Abstract
In this study, cobalt oxide (Co3O4), Mn-doped Co3O4 (MDCO), and Mn-doped Co3O4-functionalized carbon nanotube (MDCO-CNTs) were synthesized via the co-precipitation method using cobalt nitrate and manganese nitrate as a cobalt and manganese precursor, respectively. Synthesized materials were assessed using different characterization techniques like scanning electron microscopy, X-ray diffraction, and UV-visible spectroscopy. Congo red in an aqueous solution was adopted as the model dye to estimate the adsorption-assisted photocatalytic efficiency of the synthesized materials. The samples studied for adsorpsstion-assisted photocatalysis were found to be highly effective and among all the samples, the best removal performance (80%) was obtained by treating the MDCO-CNTs composite for 50 min at 50 °C. Mathematical modeling shows that all of the samples followed a pseudo-second-order kinetic model and data best fitted to a Langmuir isotherm, implying that the process involved in the removal of Congo red dye is chemisorption.
Original language | English |
---|---|
Article number | 16932 |
Journal | Sustainability (Switzerland) |
Volume | 14 |
Issue number | 24 |
DOIs | |
Publication status | Published - Dec 2022 |
Externally published | Yes |
Keywords
- carbon nanotubes
- cobalt oxide
- nanocomposite
- photocatalysis
- water treatment
ASJC Scopus subject areas
- Computer Science (miscellaneous)
- Geography, Planning and Development
- Renewable Energy, Sustainability and the Environment
- Environmental Science (miscellaneous)
- Energy Engineering and Power Technology
- Hardware and Architecture
- Computer Networks and Communications
- Management, Monitoring, Policy and Law