TY - JOUR
T1 - Mapping Soil Transmitted Helminths and Schistosomiasis under Uncertainty
T2 - A Systematic Review and Critical Appraisal of Evidence
AU - Araujo Navas, Andrea L.
AU - Hamm, Nicholas A.S.
AU - Soares Magalhães, Ricardo J.
AU - Stein, Alfred
N1 - Publisher Copyright:
© 2016 Araujo Navas et al.
PY - 2016/12/22
Y1 - 2016/12/22
N2 - Background: Spatial modelling of STH and schistosomiasis epidemiology is now commonplace. Spatial epidemiological studies help inform decisions regarding the number of people at risk as well as the geographic areas that need to be targeted with mass drug administration; however, limited attention has been given to propagated uncertainties, their interpretation, and consequences for the mapped values. Using currently published literature on the spatial epidemiology of helminth infections we identified: (1) the main uncertainty sources, their definition and quantification and (2) how uncertainty is informative for STH programme managers and scientists working in this domain. Methodology/Principal Findings: We performed a systematic literature search using the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) protocol. We searched Web of Knowledge and PubMed using a combination of uncertainty, geographic and disease terms. A total of 73 papers fulfilled the inclusion criteria for the systematic review. Only 9% of the studies did not address any element of uncertainty, while 91% of studies quantified uncertainty in the predicted morbidity indicators and 23% of studies mapped it. In addition, 57% of the studies quantified uncertainty in the regression coefficients but only 7% incorporated it in the regression response variable (morbidity indicator). Fifty percent of the studies discussed uncertainty in the covariates but did not quantify it. Uncertainty was mostly defined as precision, and quantified using credible intervals by means of Bayesian approaches. Conclusion/Significance: None of the studies considered adequately all sources of uncertainties. We highlighted the need for uncertainty in the morbidity indicator and predictor variable to be incorporated into the modelling framework. Study design and spatial support require further attention and uncertainty associated with Earth observation data should be quantified. Finally, more attention should be given to mapping and interpreting uncertainty, since they are relevant to inform decisions regarding the number of people at risk as well as the geographic areas that need to be targeted with mass drug administration.
AB - Background: Spatial modelling of STH and schistosomiasis epidemiology is now commonplace. Spatial epidemiological studies help inform decisions regarding the number of people at risk as well as the geographic areas that need to be targeted with mass drug administration; however, limited attention has been given to propagated uncertainties, their interpretation, and consequences for the mapped values. Using currently published literature on the spatial epidemiology of helminth infections we identified: (1) the main uncertainty sources, their definition and quantification and (2) how uncertainty is informative for STH programme managers and scientists working in this domain. Methodology/Principal Findings: We performed a systematic literature search using the Preferred Reporting Items for Systematic reviews and Meta-Analysis (PRISMA) protocol. We searched Web of Knowledge and PubMed using a combination of uncertainty, geographic and disease terms. A total of 73 papers fulfilled the inclusion criteria for the systematic review. Only 9% of the studies did not address any element of uncertainty, while 91% of studies quantified uncertainty in the predicted morbidity indicators and 23% of studies mapped it. In addition, 57% of the studies quantified uncertainty in the regression coefficients but only 7% incorporated it in the regression response variable (morbidity indicator). Fifty percent of the studies discussed uncertainty in the covariates but did not quantify it. Uncertainty was mostly defined as precision, and quantified using credible intervals by means of Bayesian approaches. Conclusion/Significance: None of the studies considered adequately all sources of uncertainties. We highlighted the need for uncertainty in the morbidity indicator and predictor variable to be incorporated into the modelling framework. Study design and spatial support require further attention and uncertainty associated with Earth observation data should be quantified. Finally, more attention should be given to mapping and interpreting uncertainty, since they are relevant to inform decisions regarding the number of people at risk as well as the geographic areas that need to be targeted with mass drug administration.
UR - http://www.scopus.com/inward/record.url?scp=85008616117&partnerID=8YFLogxK
U2 - 10.1371/journal.pntd.0005208
DO - 10.1371/journal.pntd.0005208
M3 - Article
C2 - 28005901
AN - SCOPUS:85008616117
SN - 1935-2727
VL - 10
JO - PLoS Neglected Tropical Diseases
JF - PLoS Neglected Tropical Diseases
IS - 12
M1 - e0005208
ER -