TY - JOUR
T1 - Liquidity effects on oil volatility forecasting
T2 - From fintech perspective
AU - Ding, Shusheng
AU - Cui, Tianxiang
AU - Zhang, Yongmin
AU - Li, Jiawei
N1 - Publisher Copyright:
Copyright: © 2021 Ding et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2021/11
Y1 - 2021/11
N2 - Fin-tech is an emerging field, inspiring revolutionary innovations in the financial field. It may initiate the evolutionary episode of the financial research, where volatility forecasting is a crucial topic in finance. For forecasting volatility, GARCH model is a prevailing model, however, further improvement of the GARCH model is still challenging. In this paper, we demonstrate how Fintech can play a part in volatility forecasting by employing a metaheuristic procedure called Genetic Programming. On the basis, we are able to develop a new volatility forecasting model, which can beat GARCH family models (including GARCH, IGARCH and TGARCH models) in a significant way. Since genetic programming is an evolutionary algorithm based on the principles of natural selection, this innovative work will be a breakthrough point in the financial area. The innovation of this paper demonstrates how GP technology can be applied in the financial field, attempting to explore the volatility forecasting area from the combination of new technology and finance, known as fintech. More importantly, when the formula of volatility forecasting is unknown as we introduce a new factor, namely, the liquidity factor, we unveil that how GP method can be helpful in determining the specific volatility forecasting model format. We thereby exhibit the liquidity effects on volatility forecasting filed from the fintech perspective.
AB - Fin-tech is an emerging field, inspiring revolutionary innovations in the financial field. It may initiate the evolutionary episode of the financial research, where volatility forecasting is a crucial topic in finance. For forecasting volatility, GARCH model is a prevailing model, however, further improvement of the GARCH model is still challenging. In this paper, we demonstrate how Fintech can play a part in volatility forecasting by employing a metaheuristic procedure called Genetic Programming. On the basis, we are able to develop a new volatility forecasting model, which can beat GARCH family models (including GARCH, IGARCH and TGARCH models) in a significant way. Since genetic programming is an evolutionary algorithm based on the principles of natural selection, this innovative work will be a breakthrough point in the financial area. The innovation of this paper demonstrates how GP technology can be applied in the financial field, attempting to explore the volatility forecasting area from the combination of new technology and finance, known as fintech. More importantly, when the formula of volatility forecasting is unknown as we introduce a new factor, namely, the liquidity factor, we unveil that how GP method can be helpful in determining the specific volatility forecasting model format. We thereby exhibit the liquidity effects on volatility forecasting filed from the fintech perspective.
UR - http://www.scopus.com/inward/record.url?scp=85120375753&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0260289
DO - 10.1371/journal.pone.0260289
M3 - Article
C2 - 34843538
AN - SCOPUS:85120375753
SN - 1932-6203
VL - 16
JO - PLoS ONE
JF - PLoS ONE
IS - 11 November
M1 - e0260289
ER -