Abstract
Microwave has a significant promotion effect in gas-solid phase catalysis due to its unque advantages of heating process. This study introduces an innovative approach that combines microwave irradiation with a structured foam catalyst, Co3O4@S1/SiC, to enhance the isopropanol-to-propylene (ITP) process. The effectiveness of Co3O4@S1/SiC foam was investigated under various reaction temperatures (50-200 °C) and space velocities (1200 h-1), in comparison to Co3O4@S1/SiC pellets. The Co3O4@S1/SiC foam exhibited superior performance, achieving a higher selectivity towards propylene (approximately 99%) compared to Co3O4@S1/SiC pellets (93%). This enhancement can be attributed to improved mass and heat transfers facilitated by the foam structure. Co3O4@S1/SiC foam for ITP process has a milder condition with microwave irradiation (121 °C for 90% conversion) than conventional heating (184 °C for 90% conversion).
Original language | English |
---|---|
Journal | Energy Proceedings |
Volume | 32 |
DOIs | |
Publication status | Published - 2023 |
Event | Applied Energy Symposium: Clean Energy towards Carbon Neutrality, CEN 2023 - Ningbo, China Duration: 23 Apr 2023 → 25 Apr 2023 |
Keywords
- Isopropanol-to-propylene (ITP)
- Microwave
- SiC foam
- Silicalite-1
- Structured catalyst
ASJC Scopus subject areas
- Energy Engineering and Power Technology
- Fuel Technology
- Renewable Energy, Sustainability and the Environment
- Energy (miscellaneous)