@inproceedings{567d2817ac55417780f0ebe110752258,
title = "Multi-frequency power routing for cascaded H-bridge inverters in smart transformer application",
abstract = "The smart transformer is a solid state transformer with advanced control functionalities that can efficiently manage a low-voltage micro-grid by also supporting the medium-voltage grid. Cascaded H-bridge (CHB) converters proved to be a suitable option to realize the MV stage of the smart transformer due to their modularity and multi-level output. Normally the power is equally split among the CHB cells, however, in order to delay failures of the system, certain cells can be unloaded if premature deterioration is detected. In this work, multi-frequency power transfer is used to control the power processed by the dc/dc converters that supply the dc link of the CHB. The potential is analyzed analytically and validated experimentally.",
keywords = "Active Thermal Control, Power Electronics, Power Routing, Reliability, Smart Transformer",
author = "Youngjong Ko and Markus Andresen and Giampaolo Buticchi and Marco Liserre and Luca Concari",
note = "Publisher Copyright: {\textcopyright} 2016 IEEE.; 2016 IEEE Energy Conversion Congress and Exposition, ECCE 2016 ; Conference date: 18-09-2016 Through 22-09-2016",
year = "2016",
doi = "10.1109/ECCE.2016.7855277",
language = "English",
series = "ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "ECCE 2016 - IEEE Energy Conversion Congress and Exposition, Proceedings",
address = "United States",
}