Modelling, Analysis and Design Considerations of Multi-Phase Bearingless Permanent Magnet Synchronous Machine

Alessandro Marfoli, Mauro Di Nardo, Seamus Garvey, Michele Degano, Rajiv Vashisht, Robert Turnbull, Chris Gerada

Research output: Chapter in Book/Conference proceedingConference contributionpeer-review

Abstract

This paper presents a general multi-harmonics analytical model able to predict both torque and force behaviour of a multi-phase permanent magnet synchronous machine. This machine topology can be adopted in bearingless applications and in application where controlling the radial forces is deemed to be beneficial to reduce the system vibrations. The modelling approach is applied to a surface permanent magnet synchronous motor featuring a 6-phase symmetric winding configuration although the proposed model is general. The underlying mathematics behind the force and torque production is carefully described with emphasis on both assumptions and approximations. Finite element analysis are proposed for validation purpose of the proposed analytical model, thus highlighting benefits and limitations. Once validated, the model is used to draw general design guidelines for this kind of electrical machine highlighting the trade-off between the competitive needs of maximizing the torque and force capability while minimizing the interaction between force and torque production.

Original languageEnglish
Title of host publication2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages4646-4653
Number of pages8
ISBN (Electronic)9781728151359
DOIs
Publication statusPublished - 2021
Event13th IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Virtual, Online, Canada
Duration: 10 Oct 202114 Oct 2021

Publication series

Name2021 IEEE Energy Conversion Congress and Exposition, ECCE 2021 - Proceedings

Conference

Conference13th IEEE Energy Conversion Congress and Exposition, ECCE 2021
Country/TerritoryCanada
CityVirtual, Online
Period10/10/2114/10/21

Keywords

  • Analytical model
  • bearingless machine
  • multiphase machine
  • radial forces
  • space vector decomposition

ASJC Scopus subject areas

  • Renewable Energy, Sustainability and the Environment
  • Energy Engineering and Power Technology
  • Electrical and Electronic Engineering

Fingerprint

Dive into the research topics of 'Modelling, Analysis and Design Considerations of Multi-Phase Bearingless Permanent Magnet Synchronous Machine'. Together they form a unique fingerprint.

Cite this