TY - GEN
T1 - Instance-Aware Self-supervised Learning for Nuclei Segmentation
AU - Xie, Xinpeng
AU - Chen, Jiawei
AU - Li, Yuexiang
AU - Shen, Linlin
AU - Ma, Kai
AU - Zheng, Yefeng
N1 - Publisher Copyright:
© 2020, Springer Nature Switzerland AG.
PY - 2020
Y1 - 2020
N2 - Due to the wide existence and large morphological variances of nuclei, accurate nuclei instance segmentation is still one of the most challenging tasks in computational pathology. The annotating of nuclei instances, requiring experienced pathologists to manually draw the contours, is extremely laborious and expensive, which often results in the deficiency of annotated data. The deep learning based segmentation approaches, which highly rely on the quantity of training data, are difficult to fully demonstrate their capacity in this area. In this paper, we propose a novel self-supervised learning framework to deeply exploit the capacity of widely-used convolutional neural networks (CNNs) on the nuclei instance segmentation task. The proposed approach involves two sub-tasks (i.e., scale-wise triplet learning and count ranking), which enable neural networks to implicitly leverage the prior-knowledge of nuclei size and quantity, and accordingly mine the instance-aware feature representations from the raw data. Experimental results on the publicly available MoNuSeg dataset show that the proposed self-supervised learning approach can remarkably boost the segmentation accuracy of nuclei instance—a new state-of-the-art average Aggregated Jaccard Index (AJI) of 70.63%, is achieved by our self-supervised ResUNet-101. To our best knowledge, this is the first work focusing on the self-supervised learning for instance segmentation.
AB - Due to the wide existence and large morphological variances of nuclei, accurate nuclei instance segmentation is still one of the most challenging tasks in computational pathology. The annotating of nuclei instances, requiring experienced pathologists to manually draw the contours, is extremely laborious and expensive, which often results in the deficiency of annotated data. The deep learning based segmentation approaches, which highly rely on the quantity of training data, are difficult to fully demonstrate their capacity in this area. In this paper, we propose a novel self-supervised learning framework to deeply exploit the capacity of widely-used convolutional neural networks (CNNs) on the nuclei instance segmentation task. The proposed approach involves two sub-tasks (i.e., scale-wise triplet learning and count ranking), which enable neural networks to implicitly leverage the prior-knowledge of nuclei size and quantity, and accordingly mine the instance-aware feature representations from the raw data. Experimental results on the publicly available MoNuSeg dataset show that the proposed self-supervised learning approach can remarkably boost the segmentation accuracy of nuclei instance—a new state-of-the-art average Aggregated Jaccard Index (AJI) of 70.63%, is achieved by our self-supervised ResUNet-101. To our best knowledge, this is the first work focusing on the self-supervised learning for instance segmentation.
KW - Histopathological images
KW - Nuclei instance segmentation
KW - Self-supervised learning
UR - http://www.scopus.com/inward/record.url?scp=85092743413&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-59722-1_33
DO - 10.1007/978-3-030-59722-1_33
M3 - Conference contribution
AN - SCOPUS:85092743413
SN - 9783030597214
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 341
EP - 350
BT - Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 - 23rd International Conference, Proceedings
A2 - Martel, Anne L.
A2 - Abolmaesumi, Purang
A2 - Stoyanov, Danail
A2 - Mateus, Diana
A2 - Zuluaga, Maria A.
A2 - Zhou, S. Kevin
A2 - Racoceanu, Daniel
A2 - Joskowicz, Leo
PB - Springer Science and Business Media Deutschland GmbH
T2 - 23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
Y2 - 4 October 2020 through 8 October 2020
ER -