - Mendis, Thushini
AU - Xiang, Xingwei
PY - 2023/3/7
Y1 - 2023/3/7
N2 - Studies on urban energy have been growing in interest, and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently. However, holistic research on the combination of urban building energy consumption and solar potential at the urban block-scale is required in order to minimize energy use and maximize solar power generation simultaneously. The aim of this study is to comprehensively evaluate the impact of urban morphological factors on photovoltaic (PV) potential and building energy consumption. Firstly, 58 residential blocks were classified into 6 categories by k-means clustering. Secondly, 3 energy performance factors, which include the energy use intensity (EUI), the energy use intensity combined with PV potential (EUI-PV), and photovoltaic substitution rate (PSR) were calculated for these blocks. The study found that the EUI of the Small Length & High Height blocks was the lowest at around 30 kWh/(m2·y), while the EUI-PV of the Small Length & Low Height blocks was the lowest at around 4.45 kWh/(m2·y), and their PSR was the highest at 87%. Regression modelling was carried out, and the study concluded that the EUI of residential blocks was mainly affected by shape factor, building density and floor area ratio, while EUI-PV and PSR were mainly affected by height and sky view factor. In this study, the results and developed methodology are helpful to provide recommendations and strategies for sustainable planning of residential blocks in central China.
AB - Studies on urban energy have been growing in interest, and past research has mostly been focused on studies of urban solar potential or urban building energy consumption independently. However, holistic research on the combination of urban building energy consumption and solar potential at the urban block-scale is required in order to minimize energy use and maximize solar power generation simultaneously. The aim of this study is to comprehensively evaluate the impact of urban morphological factors on photovoltaic (PV) potential and building energy consumption. Firstly, 58 residential blocks were classified into 6 categories by k-means clustering. Secondly, 3 energy performance factors, which include the energy use intensity (EUI), the energy use intensity combined with PV potential (EUI-PV), and photovoltaic substitution rate (PSR) were calculated for these blocks. The study found that the EUI of the Small Length & High Height blocks was the lowest at around 30 kWh/(m2·y), while the EUI-PV of the Small Length & Low Height blocks was the lowest at around 4.45 kWh/(m2·y), and their PSR was the highest at 87%. Regression modelling was carried out, and the study concluded that the EUI of residential blocks was mainly affected by shape factor, building density and floor area ratio, while EUI-PV and PSR were mainly affected by height and sky view factor. In this study, the results and developed methodology are helpful to provide recommendations and strategies for sustainable planning of residential blocks in central China.
KW - urban morphological factors
KW - residential blocks
KW - building energy consumption
KW - photovoltaic potential
KW - regression models
UR - http://dx.doi.org/10.1007/s12273-023-1014-4
U2 - 10.1007/s12273-023-1014-4
DO - 10.1007/s12273-023-1014-4
M3 - Article
SN - 1996-3599
JO - Building Simulation
JF - Building Simulation
ER -